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Abstract: Atmospheric correction of remote sensing imagery over optically complex waters is still
a challenging task. Even algorithms showing a good accuracy for moderate and extremely turbid
waters need to be tested when being used for eutrophic inland basins. Such a test was carried out
in this study on the example of a Sentinel-3/OLCI image of the productive waters of the Gorky
Reservoir during the period of intense blue-green algal bloom using data on the concentration of
chlorophyll a and remote sensing reflectance measured from the motorboat at many points of the
reservoir. The accuracy of four common atmospheric correction (AC) algorithms was examined.
All of them showed unsatisfactory accuracy due to incorrect determination of atmospheric aerosol
parameters and aerosol radiance. The calculated aerosol optical depth (AOD) spectra varied widely
(AOD(865) = 0.005 − 0.692) even over a small area (up to 10 × 10 km) and correlated with the
measured chlorophyll a. As a result, a part of the high water-leaving signal caused by phytoplankton
bloom was taken as an atmosphere signal. A significant overestimation of atmospheric aerosol
parameters, as a consequence, led to a strong underestimation of the remote sensing reflectance and
low accuracy of the considered AC algorithms. To solve this problem, an algorithm with a fixed AOD
was proposed. The fixed AOD spectrum was determined in the area with relatively “clean” water
as 5 percentiles of AOD in all water pixels. The proposed algorithm made it possible to obtain the
remote sensing reflectance with high accuracy. The slopes of linear regression are close to 1 and the
intercepts tend to zero in almost all spectral bands. The determination coefficients are more than 0.9;
the bias, mean absolute percentage error, and root-mean-square error are notably lower than for other
AC algorithms.

Keywords: Sentinel-3; satellite imagery; atmospheric correction algorithms; validation; LIF LiDAR;
UFL-9; ocean optics; chlorophyll a; non-station-based in situ measurements; inland waters; productive
waters; lake; Gorky Reservoir

1. Introduction

Many national programs, such as the Global Environment Monitoring System for
Freshwater, USGS Water Resources Mission Area, Water Framework Directive, etc., are
devoted to optical remote sensing of water quality in inland waters. In this regard, much
attention is paid to the development of national and regional observation systems that
provide reliable information on water quality, its variability, as well as the impact of human
activity on it. The development of such systems, even for small freshwater basins, became
possible with the launch of a constellation of Sentinel-3 A/B satellites equipped with OLCI
(Ocean and Land Color Instrument) radiometers of medium (300 m) resolution, performing

Remote Sens. 2022, 14, 3663. https://doi.org/10.3390/rs14153663 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153663
https://doi.org/10.3390/rs14153663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8550-2418
https://orcid.org/0000-0001-7716-7456
https://orcid.org/0000-0001-6016-8970
https://doi.org/10.3390/rs14153663
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153663?type=check_update&version=1


Remote Sens. 2022, 14, 3663 2 of 26

measurements in 21 spectral channels suitable for monitoring optically complex waters,
with a frequency of 1 time per day [1].

According to OLCI operational products [2], OLCI water-leaving reflectance for open-
water products mainly meets S3 mission requirements. It shows average relative percentage
differences within the range of 5–10% in comparison with in situ measurements and other
satellite missions. However, the approved accuracy assessment of complex-water products
has not yet been published.

In this regard, research aimed at studying the accuracy of atmospheric correction
(AC) of OLCI imagery for estimating the concentrations of Chl a, TSM, and CDOM in
optically complex waters is of high value. Recently, many papers have been devoted to
these issues [3–13].

The accuracy of different AC algorithms for processing Sentinel-3/OLCI images is
evaluated in [14–17] to find the best one for specific basin conditions. Unfortunately, these
results often turn out to be contradictory, and the best algorithm, in some cases, shows low
accuracy for others. This once again underlines the difficulty of atmospheric correction in
optically complex waters and the need to take into account the regional characteristics of
reservoirs to obtain satisfactory estimates of the concentrations of the optical components
of water.

Validation of five atmospheric correction algorithms for estimation of ocean color
retrievals over optically complex coastal waters of France was performed in [15]. The
authors of this study came to the conclusion about the high accuracy of the C2RCC [18,19]
and POLYMER [20] algorithms, which outperformed the BAC/ACC (ESA’s standard AC
algorithm for OLCI ocean processing) [21,22] and NASA [23,24] algorithms. The authors
of [17], who evaluated the AC accuracy for turbid waters in the coastal zone of Belgium,
came to the opposite conclusion: the BAC algorithm was one of the best; C2RCC and
POLYMER algorithms showed the worst accuracy, especially in the bands of 665 and
709 nm, which are important for chlorophyll a and turbidity retrievals in Case II waters.

In [16], the accuracy of four AC algorithms was estimated, and Chl a-retrieval algo-
rithms were evaluated for small highly productive freshwater basins in South Africa. The
authors also noted the impossibility of using AC algorithms based on neural networks to
recover the concentration of Chl a because the neural networks distort the shape of the
remote sensing reflectance (Rrs) spectrum in the red and NIR bands. In contrast to the
coastal waters studied in [15,17], where the AC algorithms generally showed plausible
results, the accuracy of AC algorithms for small highly productive water basins was not
high enough [16]. Despite this, the authors emphasized that it is still possible to obtain
reasonable estimates of the concentration of Chl a using models based on the fluorescent
line height (FLH) and the maximum chlorophyll index (MCI) if the retrieved Rrs spectra
preserve their real shape. According to [16], highly productive freshwater basins differ
significantly in their characteristics from pure ocean waters and coastal zones of the seas.
In order to obtain reliable satellite products for them, several issues related to both atmo-
spheric correction (including more complex atmospheric aerosol properties characteristic
of rural areas and the impact of the adjacency effects) and radiometric measurement and
water sampling methods (accounting for horizontal and vertical inhomogeneity due to
bloom patchiness and vertical distribution of cyanobacteria) need to be solved.

New methods of atmospheric correction for Sentinel-3/OLCI images were proposed
in [14,17]. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm was described
in [17]. The AC algorithm over extremely turbid waters, using the SWIR band potential at
1016 nm, was described in [14]. The presence of a high (non-physical) correlation between
water and aerosol signals in the bands of 865 and 1016 nm for BAC and NASA algorithms,
respectively, was also noted in [14]. Overestimation level-2 OLCI aerosol products have
also been noted in [25], which can significantly affect the accuracy of the determination of
aerosol type during atmospheric correction.

In this study, the AC accuracy of Sentinel-3/OLCI images for the Gorky Reservoir,
under conditions of intense cyanobacteria bloom, is studied. We have limited ourselves to
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considering some of the common AC algorithms available in the l2gen processor (SeaDAS),
as well as radiometric level-2 products (OL_2_WFR—OLCI level-2 water full resolution)
provided by EUMETSAT. We also proposed an atmospheric correction with a fixed aerosol
optical depth (AOD), which was determined in an image fragment with relatively clean water,
where the water-leaving reflectance can be considered negligible (Sections 2.3.2 and 3.2).

