Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study
Abstract
:1. Introduction
- The depth of penetration of GPR measurements depends on numerous factors, such as subsurface material and antenna properties. Is it still possible to determine basic rules of thumb for field applications? How do organic materials, such as leaves in the water column, affect the depth of penetration?
- Up to which degree can archaeological constructions be spatially resolved within the possible depth range? Which aspects have to be considered regarding the resolution along and across profile directions?
- For which archaeological material contrasts is the GPR method particularly suitable compared to seismics and electrics? Which additional areas of application arise?
2. Measurement Locations
3. Methods
3.1. GPR Data Acquisition and Standard Processing
3.1.1. Field Equipment
3.1.2. Standard Processing
- Set coordinates;
- Interpolation to a constant trace interval (2 cm);
- Zero-time correction;
- Geometric spreading correction;
- Band pass filtering (50-100–800-850 MHz for the 400 MHz antenna and 25-50–400-425 MHz for the 200 MHz antenna);
- K-high pass (cutoff wavenumber k = 0.1/m);
- Background removal (subtracting the mean trace);
- Amplitude normalization with respect to the maximum amplitude for a better visualization;
- Optional: attenuation correction;
- Optional: Kirchhoff migration—The average water wave velocities listed in Table 1 were determined using diffraction hyperbolae. Thus, the travel times could be converted to depth using the following Equation:
3.2. Study Procedure
3.2.1. Attenuation Effects
3.2.2. Maximum Sounding Depth
3.2.3. The Spatial Resolution in Field Applications
3.2.4. Material Contrasts in Field Applications
- Inorganic materials;
- Organic materials;
- Specific archaeological materials
4. Results
4.1. Attenuation Effects
4.2. Maximum Sounding Depth
4.3. Spatial Resolution
4.4. Material Contrasts in Field Applications
5. Discussion
5.1. Maximum Sounding Depth
5.2. Spatial Resolution
5.3. Material Contrasts
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vickers, R.S.; Dolphin, L.T. A communication on an archaeological radar experiment at Chaco Canyon, New Mexico. MASCA Newsl. 1975, 11, 3. [Google Scholar]
- Kenyon, J.L.; Bevan, B. Ground–penetrating radar and its application to a historical archaeological site. Hist. Archaeol. 1977, 11, 48–55. [Google Scholar] [CrossRef]
- Bevan, B.W. Gound–penetrating radar at Valley Forge; Geophysical Survey System: North Salem, NH, USA, 1977. [Google Scholar]
- Fediuk, A.; Wilken, D.; Wunderlich, T.; Rabbel, W.; Seeliger, M.; Laufer, E.; Pirson, F. Marine seismic investigation of the ancient Kane harbour bay, Turkey. Quat. Int. 2019, 511, 43–50. [Google Scholar] [CrossRef]
- Bull, J.M.; Gutowski, M.; Dix, J.K.; Henstock, T.J.; Hogarth, P.; Leighton, T.G.; White, P.R. Design of a 3D Chirp sub–bottom imaging system. Mar. Geophys. Res. 2005, 26, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Gutowski, M.; Bull, J.M.; Dix, J.K.; Henstock, T.J.; Hogarth, P.; Hiller, T.; Leighton, T.; White, P.R. 3D high–resolution acoustic imaging of the sub–seabed. Appl. Acoust. 2008, 69, 262–271. [Google Scholar] [CrossRef]
- Seeliger, M.; Brill, D.; Feuser, S.; Bartz, M.; Erkul, E.; Kelterbaum, D.; Vött, A.; Klein, C.; Pirson, F.; Brückner, H. The purpose and age of underwater walls in the Bay of Elaia of Western Turkey: A multidisciplinary approach. Geoarchaeology 2014, 29, 138–155. [Google Scholar] [CrossRef]
