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Abstract: In recent years, methods based on deep convolutional neural networks (CNNs) have
dominated the classification task of hyperspectral images. Although CNN-based HSI classification
methods have the advantages of spatial feature extraction, HSI images are characterized by approxi-
mately continuous spectral information, usually containing hundreds of spectral bands. CNN cannot
mine and represent the sequence properties of spectral features well, and the transformer model
of attention mechanism proves its advantages in processing sequence data. This study proposes a
new spectral spatial kernel combined with the improved Vision Transformer (ViT) to jointly extract
spatial spectral features to complete classification task. First, the hyperspectral data are dimensionally
reduced by PCA; then, the shallow features are extracted with an spectral spatial kernel, and the
extracted features are input into the improved ViT model. The improved ViT introduces a re-attention
mechanism and a local mechanism based on the original ViT. The re-attention mechanism can increase
the diversity of attention maps at different levels. The local mechanism is introduced into ViT to make
full use of the local and global information of the data to improve the classification accuracy. Finally, a
multi-layer perceptron is used to obtain the classification result. Among them, the Focal Loss function
is used to increase the loss weight of small-class samples and difficult-to-classify samples in HSI data
samples and reduce the loss weight of easy-to-classify samples, so that the network can learn more
useful hyperspectral image information. In addition, using the Apollo optimizer to train the HSI
classification model to better update and compute network parameters that affect model training and
model output, thereby minimizing the loss function. We evaluated the classification performance of
the proposed method on four different datasets, and achieved good classification results on urban
land object classification, crop classification and mineral classification, respectively. Compared with
the state-of-the-art backbone network, the method achieves a significant improvement and achieves
very good classification accuracy.

Keywords: hyperspectral image (HSI); image classification; feature extraction; vision transformer

1. Introduction

Hyperspectral imagery (Hyperspectral Imagery, HSI) is an image acquired by a hy-
perspectral imager, and its spatial and spectral information is very rich. Compared with
ordinary images, hyperspectral remote sensing images also have more bands and extremely
high resolution. The application of hyperspectral remote sensing to earth observation tech-
nology is very common, such as precision agriculture [1], land cover analysis [2], marine
hydrology detection [3], geological exploration [4] and other fields.

Remote Sens. 2022, 14, 3705. https://doi.org/10.3390/rs14153705 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153705
https://doi.org/10.3390/rs14153705
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9118-230X
https://orcid.org/0000-0002-2453-3691
https://orcid.org/0000-0003-1016-1636
https://doi.org/10.3390/rs14153705
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153705?type=check_update&version=2


Remote Sens. 2022, 14, 3705 2 of 20

Hyperspectral Imagery (HSI) classification is an important task in hyperspectral image
processing and application. In the early research, many traditional machine learning meth-
ods have been applied to hyperspectral image classification, such as K-nearest neighbor
method [5], support vector machine [6], random forest [7], naive Bayes [8] and decision
trees [9], etc. Although these traditional methods have achieved good performance, they
are all based on shallow features for learning classification and rely on manual design of
classification features, which is difficult to learn more complex information in hyperspectral
images [10].