The in situ measurements were carried out from a gliding motorboat, which made it
possible to obtain more than 2900 radiometric spectra in about 1.5 h. When comparing these
measurements with the resolution of the OLCI image, 5 to 77 spectra fell into one image
pixel (Section 3.1.1), depending on the motorboat direction and velocity. By averaging
multiple in situ measurements within a single pixel, we hope to obtain more relevant data
for the validation of satellite images under conditions of significant spatial inhomogeneity
of the optical properties of water caused by cyanobacteria bloom patchiness. A large
number of measurements on the motorboat route, similar by form to “8”, ensure the
repeated passage of the same areas after a certain time interval and enable one to estimate
the spatial and temporal variability of the water reflectance within one pixel of the satellite
image (Sections 3.1.1 and 3.1.2).

This paper continues the study of AC algorithm validation and the regional bio-optical
algorithm development for the Gorky Reservoir: one of the important water basins of the
Russian Federation, characterized by high spatiotemporal variability of the water’s optical
properties. Previous results for Sentinel-2/MSI imagery were published in [26].

2. Materials and Methods
2.1. Study Area

The Gorky Reservoir (56.65◦–58.08◦N, 38.83◦–43.37◦E), located on the Volga River, has
a length of 427 km and covers an area of 1590 km2 (Figure 1). The last 100 km form the lake
part. The average and maximum depths of the lake part are 3.65 m and 26.6 m, respectively.
The trophic status of the reservoir is eutrophic; however, it changes to hypertrophic at the
end of summer due to intense blue-green algal bloom. According to our measurements
conducted in 2015–2019, the concentrations of main water constituents in the reservoir
were in the range of 0.5–460 mg/m3 for Chl a, 9–21 mg/L for total organic carbon (TOC),
and 5–20 mg/L for TSM. The Secchi depth varied from 0.2 to 3.5 m, and the euphotic zone,
from 1.0 to 4.1 m. The water surface temperature reached 32 degrees.
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Figure 1. The Gorky Reservoir map.

Water discharge through the dam has a significant effect on the current velocity in the
reservoir [27]. The average current velocity along the Volga channel is about 3–6 cm/s at
the usual discharge of 1000 m3/s, and it increases up to 10–15 cm/s in places where the
reservoir narrows. At a discharge of 1300 m3/s, the current velocity reaches 25 cm/s in front
of the dam. The mentioned water discharges are typical of summer, but they can increase
several times after intense rains, which significantly changes the structure of the current
in the reservoir. Non-stationary currents and non-uniform winds lead to the formation of
complex patterns of phytoplankton and suspended matter over the reservoir, including
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a vortex structure and frontal zones with the highest water constituent concentration
(Figure 2). Their dimensions vary from tens of meters to several kilometers.
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Figure 2. Examples of the spatiotemporal distribution of algal bloom and mineral suspended matter
in the Gorky Reservoir: (a) Landsat 7 (5 May 2009), (b) Landsat 8 (21 October 2015), (c) Sentinel-2A
(25 July 2016), (d) Landsat 8 (1 September 2017), and (e) Sentinel-2A (15 July 2016).

2.2. Field Measurements
2.2.1. Radiometric Measurements

In situ measurements were carried out on 22 September 2018 under the Sentinel-3
overpass at 8:06 UTC. The sky was clear, the weather was sunny, and the water surface was
calm. Blue-green algae concentrated near the surface and looked similar to inhomogeneous
spatial structures of random shapes, often with sharp boundaries (similar to ones in
Figure 2b–e) moving at different velocities, affected by the current.

To minimize the above-mentioned features, we used the technique of high-speed
non-station-based measurements, which we have already tested earlier [26]. This method is
based on simultaneous remote sensing reflectance and measurements of Chl a from a high-
speed gliding motorboat with allowance for the NASA recommendations on the geometry
of observation relative to the position of the Sun [28]. According to Figure 3, the latter
varied in the range of 162.8◦–180.8◦ and 33.3◦–34.5◦ for azimuth angle and solar elevation,
respectively, during 1 h of in situ measurements. Simultaneously, the motorboat had a
route consisting of 4 straight tracks with a total length of about 30 km. Each track was about
6–8 km and took 10–15 min; meanwhile, the position of the Sun changed in azimuth and
elevation by 4.5◦ and 0.3◦, respectively. Thus, we considered that the lighting conditions
had not changed (but we controlled it; see below). This statement was important, since in
the absence of three spectrometers for above-water measuring of the directional upwelling
radiance Lu, the sky radiance Lr reflected by the water surface, and the downwelling
irradiance Ed, we used only one spectrometer: an Ocean Optics USB2000+ with a field of
view (FOV) of 20◦, a spectral range of 400–750 nm, a spectral resolution of 1 nm, and a
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frequency of 1 Hz for sequential measurements of listed characteristics. In particular, the
above-water directional upwelling radiance was registered continuously along each track
at a cruise velocity of 8 m/s, providing the spatial resolution of the data equivalent to 8 m.
Two other characteristics were measured before the beginning and at the end of each track,
each for 1 min.
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Figure 3. Motorboat route on 22 September 2018.

For continuous measurements, the spectrometer was fixed at a zenith angle of 30◦ on
the bow railing as the most forward point of the motorboat and oriented in the direction of
movement (Figure 4). For fine-tuned azimuth correction at each track, the spectrometer
could be turned mechanically to the desired angle. We used this opportunity when chang-
ing the track to maintain a 90-degree angle between the spectrometer orientation and the
direction of the Sun, as it is allowed by the NASA protocol [28]. In fact, the azimuthal posi-
tion of the Sun, the observation geometry, and the reservoir elongation seriously limited the
choice of possible motorboat directions. As a result, we chose the route already mentioned
above and presented in Figure 3. The proposed route made it possible to cross the reservoir
several times and cover a large water area, encountering bloom spots of different intensities.
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The obtained time series of Lu, Lr, and Ed were smoothed by the median filter. After
that, Lr and Ed were averaged over 1 min. The irradiance values obtained every 10–15 min
(at the beginning and at the end of each track) served as an indicator of lighting stability.
As a result, the remote sensing reflectance Rrs was calculated similarly to Mobley [29]:

Rrs =
Lu − Lr

Ed
(1)

where Lr and Ed are the time-averaged values of Lr and Ed. In the presence of three synchro-
nized spectrometers, the instantaneous values of Rrs can be calculated using Equation (1)
but using the instantaneous values of the three characteristics included in it.