- Kritikakis, G.S.; Papadopoulos, N.; Simyrdanis, K.; Theodoulou, T. Imaging of Shallow Underwater Ancient Ruins with ERT and Seismic Methods. In Proceedings of the 8th Congress of the Balkan Geophysical Society, Chania, Greece, 5–8 October 2015; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2015; Volume 1, pp. 1–5. [Google Scholar]
- Simyrdanis, K.; Papadopoulos, N.; Cantoro, G. Shallow off–shore archaeological prospection with 3–D electrical resistivity tomography: The case of Olous (Modern Elounda), Greece. Remote Sens. 2016, 8, 897. [Google Scholar] [CrossRef] [Green Version]
- Ruffell, A. Under–water scene investigation using ground penetrating radar (GPR) in the search for a sunken jet ski, Northern Ireland. Sci. Justice 2006, 46, 221–230. [Google Scholar] [CrossRef]
- Delaney, A.J.; Sellmann, P.V.; Arcone, S.A. Sub–bottom profiling: A comparison of short–pulse radar and accoustic data. In Proceedings of the 4th International Conference on Ground Penetrating Radar; European Association of Geoscientists & Engineers, Rovaniemi, Finland, 8–13 June 1992. [Google Scholar]
- Whiticar, M.J.; Faber, E.; Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence. Geochim. Cosmochim. Acta 1986, 50, 693–709. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wu, C.H.; Fratta, D.; Kung, K.J. An integrated acoustic and electromagnetic wave-based technique to estimate subbottom sediment properties in a freshwater environment. Near Surf. Geophys. 2010, 8, 213–221. [Google Scholar] [CrossRef]
- Kovacs, A. Impulse Radar Bathymetric Profiling in Weed-Infested Fresh Water; Cold Regions Research and Engineering Laboratory: Hanover, Germany, 1991; Available online: https://erdc-library.erdc.dren.mil/jspui/handle/11681/9112 (accessed on 14 May 2022).
- Shields, G.; Grossman, S.; Lockheed, M.; Humphrey, A. Waterborne geophysical surveys on shallow river impoundments. In Proceedings of the 17th Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), Colorado Springs, CO, USA, 22–26 February 2004. [Google Scholar]
- Fediuk, A.; Wilken, D.; Wunderlich, T.; Rabbel, W. Physical Parameters and Contrasts of Wooden Objects in Lacustrine Environment: Ground Penetrating Radar and Geoelectrics. Geosciences 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Wilken, D.; Wunderlich, T.; Hollmann, H.; Schwardt, M.; Rabbel, W.; Mohr, C.; Schulte-Kortnack, D.; Nakoinz, O.; Enzmann, J.; Wilkes, F. Imaging a medieval shipwreck with the new PingPong 3D marine reflection seismic system. Archaeol. Prospect. 2019, 26, 211–223. [Google Scholar] [CrossRef]
- Fediuk, A.; Wilken, D.; Thorwart, M.; Wunderlich, T.; Erkul, E.; Rabbel, W. The Applicability of an Inverse Schlumberger Array for Near-Surface Targets in Shallow Water Environments. Remote Sens. 2020, 12, 2132. [Google Scholar] [CrossRef]
- Jol, H.M.; Albrecht, A. Searching for submerged lumber with ground penetrating radar: Rib lake, Wisconsin, USA. In Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar]
- Abramov, A.P.; Vasiliev, A.G. Underwater ground penetrating radar in archaeological investigation below sea bottom. In Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar]
- Annan, P. Ground penetrating radar principles, procedures and applications. Sens. Softw. 2003, 278, 18–20. [Google Scholar]