2.2.2. LiDAR Measurements

Simultaneously with radiometric measurements, we used pre-calibrated ultraviolet
fluorescence LiDAR UFL-9 for continuous measurement of the concentration of Chl a.
Fluorescence LiDAR systems are widely used around the world for registering bio-optical
parameters of the oceans, seas, and inland waters [30–32]. Various studies have been
conducted on the comparison of LiDAR measurements and satellite data of MODIS, MERIS,
and SeaWiFS radiometers in the open sea [33–37]. LiDAR systems are especially relevant
for small inland basins, where the spatial characteristics of water quality parameters change
very fast. The mentioned LiDAR UFL-9 has been involved in in situ measurements all
over the world, e.g., in the Atlantic Ocean, in the Black, the Kara, the Aral, the Caspian,
the Baltic, the South China, the Barents, the North, and the Mediterranean Seas, on Lakes
Balaton and Issyk-Kul, and in the Ikshinsky and Gorky Reservoirs.

The high quality of LiDAR data is achieved due to LiDAR’s physical principles and
technical characteristics. The UV fluorescent LiDAR UFL-9 analyzes returned signal from
the dual-excitation Nd:YAG laser pulses (355 and 532 nm) emitted at a frequency of 2 Hz
with an energy of 2 mJ. Detection is carried out sequentially in 11 bands (355, 385, 404, 424,
440, 460, 499, 532, 620, 651, and 685 nm) at stations with simultaneous water sampling for
the instrument calibration, and across four bands (355, 404, 440, and 685 nm) simultaneously
in transect mode while the motorboat is moving. The fluorescence intensities at 440 nm
(CDOM) and 685 nm (Chl a) and backscattering signal at 355 nm (TSM) are normalized
to the Raman scattering at 404 nm and then calibrated using a set of laboratory-measured
concentrations of CDOM, Chl a, and TSM.

Being tested on a great number of water basins, LiDAR allows the measurement of
bio-optical properties with high accuracy for non-contact and express methods. According
to [38,39], the total relative measurement error of UFL-9 is 10% for TSM and CDOM and
16% for Chl a. LiDAR’s signal processing and calibration are exhaustively described in [40].

It is important to note that the LiDAR calibration is carried out for each water basin
independently and ideally for each expedition. For this purpose, water samples are taken
from a large water area to cover the widest possible range of variability in the optical
properties of water and transferred to the laboratory to restore concentrations of the main
water constituents. This can be done on the eve of the day of satellite acquisition or after the
satellite overpass. In addition, it is not necessary to wait for calibration results, since LiDAR
measures the fluorescence signal in relative units. Thus, these signals can be converted
into absolute units at any time by comparing the fluorescence signals at the time of water
sampling at the stations with the obtained concentrations of optically active components. In
our case, a good correlation between fluorescence signal at 685 nm and Chl a concentration
was established:

Chl a = 0.019x3.109
685 , R2 = 0.91, (2)

where x685 is the LiDAR signal at 685 nm (Chl a fluorescence) in Raman units and R2 is the
determination coefficient [26].

Returning to the measurement technique at the Gorky Reservoir, LiDAR UFL-9 with
a FOV of 1◦ was also installed onto the bow railing, slightly behind the spectrometer
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(Figure 4). It was oriented at an angle of 30◦ and 45◦ to the zenith and motion direction, re-
spectively. Such an arrangement of LiDAR and spectrometer was necessary for conducting
passive optical observations and active laser sensing of the unperturbed water surface in
front of the motorboat and minimizing splashes and sun glints on the FOV.

The temporal resolution of the used LiDAR was 2 Hz, which ensures data collection
with a spatial resolution of 4 m at a cruise velocity of 8 m/s. As a result, we obtained
around 7200 measurements of Chl a for 1.5 h over a water area of about 50 sq. km.

2.2.3. Water Sampling

To recalculate fluorescence LiDAR signals into the concentration of Chl a, surface
water samples were collected from a depth of 0–30 cm using clear polyethylene bottles
at 10 stations. The samples were delivered to the shore within 1–2 h in a refrigerator at a
temperature of −4 ◦C. Filtration was carried out using 47 mm Whatman GF/F fiberglass
filters with a pore size of 0.7 µm with a low vacuum (~0.2 bar). The filtered volume
was 2 L. The filters were frozen at −16 ◦C and stored in dark conditions for 1 week. In
the laboratory, the concentration of Chl a was determined using the spectrophotometric
method [41] and calculated according to the equation for mixed phytoplankton [42]. Chl a
was extracted into 10 mL of 90% aqua acetone solution twice an hour. The extracts were
clarified twice by centrifugation for 10 min at a velocity of 8000 r/min. The concentration of
Chl a was measured by an SF-14 spectrophotometer (Russia) and pre-calibrated using pure
chlorophyll (Sigma) as a standard. Despite the fact that the spectrophotometric method does
not satisfy the NASA protocols [43], it is often used to retrieve the concentration of Chl a, as
it is the most accessible method providing reliable accuracy (e.g., [44–46]). Intercomparison
of the spectrophotometric method with two other methods, valid according to NASA
protocols, namely, fluorometric and high-performance liquid chromatography methods,
was performed, e.g., in [47,48].

2.3. Sentinel-3/OLCI Imagery and Image Processing
2.3.1. Match-Ups for Satellite Validation and Spatial–Temporal Variability within a Pixel

The RGB image (the surface reflectance in the bands of 665, 560, and 490 nm) of the
Gorky Reservoir on 22 September 2018 is presented in Figure 5a. The red line marks the
motorboat route.

During the expedition, we obtained more than 2900 radiometric spectra in about 1 h.
All of them were averaged within the Sentinel-3/OLCI pixel image. Depending on the
direction and velocity of the motorboat, there are 5 to 77 Rrs spectra per pixel of the image.
In contrast to the common approach [49], OLCI-retrieved Rrs were not derived from a
5 × 5 pixel block centered above the location of the in situ measurement for the validation
procedure. Due to the significant spatial inhomogeneity of the optical properties of water,
this approach considerably increases the difference between in situ and area-averaged
satellite measurements, which, in turn, worsens the validation results [17]. Therefore,
for validation, OLCI Rrs was taken only from those pixels where the in situ radiometric
measurements fell on. The concentration of Chl a according to LiDAR measurements was
averaged in the same way. After averaging, 127 coinciding pairs of satellite and in situ
measurements were obtained and used to validate the AC algorithm.

Multiple measurements within one satellite pixel enabled one to estimate the spatial
variability of the optical properties of water under cyanobacteria bloom conditions. For
this purpose, several pixels along the motorboat route with different color intensities pro-
portional to the algal concentration (Figure 5c) were selected, and the variation coefficient
of Rrs was calculated over the entire spectral range (see Section 3.1.1).

Moreover, the motorboat route consisted of 4 intersecting tracks (Figure 5d). This
made it possible to perform measurements in the same area after a certain time interval
and, therefore, to estimate the temporal variability of the optical properties of water in the
Gorky Reservoir. The motorboat tracks #2 and #4 intersected in pixel #1*. The beginning of
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track #1 and the end of track #4 intersected in pixels #2*–5*. Thus, 5 pixels were selected
and pixel-averaged Rrs spectra for the different times were analyzed in them.
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temporal variability of remote sensing reflectance. Red lines are the motorboat tracks. The yellow 
rectangles represent the zoomed areas on the right. 

2.3.2. Atmospheric Correction 
We used a cloud-free Sentinel-3A/OLCI image of the Gorky Reservoir on 22 Septem-

ber 2018 (Figure 5a). The OLСI level-1 (L1B) imagery was processed by the SeaWIFS Data 
Analysis System software (SeaDAS) v7.5.3 (https://seadas.gsfc.nasa.gov (accessed on 29 
June 2022)). 

Figure 5. (a) RGB image (the surface reflectance in the bands of 665, 560, and 490 nm) of the Gorky
Reservoir on 22 September 2018, (b) examples of measured water-leaving reflectance spectra (color
lines), (c) map of some match-up pixels where OLCI Rrs estimates were validated, and (d) arrange-
ment of the pixels (star marks) and its designation (a number with * symbol) used to estimate the
temporal variability of remote sensing reflectance. Red lines are the motorboat tracks. The yellow
rectangles represent the zoomed areas on the right.

2.3.2. Atmospheric Correction

We used a cloud-free Sentinel-3A/OLCI image of the Gorky Reservoir on 22 September
2018 (Figure 5a). The OLCI level-1 (L1B) imagery was processed by the SeaWIFS Data
Analysis System software (SeaDAS) v7.5.3 (https://seadas.gsfc.nasa.gov (accessed on
29 June 2022)).

https://seadas.gsfc.nasa.gov
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Atmospheric correction (AC) of remote sensing imagery over optically complex waters
is still challenging. Even algorithms showing a good accuracy for moderate and extremely
turbid waters [50–52] need to be tested when being used for eutrophic inland basins. The
water-leaving reflectance in the NIR bands is not negligible there. In the case of exceptional
algal bloom, one can observe a surface manifestation of various algae forms (floating
algae, mats, scum, etc.) even in SWIR bands. This, in turn, makes it difficult to determine
the parameters of atmospheric aerosol and aerosol radiance, which eventually affects the
accuracy of retrieving the remote sensing reflectance. To determine the AC algorithm
which is most suitable for the conditions of the Gorky Reservoir, we performed validation
of some common algorithms included in SeaDAS (l2gen processor). Particular attention
was paid to validation of the OLCI level-2 water full resolution (OL_2_WFR) obtained
according to a processing baseline v.2.23 [2] and provided by EUMETSAT. We also studied
the suitability of atmospheric correction with a fixed aerosol, the parameters of which
can be determined using a fragment of the image with relatively clean water, where the
water-leaving reflectance can be considered negligible, or using in situ measurements of
the aerosol optical depth (AOD). The following algorithms were used:

1. The common NASA approach applied to MODIS imagery [23], in which aerosol
reflectance is calculated from two NIR bands (779 nm and 865 nm), and then extrapo-
lated to visible bands, together with an iterative procedure for calculating the water-
leaving reflectance in the NIR bands [24] (termed ac(779, 865) hereafter). Standard
flagging was used, namely, pixels with WATER flag, excluding ATM_FAIL, HIGLINT,
HILT, HIPOL, HISATZEN, HISOLZEN, SEAICE, CLDICE, and STRAYTLIGHT;

2. The algorithm is similar to the previous one, but the NIR–SWIR bands of 865 nm and
1012 nm are used to calculate the aerosol reflectance (hereinafter referred to as ac(865,
1012)). Due to the strong water absorption in SWIR, these bands are successfully used
in atmospheric correction over turbid waters [52,53]. We are exploring the possibility
of using an OLCI SWIR band at 1016 nm to improve AC over eutrophic waters.
Masking is the same as in 1;

3. The MUMM algorithm (hereinafter referred to as MUMM) is a well-known algorithm
for estimating the water-leaving reflectance in turbid waters, based on the assumption
of spatial homogeneity of NIR band relations for aerosol and water-leaving reflectance
in the subscene [50]. In fact, MUMM is an algorithm with a fixed type of aerosol,
the concentration of which can vary in an image. MUMM often shows a significant
improvement in turbid coastal waters than the ac(779, 865) algorithm. Masking is the
same as in 1;

4. OL_2_WFR radiometric products (hereinafter referred to as L2W) contain the water-
leaving reflectance ρw, on 16 spectral bands, related to the remote sensing reflectance
Rrs by the relation Rrs = ρw/π. They are obtained in accordance with the ESA’s stan-
dard atmospheric correction procedure combining two approaches: (i) a baseline AC,
which is a combination of the black-water approach with the bright pixel atmospheric
correction [21,22], and (ii) an alternative AC, in which atmospheric parameters and
water-leaving reflectance are inverted using neural networks [54]. The following
set of common quality flags was used: pixels including INLAND_WATER, exclud-
ing AC_FAIL and INVALID, CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN,
SNOW_ICE, COSMETIC, SATURATED, SUSPECT, HISOLZEN, HIGHGLINT, AD-
JAC, and WHITECAP. RWNEG* flags were not used, since the presence and number
of negative values of remote sensing reflectance were criteria for the suitability of AC
algorithm for the Gorky Reservoir;

5. Atmospheric correction using a fixed aerosol, the properties of which are determined
by the AOD spectrum (hereinafter referred to as fixed AOD). This method consists
of two consecutive calculations using the ac(779, 865) algorithm. Based on the first
calculation, the AOD spectra were determined for all water pixels of the area of
interest. As our research has shown, the AOD spectra vary widely (AOD(865) = 0.005,
. . . , 0.692) even over a small area (up to 10 × 10 km). Smaller AOD values are found
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in areas with cleaner water, and larger ones, in waters with a high phytoplankton
concentration. Such a large AOD scatter is most likely due not to spatial changes in
atmospheric aerosol, but to incorrect determination of aerosol parameters in areas
with a high phytoplankton content. To determine the AOD spectra over clean water,
which is less susceptible to atmospheric correction errors, we used the fifth percentile
of AOD in all water pixels in the study area. Assuming that the properties of the
atmospheric aerosol within the study area were constant or varied only slightly,
these fixed AOD spectra were further used in the second calculation using l2gen
(aer_opt = −8). Approaches in which the aerosol type is determined from the nearest
non-turbid area were also implemented in [55,56]. In contrast to these approaches,
we assume that both the aerosol type and its optical properties can be considered
constant on small spatial scales.