- Leckebusch, J. Georadar in Binnengewässern. Archäologie Unter Wasser 1998, 2, 51–57. [Google Scholar]
- Fuchs, M.; Beres, M.; Anselmetti, F. Sedimentological studies of western Swiss lakes with high-resolution reflection seismic and amphibious GPR profiling. In Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar]
- Arcone, S.; Finnegan, D.; Boitnott, G. GPR characterization of a lacustrine UXO site. Geophysics 2010, 75, WA221–WA239. [Google Scholar] [CrossRef]
- Waite, A.H.; Schmidt, S.J. Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Proc. IRE 1962, 50, 1515–1520. [Google Scholar] [CrossRef]
- Annan, A.P.; Davis, J.L. Impulse radar applied to ice thickness measurements and freshwater bathymetry. Geol. Surv. Can. Rep. Act. Pap. 1977, 77, 117–124. [Google Scholar]
- Arcone, S.A.; Chacho, E.F., Jr.; Delaney, A.J. Short-pulse radar detection of groundwater in the Sagavanirktok River floodplain in early spring. Water Resour. Res. 1992, 28, 2925–2936. [Google Scholar] [CrossRef]
- Stevens, C.; Moorman, B.; Solomon, S. Detection of frozen and unfrozen interfaces with ground penetrating radar in the nearshore zone of the Mackenzie Delta, Canada. In Proceedings of the 9th International Conference on Permafrost (ICOP), Fairbanks, AK, USA, 29 June–3 July 2008. [Google Scholar]
- Powers, C.; Haeni, F.; Smith, S. Integrated use of continuous seismic-reflection profiling and ground-penetrating radar methods at John’s Pond, Cape Cod, Massachusetts. In Proceedings of the 12th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Oakland, CA, USA, 14–18 March 1999. [Google Scholar]
- Buynevich, I.V.; Fitzgerald, D.M. High-resolution subsurface (GPR) imaging and sedimentology of coastal ponds, Maine, USA: Implications for Holocene back-barrier evolution. J. Sediment. Res. 2003, 73, 559–571. [Google Scholar] [CrossRef]
- Moorman, B.J.; Michel, F.A. Bathymetric mapping and sub-bottom profiling through lake ice with ground-penetrating radar. J. Paleolimnol. 1997, 18, 61–73. [Google Scholar] [CrossRef]
- Gorin, S.R.; Haeni, F.P. Use of Surface-Geophysical Methods to Assess Riverbed Scour at Bridge Piers; Department of the Interior, US Geological Survey: Reston, VA, USA, 1989; Volume 88, p. 4212. [Google Scholar]
- Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D. Use of radars to monitor stream discharge by noncontact methods. Water Resour. Res. 2006, 42, W07422. [Google Scholar] [CrossRef]
- Park, I.; Lee, J.; Cho, W. Assessment of bridge scour and riverbed variation by a ground penetrating radar. In Proceedings of the 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar]
- Sambuelli, L.; Bava, S. Case study: A GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization. J. Appl. Geophys. 2012, 81, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Schwamborn, G.J.; Dix, J.K.; Bull, J.M.; Rachold, V. High-resolution seismic and ground penetrating radar–geophysical profiling of a thermokarst lake in the western Lena Delta, Northern Siberia. Permafr. Periglac. Process. 2002, 13, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Arcone, S.A. Numerical studies of the radiation patterns of resistively loaded dipoles. J. Appl. Geophys. 1995, 33, 39–52. [Google Scholar] [CrossRef]
- Sellmann, P.; Delaney, A.; Arcone, S. Sub-Bottom Surveying in Lakes with Ground-Penetrating Radar; US Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1992. [Google Scholar]