Since SeaDAS (l2gen) is mainly configured for Case I waters; the threshold reflectance
for distinguishing water from clouds is very low for eutrophic waters. As a result, waters
with intense algal bloom are also masked as clouds and excluded from further calculations.
Therefore, in our study, the default threshold reflectance ρcloud(865) = 0.027 was changed
to ρcloud(1012) = 0.035. This value was determined empirically according to the condition
that reservoir waters where in situ measurements were performed were not masked as
clouds. To avoid errors when interpreting objects with high radiance in the NIR bands, this
approach is applicable only for cloudless images.

In addition to changing ρcloud, the maximum number of iterations in the procedure for
determining the water reflectance in the NIR bands was increased from 10 to 40. A further
increase in the maximum number of iterations did not affect the Rrs retrieval.

L1B and OL_2_WFR imagery were downloaded from the Copernicus Online Data
Access system (CODA) (https://coda.eumetsat.int (accessed on 29 June 2022)).

2.3.3. Accuracy Metrics

The accuracy of the AC algorithm was estimated based on six statistical values, namely,
the slope and intercept of linear regression between in situ radiometry and OLCI Rrs
estimates, the coefficient of determination R2 (which is equal to the square of Spearman’s
correlation coefficient), bias, mean absolute percent error (MAPE), and the root-mean-
square error (RMSE). The bias, MAPE, and RMSE were calculated as follows:

bias =
1
N

N

∑
i=1

(
yest

i − yobs
i

)
, (3)

MAPE =
1
N

N

∑
i=1

∣∣∣yest
i − yobs

i

∣∣∣
yobs

i
· 100, (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(
yest

i − yobs
i
)2, (5)

where yest
i and yobs

i are the OLCI-estimated and in situ-measured Rrs, respectively, and N is
the number of match-ups.

3. Results
3.1. In Situ Measurements
3.1.1. Variations of Rrs Spectra within One Pixel

According to LiDAR measurements, the concentration of Chl a varied in the range
from 4 to 460 mg/m3 per day of the expedition, and the average, median, and standard
deviation of concentration were 57.5, 38.8, and 52.5 mg/m3, respectively. The bright green
color in Figure 5a shows a high concentration of algae and water-leaving reflectance near

https://coda.eumetsat.int
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the left bank of the reservoir. Such a wide range of variations was registered due to the
repeated crossing of the reservoir from coast to coast.

Figure 5b presents the corresponding measured water-leaving reflectance spectra. All
of them are typical of water with high phytoplankton biomass. The troughs at 620 nm and
675 nm related to the absorption of phycocyanin (cyanobacteria pigments) and chlorophyll,
respectively, are clearly exhibited in the reflectance. A peak of about 709 nm caused by
strong backscattering of algae and absorption by chlorophyll at 675 nm and the water is
also distinguished.

Due to spatial inhomogeneity of the optical properties of water caused by the cyanobac-
teria bloom patchiness, a notable variation in Rrs within one pixel of the satellite image
takes place (Figure 6). The variability of the concentration of Chl a within a pixel and the
pixel-averaged concentration of Chl a is given in Table 1.

Table 1. Concentrations of Chl a along the motorboat route.

Pixel Number 10 20 30 40 50 60

Chl a range, mg/m3 46.3–74.6 27.6–44.0 63.9–232.0 34.4–97.6 14.3–32.2 14.1–30.8
Chl a averaged in pixel 58.4 33.9 133.6 62.6 26.2 25.3

Pixel Number 70 80 90 100 110 120

Chl a range, mg/m3 30.1–47.4 10.4–20.1 13.7–38.9 23.0–35.2 55.0–118.2 65.9–264.1
Chl a averaged in pixel 35.2 16.1 23.8 29.6 74.7 104.4

It should be noted that spectra shapes within a single pixel are generally the same,
but Rrs differ greatly, especially in the B6(560), B11(709), and B12(754) bands (pixels #30–60,
110–120). Rrs values in pixels of intense green color (pixels #10, 30, 40, 110, and 120)
according to the average concentrations of Chl a of 40–130 mg/m3 are an order of magnitude
higher than Rrs values in dark blue pixels (pixels #20, 50, and 60–100) with concentrations
of Chl a of 25–30 mg/m3. The spectra with extremely high Rrs in B11(709) and B12(754)
bands can be seen in pixels #30, 40, 110, and especially 120. Such spectra usually correspond
to surface formations of algae such as mats and surface scum. In pixels #80, 90, and 100,
which are distant from the algae accumulation area, the spectra shapes differ significantly.
The concentration of Chl a is also high here (16–30 mg/m3), as evidenced by the small Rrs
in the blue bands and the small troughs at 675 nm. However, algae biomass here obviously
is much lower, so the peak at 709 nm is not formed on the Rrs spectrum. It should also be
noted (Table 1) that the concentration of Chl a can vary by 2–3 times, and sometimes by
4 times within a single pixel (pixels #30 and 120).

The variation coefficients (CV) for Rrs in the Sentinel-3 spectral bands are given in
Table 2 and the arrangement of pixels is presented in Figure 5c. It is possible to detect
some dependence of the variation coefficient on the concentration of Chl a. For example,
the variation coefficients for Rrs(709) are 5–10% for concentrations of Chl a in the range of
15–25 mg/m3 (pixels #80, 90, and 100). At concentrations of Chl a exceeding 50 mg/m3

(Figure 5c and Table 1), the variation coefficient increases up to 35% (pixels #30, 40, and
110). The highest variation coefficient for Rrs(709) has been observed in pixel #120, with an
average concentration of Chl a of 104 mg/m3, and is equal to 61%.

Validation of satellite products for Case I water is performed under the assumption
of spatial homogeneity of the optical properties of water. The SeaBASS validation system
excludes those satellite measurements in which the median CV of calculated Rrs in the
range of 405–570 nm exceeds 15% [49,57]. Optically complex waters (Case II water), on
the contrary, are characterized by high spatial inhomogeneity. Under such conditions, on
the one hand, within a block of 5 × 5 pixels (1.5 × 1.5 km for Sentinel-3/OLCI), optical
properties can vary by 1–2 orders of magnitude. Therefore, the validation of satellite
products in the pixel closest to in situ measurements turns out to be more reasonable.
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Figure 6. Spectral variations of in situ Rrs measured along the motorboat route in pixels marked
in Figure 5c. The bold red and thin colored lines correspond to pixel-averaged Rrs spectra and Rrs

spectra measured within OLCI image pixel, respectively.
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On the other hand, satellite measurements are pixel-averaged. As can be seen from
Figure 6 and Table 2, the CV of Rrs within one pixel can vary from 3 to 115% in various
spectral bands. At the same time, with an increase in the concentration of Chl a, CV also
increases. Thus, comparing pixel-averaged satellite data with measurements conventionally
carried out at one station can lead to unreliable results.