- Corradini, E.; Dreibrodt, S.; Erkul, E.; Groß, D.; Lübke, H.; Panning, D.; Pickartz, N.; Thorwart, M.; Vött, A.; Willershäuser, T.; et al. Understanding Wetlands Stratigraphy: Geophysics and Soil Parameters for Investigating Ancient Basin Development at Lake Duvensee. Geosciences 2020, 10, 314. [Google Scholar] [CrossRef]
- Annan, A.P. Ground Penetrating Radar. In Near-Surface Geophysics; Butler, D.K., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005; pp. 357–438. [Google Scholar]
- Wunderlich, T.; Rabbel, W. Absorption and frequency shift of GPR signals in sandy and silty soils: Empirical relations between quality factor Q, complex permittivity and clay and water contents. Near Surf. Geophys. 2013, 11, 117–127. [Google Scholar] [CrossRef]
- Schwan, H.P.; Sheppard, R.J.; Grant, E.H. Complex permittivity of water at 25 °C. J. Chem. Phys. 1976, 64, 2257–2258. [Google Scholar] [CrossRef]
- Schön, J. Petrophysik: Physikalische Eigenschaften Von Gesteinen Und Mineralen; Akademie-Verlag: Berlin, Germany, 1983. [Google Scholar]
- Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 1989, 34, 371–374. [Google Scholar] [CrossRef]
- Smith, G. Directive properties of antennas for transmission into a material half-space. IEEE Trans. Antennas Propag. 1984, 32, 232–246. [Google Scholar] [CrossRef]
- Menounos, B. The water content of lake sediments and its relationship to other physical parameters: An alpine case study. Holocene 1997, 7, 207–212. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Ritvo, G.; Meijer, L.E.; Kochba, M. Water content, organic carbon and dry bulk density in flooded sediments. Aquac. Eng. 2001, 25, 25–33. [Google Scholar] [CrossRef]
- Wyllie, M.R.J.; Gregory, A.R.; Gardner, L.W. Elastic wave velocities in heterogeneous and porous media. Geophysics 1956, 21, 41–70. [Google Scholar] [CrossRef]
- Knödel, K.; Krummel, H.; Lange, G. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten: Band 3: Geophysik; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Sambuelli, L.; Calzoni, C.; Pesenti, M. Waterborne GPR survey for estimating bottom-sediment variability: A survey on the Po River, Turin, Italy. Geophysics 2009, 74, B95–B102. [Google Scholar] [CrossRef] [Green Version]
- Annan, A.P.; Davis, J.L. Radar range analysis for geological materials. Geol. Surv. Can. 1977, 77, 117–124. [Google Scholar]
- Colombo, N.; Sambuelli, L.; Comina, C.; Colombero, C.; Giardino, M.; Gruber, S.; Viviano, G.; Vittori Antisari, L.; Salerno, F. Mechanisms linking active rock glaciers and impounded surface water formation in high-mountain areas. Earth Surf. Process. Landf. 2018, 43, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Porsani, J.L.; Assine, M.L.; Moutinho, L. Application of GPR in the study of a modern alluvial megafan: The case of the Taquari River in Pantanal Wetland, west-central Brazil. Subsurf. Sens. Technol. Appl. 2005, 6, 219–233. [Google Scholar] [CrossRef]
- Ruffell, A. Lacustrine flow (divers, side scan sonar, hydrogeology, water penetrating radar) used to understand the location of a drowned person. J. Hydrol. 2014, 513, 164–168. [Google Scholar] [CrossRef]
- Wensink, W.A.; Greeuw, G.; Hofman, J.; Van Deen, J.K. Measured underwater near-field E-patterns of a pulsed, horizontal dipole antenna in air: Comparison with the theory of the continuous wave, infinitesimal electric dipole. Geophys. Prospect. 1990, 38, 805–830. [Google Scholar] [CrossRef]
- Arcone, S.; Grant, S.; Boitnott, G.; Bostick, B. Complex permittivity and clay mineralogy of grain-size fractions in a wet silt soil. Geophysics 2008, 73, J1–J13. [Google Scholar] [CrossRef]
“Flooded Gravel Pit” | “Swimming Pool” | “River” | “Pond” | |
---|---|---|---|---|
Water column | Stagnant | Stagnant, | Flowing | Stagnant |
vertical stratified | organic material | |||
Ground material | Gravel | Tiles | Sand | Mud |
Water depth | 1.2–5 m | 0.8–4 m | 0.2–0.4 m | 0.6–1.5 m |
Water resistivity | 24.9 Ωm | 11.2 Ωm | ~17 Ωm | Unknown |
Antenna | 400 and 200 MHz | 400 and 200 MHz | 400 and 200 MHz | 400 MHz |
Stacking | 16 | 16 | 16 | 16 |
Range | 240 ns | 120 ns | 120 ns | 120 ns |
Number of samples | 822 | 411 | 411 | 411 |
dt | 0.292 ns | 0.292 ns | 0.292 ns | 0.292 ns |
Average wave velocity (according to diffraction hyperbolas in the water column) | 3.3 cm/ns | 3 cm/ns | 3 cm/ns | 3.3 cm/ns |
Material | Relative Dielectric Permittivity | Volumetric Water Content (vol%) |
---|---|---|
Fresh water | 81 [43] | - |
Saturated sand | 20 [21] | 45 [43] |
Material | Relative Dielectric Permittivity | Volumetric Water Content (vol%) |
---|---|---|
Rock matrix (quartz) | 4.2 | <1 |
Clay | 10–40 | 50–85 |
Peat | 40–60 | 70–95 |
Gyttja | 60–70 | 90–95 |
Wood | 20–40 | 50–60 |
Granite | 8–11 | <2 |
Location | α (Equation (3)) 400 MHz | α (Equations (4) and (6)) 400 MHz | α (Equation (3)) 200 MHz | α (Equations (4) and (6)) 200 MHz | |
---|---|---|---|---|---|
Flooded gravel pit | 1.75 | 1.9 | 2.02 | 1.1 | |
Swimming pool | 2.43 | 2.6 | 2.42 | 2.1 | |
Pond | 3.71 | - | - | - |
Location | S/N Type 1400 MHz | S/N Ratio Type 2400 MHz | S/N Ratio Type 1200 MHz | S/N Ratio Type 2200 MHz | |
---|---|---|---|---|---|
Flooded gravel pit | 13 dB | 38 dB | 19 dB | 27 dB | |
Swimming pool | 17 dB | 38 dB | 20 dB | 35 dB | |
River system | 33 dB | 68 dB | 39 dB | 60 dB | |
Pond | 33 dB | - | - |
Location | −α·2 | Max. Depth Penetration (m) | Std. of Depth Penetration (m) | ||
---|---|---|---|---|---|
400 MHz | |||||
Pond | 10 | −7.4 | 1.9 | 0.06 | |
Swimming Pool | 9.3 | −4.8 | 2.6 | 0.05 | |
200 MHz | |||||
Swimming Pool | 11.2 | −4.8 | 2.5 | 0.06 | |
Flooded gravel pit | 8.6 | −4 | 3.5 | 0.18 |
Fresh Water | Sand (Φ = 40%) | Clay | Peat | Gyttja | Wood | Granite | |
---|---|---|---|---|---|---|---|
Fresh water | ✓ | ✓ | (✓) | ✕ | ✓ | ✓ | |
Sand | (✓) | ✓ | ✓ | (✓) | ✓ | ||
Clay | (✓) | ✓ | (✓) | (✓) | |||
Peat | (✓) | (✓) | ✓ | ||||
Gyttja | ✓ | ✓ | |||||
Wood | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fediuk, A.; Wunderlich, T.; Wilken, D.; Rabbel, W. Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study. Remote Sens. 2022, 14, 3659. https://doi.org/10.3390/rs14153659
Fediuk A, Wunderlich T, Wilken D, Rabbel W. Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study. Remote Sensing. 2022; 14(15):3659. https://doi.org/10.3390/rs14153659
Chicago/Turabian StyleFediuk, Annika, Tina Wunderlich, Dennis Wilken, and Wolfgang Rabbel. 2022. "Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study" Remote Sensing 14, no. 15: 3659. https://doi.org/10.3390/rs14153659
APA StyleFediuk, A., Wunderlich, T., Wilken, D., & Rabbel, W. (2022). Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study. Remote Sensing, 14(15), 3659. https://doi.org/10.3390/rs14153659