In this regard, multiple measurements within one satellite pixel performed on a
moving motorboat, under conditions of spatial inhomogeneity of the optical properties of
water, seem more preferable, reliable, and statistically justified.

Table 2. Variation coefficient for remote sensing reflectance in Sentinel-3 bands for some matchup
points along the motorboat route.

Pixel Number B1
(400)

B2
(412)

B3
(442)

B4
(490)

B5
(510)

B6
(560)

B7
(620)

B8
(665)

B9
(674)

B10
(681)

B11
(709)

B12
(754)

Variation coefficient, %
10 26.2 23.2 14.7 11.9 10.7 8.8 4.8 5.2 4.4 4.1 10.5 25.3
20 20.3 16.0 7.3 5.8 6.0 7.2 3.6 4.2 3.1 3.6 9.8 16.3
30 37.6 35.4 23.4 19.5 18.8 19.5 8.8 10.7 9.2 9.7 34.3 55.3
40 33.1 32.6 24.5 21.0 20.2 19.0 9.9 11.3 9.5 9.7 24.3 37.7
50 41.6 29.5 17.6 16.5 17.4 20.4 8.2 10.1 7.1 7.7 31.4 74.2
60 19.0 17.4 11.7 14.2 16.3 20.0 10.0 11.8 9.9 9.3 29.0 68.8
70 33.8 25.8 12.9 11.8 12.8 14.6 8.1 9.3 7.5 8.0 19.5 41.4
80 24.7 22.4 11.5 10.0 7.7 6.4 5.7 7.1 8.5 7.2 10.5 28.9
90 16.4 15.1 12.4 8.5 7.1 4.1 3.4 3.4 3.4 3.4 5.0 16.0
100 5.9 4.2 3.1 2.3 1.9 3.5 1.0 1.9 1.3 1.0 5.9 10.7
110 37.3 32.2 19.0 17.4 16.8 14.9 7.8 8.7 6.9 7.0 22.1 44.6
120 88.6 82.4 61.5 49.5 45.0 20.9 36.1 30.4 29.1 30.3 60.7 115.2

3.1.2. Variations of Rrs Spectra in Point with Time

Table 3 presents the averaged concentration of Chl a and the time delay between
measurements in pixels (Figure 5c). Pixel-averaged Rrs spectra are given in Figure 7, where
the blue and red curves correspond to measurements carried out on the forward and reverse
motorboat tracks. The number of in situ measurements within one pixel, which is used to
obtain the averaged spectrum, is shown in Table 3, and varied from 30 to 77 depending on
the position and orientation of the motorboat track relative to the pixel.

Table 3. Temporal variability of the concentration of Chl a in the Gorky Reservoir in pixels on
Figure 5d.

Pixel
Number

Track
Number

Time Delay,
Min

Chl a, mg/m3
Quantity of

Measurements in PixelMin Average Max

1*
2

25
14.2 20.2 25.2 35

4 22.3 30.5 46.5 38

2*
1

74
33.4 75.7 204.7 33

4 30.3 44.4 71.8 39

3*
1

76
30.1 52.8 65.3 41

4 25.0 33.1 41.4 63

4*
1

78
35.5 45.8 70.5 77

4 28.8 49.5 91.3 66

5*
1

80
32.9 39.9 44.7 36

4 24.9 32.8 40.2 34
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Figure 7. Time variation of averaged Rrs spectra at the same point of the reservoir after time delay
stated in Table 2. The blue lines correspond to earlier measurements and the red lines to later ones.
Pixel numbers are given in left upper corner and correspond to Figure 5d.

Measurements in pixel #1* were repeated after 25 min (Table 3). As a result, we
registered an increase in the concentration of Chl a (by about 50%) and Rrs (Figure 7).
Measurements in the following four pixels (#2*–5*) were performed with a time delay
of 74–80 min. In this case, we see an opposite situation with a decrease in the averaged
concentration of Chl a by 18–41% and Rrs (Figure 7), in general. However, there is one
exception in pixel #4*. Here, a slight increase in the average concentration of Chl a was
registered due to an increase to 91.3 mg/m3 in the maximum concentration at several
measurement points within the pixel.

Comparing Rrs spectra in Figure 7, we can state that their temporal variability is
significant (20–30% on average) and differs significantly for various regions of the reservoir.
Thus, variations are observed in the Volga channel with the highest current velocity after
25 min (pixel #1*) and in a low-flow floodplain (pixels #2*–5*) after 80 min. We consider
the obtained results as indicative and aimed at ensuring that other researchers of inland
waters do not neglect spatiotemporal variability of the bio-optical properties of water (or
prove that there is no such variability for their water bodies). To date, there is a very small
number of papers (see, e.g., [58]) in which the issue under consideration would be given
sufficient attention.

3.2. Validation of the Remote Sensing Reflectance

The results of Rrs validation from OL_2_WFR are shown in Figure 8 with a blue line.
The slope of linear dependence (Figure 8a) is negative in all bands except B11(709) and
B12(754). The determination coefficient in all bands does not exceed 0.2 (Figure 8b); other
accuracy criteria are also low, especially in the blue bands.

Negative Rrs spectra are mainly related to the overestimation of aerosol radiance. The
distribution of AOD(865) from OL_2_WFR (blue line) and the measured concentration
of Chl a (red line) along the motorboat route are shown in Figure 9a. It is obvious that
AOD(865) largely repeats the main features of the distribution of the concentration of Chl a.
Thus, we can assume that when determining the atmospheric parameters, a significant part
of the water-leaving reflectance in the NIR bands was taken into account. As a result, the
contribution of the atmosphere was overestimated and, therefore, the retrieved Rrs spectra
in B1-B10 bands are negative.
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Figure 9. Distribution of the aerosol parameters and the concentration of Chl a along the motorboat
route: AOT(865) from OL_2_WFR products (blue line) and the measured concentration of Chl a (red
line) (a); the measured concentration of Chl a (red line) and Chl_NN from OL_2_WF (blue line) (b).

The distribution of the concentration of Chl a calculated using a neural network (blue
line) (Chl_NN) and measured (red line) along the motorboat route is shown in Figure 9b.
The spatial distribution of Chl_NN contradicts the distribution of pixel brightness (algae
concentration) in Figure 5a. In the area with intense green color, the concentration of
Chl_NN is less than in the area with black color. We can also observe this due to the distri-
bution of Chl a along the motorboat route (Figure 9b). Chl_NN is approximately 0.5 mg/m3,
where the measured concentration of Chl a exceeded 100 mg/m3. Conversely, Chl_NN
increased to about 8 mg/m3, where measured concentrations are less than 50 mg/m3.
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Perhaps the reason for the implausible results is that the neural network has not been
trained for cases of cyanobacteria bloom [59].

The distribution of the measured and retrieved Rrs in B10(681) and B11(709) bands
along the motorboat route is shown in Figure 10a,b. One can notice that, in pixels with a
high concentration of Chl a (of about 50 mg/m3) (green line), retrieved Rrs spectra (blue line)
are almost a mirror image of measured Rrs spectra (red line), i.e., the peaks of measured
Rrs spectra at high Chl a correspond to negative peaks of retrieved Rrs spectra (pixels #15,
27, 30, and 75). In pixels where Chl a exceeds 100 mg/m3 (pixels #7–13, 117–125), the
discontinuities in which Rrs spectra are not calculated and equal to NaN are observed. This
is also typical of the B1–B10 bands, in which the slope of linear regression is also negative
(Figure 8a).
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Figure 10. Validation results of L2W-retrieved Rrs (blue line) with measured Rrs (red line): in B10(681)
band (a); and in B11(709) band (b). The green line is the measured concentration of Chl a along the
motorboat route. A scatter plot of OLCI-retrieved Rrs and measured Rrs: in B10(681) band (c); and in
B11(709) (d). Line 1:1 (dotted line), linear regression (pink line). The number of match-ups is 127.

The retrieved Rrs spectra repeat the features of Rrs spectra measured along the motor-
boat route in B11(709) and B12(754) bands fairly well, where slopes are positive (Figure 10b).
Although the number of negative Rrs spectra is small, retrieved Rrs differs from the mea-
sured Rrs by about 2 times where Chl a exceeds 50 mg/m3. Rrs is equal to NaN, where Chl
a exceeds 100 mg/m3. A scatter plot of measured and retrieved Rrs spectra in B10(681) and
B11(709) bands is given in Figure 10c,d.

Figures 8, 11 and 12 present the validation results of the restored Rrs using other
AC algorithms. The accuracy parameters of the MUMM algorithm are plotted with an
orange line, ac(779, 865) and ac(865, 1012), with purple and green lines, respectively.
Unfortunately, none of the algorithms allowed us to obtain satisfactory results. As for
the L2W data, the slopes of linear regression (Figure 8a) are negative in all bands except
B11(709) and B12(754), but the determination coefficients are much higher. For ac(779, 865)
and ac(865, 1012) algorithms, R2 is 0.45–0.55 in the B4(490), B5(510), and B7-B10 bands, but
it is significantly less than for L2W in the B11 and B12 bands (approximately 0.15). The
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MUMM algorithm made it possible to slightly reduce the amplitude of negative Rrs spectra,
which reduced the bias and RMSE, but the determination coefficient is 30–50% lower than
that for ac(779, 865) and ac(865, 1012), but greater than that for L2W in most bands.
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Figure 12. Validation results of Rrs retrieved using various AC algorithms: in the B10(681) band (a);
in the B11(709) band (b). MUMM (orange line), ac(779, 865) (purple line), ac(865, 1012) (green line),
measurements (red line). The scatter plot of the Rrs retrieved using ac(779, 865) and measured Rrs in
the B10(681) band (c), and in the B11(709) band (d). Line 1:1 (dotted line), linear regression (pink line).
The number of match-ups is 127.

For these three algorithms, AOD and aerosol radiance La profiles repeat the Chl a
distribution along the motorboat route (Figure 11), which reveals an incorrect assessment
of water-leaving reflectance in the NIR bands. The Rrs distributions retrieved by these AC
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algorithms are shown in Figure 12. In general, the results are similar to those obtained
using the L2W algorithm (Figure 10). Rrs is negative or cannot be calculated at all (line
breaks) where Chl a exceeds 50 mg/m3. This is a reason for the negative slopes of the linear
regression and low-accuracy criteria. Rrs spectra obtained due to the ac(865, 1012) and
MUMM algorithms have slightly higher values compared to ac(779, 865). However, this
increment is not large enough to obtain positive Rrs in areas with a high concentration of
Chl a. On the contrary, this increment increases the discrepancy with the measurements in
pixels with Chl a less than 50 mg/m3 (pixels #50–72 and 75–105).

AOD spectra over clean water, defined as the fifth percentile of AOD in all water pixels
by ac(779, 865), were used as inputs for the fixed AOD algorithm. Figure 8 shows that
among the algorithms considered, the fixed AOD algorithm (black dotted line) enabled
one to retrieve Rrs with the highest accuracy. The slopes are close to 1, and the intercepts
tend to zero in nearly all bands. The determination coefficients exceed 0.9. Bias, MAPE,
and RMSE are notably lower than for other AC algorithms. The B1(400), B2(412), B11(709),
and B12(754) bands are an exception, where bias, MAPE, and RMSE increase sharply.

The distribution of retrieved Rrs using the fixed AOD algorithm is shown in Figure 13.
In contrast to results in Figures 10 and 12, the retrieved Rrs spectra repeat the distribution
of measured Rrs spectra and correspond to the variability of Chl a along the motorboat
route. Generally, the retrieved Rrs spectra are close to the measured ones, but in pixels with
an extremely high concentration of Chl a, Rrs spectra may differ by 20–50%.
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Figure 13. Validation results of Rrs retrieved using fixed AOD algorithm (blue line): in B10(681) band
(a); in B11(709) band (b), the red line is measured Rrs, the green line is the concentration of Chl a
measured along the motorboat roue; the scattering diagrams of the retrieved OLCI Rrs and measured
one in B10(681) band (c), and B11(709) band (d). Line 1:1 (dotted line), linear regression (pink line).
The number of match-ups is 127.

Spectra of Rrs and AOD in some pixels along the motorboat route are shown in
Figure 14; pixel arrangement and numbering are presented in Figure 5c. Measured Rrs
spectra are plotted in red and Rrs spectra retrieved using the MUMM algorithm are
marked with orange lines; ac(779, 865) and ac(865, 1012) correspond to purple and green
lines, respectively, and the fixed AOD is a dotted black line. The AOD spectra (purple
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line) were calculated on AOD(865) and the Angstrom exponent A(865) using the relation
AOT(λ) = AOT(865) · (865/λ)A. The AOD spectrum used in the fixed AOD algorithm was
determined by the method described above and was constant in all pixels. The remaining
AOD spectra were obtained during the corresponding atmospheric corrections.
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Figure 14. Spectral variations of rsR  (on the left) and АОТ (on the right) in selected pixels along 
the motorboat route. The colored lines show the spectra retrieved by different atmospheric correc-
tion algorithms: L2W (blue line), ac(779, 865) (magenta line), ac(865, 1012) (green line), MUMM (or-
ange line), and fixed AOD (black dashed line). The red lines are in situ rsR . The number of match-
ups is 127. 

Figure 14. Spectral variations of Rrs (on the left) and AOT (on the right) in selected pixels along the
motorboat route. The colored lines show the spectra retrieved by different atmospheric correction
algorithms: L2W (blue line), ac(779, 865) (magenta line), ac(865, 1012) (green line), MUMM (orange line),
and fixed AOD (black dashed line). The red lines are in situ Rrs. The number of match-ups is 127.
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The fixed AOD algorithm accurately retrieves Rrs spectra in a wide Chl a range of
16–135 mg/m3 (black dotted line), with the exception of B1(400) and B12(412) bands, where
retrieved Rrs is larger than the measured one, probably due to the adjacency effect. AOD
obtained in different AC algorithms for the same pixels (color lines) vary in a wide range.
The closer the pixels are to the fixed AOD spectrum, the more accurate retrieved Rrs spectra
are. AOD spectra shapes obtained using the ac(779, 865) algorithm are similar to the spectra
obtained by the L2W algorithm, and the ac(865, 1012) algorithm is similar to MUMM,
which can indicate the applicability of these algorithms for different types of waters.

4. Discussion

The accuracy of atmospheric correction of remote sensing imaginary over highly pro-
ductive waters is affected by the accuracy of the estimation of the water-leaving reflectance
in the NIR bands. Unfortunately, none of the considered atmospheric correction algorithms
could satisfactorily manage this. The water-leaving reflectance in the NIR bands was
underestimated and its part was taken as the aerosol radiance. Calculated AOD and aerosol
radiance (Figures 9 and 11) repeated the distribution of the concentration of Chl a along
the motorboat route. As a result, a large number of negative Rrs spectra were received in
pixels with a high concentration of Chl a (Figures 10 and 12). The use of the SWIR band for
atmospheric correction (ac(865, 1012) algorithm) and the MUMM algorithm, which operate
well in turbid sediment-dominated waters and enable one to nearly get rid of negative
Rrs, did not solve this problem. These algorithms (especially MUMM) slightly reduced the
magnitude of negative Rrs spectra, which affected the reduction of negative bias (Figure 8).
However, MUMM accuracy was generally worse (the determination coefficient is almost
2 times less in most bands) than the accuracy of the standard NASA ac(779, 865) algorithm.
This happened due to the overestimation of Rrs in pixels where the concentration of Chl a
is less than 50 mg/m3.

It can be seen that all algorithms retrieved Rrs well in a certain range of concentrations
of Chl a, but beyond it, accuracy significantly deteriorates (Figure 14 and Table 1). The
ac(779, 865) algorithm (purple line) operates well when the concentration of Chl a is less than
30 mg/m3 (see pixels #50, 60, 80, 90, and 100). While the concentration of Chl a increases up
to 35 mg/m3 (pixels #20 and 70), the accuracy decreases. The ac(865, 1012) (green line) and
MUMM (orange line) algorithms overestimate Rrs for Chl a below 30 mg/m3 (see pixels
#50, 60, and 80), but give slightly better estimates than ac(779, 865) for Chl a in the range of
30–65 mg/m3 (pixels #20, 40, and 70).

CHL_NN product from OL_2_WFR for hyper-eutrophic waters of the Gorky Reservoir
does not correctly reproduce either spatial features of the algae distribution or quantitative
estimates of their concentration. In comparison with in situ measurements, CHL_NN is
inverse, i.e., CHL_NN is low in pixels with a high content of algae, and vice versa. Instead,
TSM_NN from OL_2_WFR are high in these pixels, i.e., the algorithm considers that the
waters have a high content of mineral suspended matter. Perhaps this is due to the fact that
neural network training was not performed for cases of cyanobacteria bloom.

The use of the fixed AOD algorithm showed the highest accuracy of Rrs retrieval.
Despite the fact that the assumption of the constancy of the optical properties of the aerosol
is quite rough, the possible sources of the associated uncertainties were small compared
to the errors in determining the aerosol properties and the water-leaving reflectance in
the NIR bands according to the standard image-based method. A positive experience of
using the 6SV model of atmospheric correction for Sentinel-3/OLCI and Sentinel-2/MSI
imagery was described in [16,60]. AOD determined by in situ measurement was considered
constant over inland water in their studies. It is possible that for reservoirs with a high algae
biomass, the pixel-by-pixel determination of aerosol parameters from satellite imagery is
extremely difficult or impossible in principle. Thus, different approaches are required for
such cases.
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The method for determining the AOD spectrum from the adjacent area of less tur-
bid water has shown a high potential for Rrs retrieval. High accuracy was obtained in
almost all VIS bands for various Rrs spectra shapes (Figure 14), corresponding to a Chl
a concentration range of 12–307 mg/m3, on a spatial scale of approximately 10 × 10 km.
Further research can be aimed at comparing the image-defined fixed AOD spectrum with
in situ measurements and at studying the accuracy variability of the fixed AOD algorithm
on larger spatial scales. In addition, to assess the propriety of aerosol model selection for
atmospheric correction, we intend to measure AOD using a portable solar photometer
MICROTOPS.

5. Conclusions

The accuracy of atmospheric correction of satellite imaginary over highly productive
waters is affected by the accuracy of estimating the water-leaving reflectance in near-
infrared bands. Using the example of the highly productive Gorky Reservoir and an
extensive data set of in situ measurements, our research has shown that the common
atmospheric correction algorithms, demonstrating good accuracy for moderate and ex-
tremely turbid waters, significantly overestimate the atmosphere contribution to productive
inland waters. In particular, none of the considered atmospheric correction algorithms
(NASA, ESA, and MUMM) could satisfactorily manage this. The water-leaving reflectance
in near-infrared bands was underestimated, and its significant part was mistaken for
aerosol radiance, which led to an incorrect estimation of the aerosol optical depth. We have
clearly demonstrated that the aerosol optical depth and aerosol radiance profiles repeat
the chlorophyll a distribution over the reservoir, which reveals an incorrect estimation of
water-leaving reflectance in the NIR bands. The proposed fixed aerosol optical depth algo-
rithm, in which aerosol optical depth spectrum was determined from the adjacent area of
less turbid water, made it possible to accurately to retrieve Rrs spectra with a determination
coefficient close to 1 in almost all spectral bands in waters with chlorophyll variations in
the range of 12–307 mg/m3. The obtained result complements the results for Sentinel-2
imagery published in our previous paper.

Validation of satellite measurements for highly productive inland reservoirs cannot
be reduced only to the search for an optimal AC algorithm. Radiometric measurement
and water sampling methods should be corrected with allowance for the horizontal and
vertical inhomogeneity caused by cyanobacteria bloom. The coefficient of variation of Rrs
within one pixel varied from 3 to 115% in various spectral bands in the Gorky Reservoir.
Thus, a comparison of pixel-averaged satellite data with measurements at a single station
could lead to unreliable results. Temporal variability of Rrs is also significant in the Gorky
Reservoir and it was, on average, 20–30% in 20–80 min. To minimize the impact of time
variability, the time window for validation points should be no more than one hour.
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