The hyperspectral image classification algorithm based on deep learning can automat-
ically obtain the advanced features of the image, so that the classification model can better
express the characteristic of the remote sensing image to improve classification accuracy.
Chen [11] applied deep learning theory to hyperspectral image classification for the first
time, which used stacked autoencoders to extract spatial spectral features from hyperspec-
tral images and achieved good results. Yu [12] applied convolutional neural networks
(CNN) to hyperspectral image classification, which only used spectral information, without
taking into account the relationship between adjacent cells. Chen et al. [13] proposed
a three-dimensional convolutional neural network (3D-CNN) feature extraction model
to directly extract spectral spatial features and achieve better classification results from
hyperspectral images end-to-end, which has higher inter-class distinguishability compared
to two-dimensional convolutional neural networks (2D-CNN). Roy [14] proposed the Hy-
bridSN framework, which is a spectral–spatial 3D-CNN followed by spatial 2D-CNN to
further learn a more abstract spatial representation. Zhong et al. [15] proposed the SSRN
network, where a spectral residual block and a spatial residual block sequentially learn
discriminative features from the rich spectral features and spatial context in hyperspectral
images. The selection of informative spectral–spatial kernel features presents challenges
due to the presence of noise and band correlations, which is usually solved by using a con-
volutional neural network with a fixed size receptive field (RF). Roy et al. [16] proposed an
attention-based adaptive spectral spatial kernel modified residual network (A2S2K-ResNet)
with spectral attention to capture discriminative spectral spatial features in an end-to-end
training manner, using an improved 3D ResBlocks to jointly extract spectral–spatial features
for HSI classification. T. Alipour-Fard et al. [17] proposed a new multi-branch selection
kernel network (MSKNet), which uses different receptive field sizes to convolve the input
image to generate multiple branches, so as to adjust each branch according to the input
contrast through the attention mechanism effect of the channel. Automatically adjusting the
size of neuron receptive field and enhance the cross-channel relationship between features
improves the problem of using fixed size receptive field in convolutional neural network,
so as to limit the learning weight of the model. Although CNN-based methods have the
advantages of spatial feature extraction, they are difficult to handle continuous data, and
CNNs are not good at modeling long-range dependencies.

Recently, the application of transformers in the visual direction has become a hot
topic. The spectrum of HSI is a kind of sequence data, which usually contains hundreds of
spectral bands. Attention-based transformer models have demonstrated their advantages in
handling sequential data, and the transformer framework can represent high-level semantic
features well. Although CNN has good local perception ability, due to the limitation of
the inherent network backbone, CNN cannot mine and represent the sequence attributes
of spectral features well, while the transformer model based on an attention mechanism
enables the model to be trained in parallel and has global information. CNN methods have
limited ability to acquire deep semantic features. As the depth increases, the traditional
CNN will increase the channel dimension and reduce the spatial dimension, and the
computational cost will increase significantly. However, the transformer does not have this
problem, and the channels and spatial dimensions of different layers do not change. This
strategy of reducing the spatial dimension and increasing the channel dimension is also
beneficial to improve the performance of the transformer structure.
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He et al. [18] used CNN to extract spatial features and a transformer to capture
spectral sequence relationships. Hong et al. [19] proposed the SpectralFormer network
architecture to learn spectral local sequence information from adjacent bands of HSI images
to generate intra-group spectral embeddings. Ji et al. [20] proposed the bidirectional
encoder representations from transformers (BERT), which has a global receptive field
and can directly capture the global dependencies between pixels without considering
their spatial distances. Han et al. [21] proposed that Transformer iN Transformer (TNT)
block uses an outer transformer block to model the relationship between patches and an
inner Transformer block to model the relationship between pixels. The model not only
retains the information extraction at the patch level but also achieves the information
extraction at the pixel level, which can significantly improve the model’s ability to model
local structures. Hugo et al. [22] used distillation to enable the transformer-based model to
learn some inductive biases based on the CNN model, thereby improving the processing
capability of image. Although the global interaction between token embeddings can be
well modeled by the transformer’s self-attention mechanism, the locality mechanism for
information exchange within local regions is lacking. Li et al. [23] introduced locality into
the transformer by introducing depthwise convolutions in a feedforward network.

In order to capture the spectral relationship of HSI sequences over long distances,
obtain deep semantic features and make full use of the local and global information of the
data, this paper proposes a new classification framework, that is, attention-based adaptive
spectral spatial kernel combined with ViT. The contributions of this article are summarized
as follows:

1. This study proposes a novel HSI classification architecture, the attention-based
adaptive spectral spatial kernel combined with improved ViT, which systematically com-
bines bands from shallow to deep, enables neurons to adaptively adjust the receptive field
size and successfully handles the long-range dependence of the spectrum making full
use of the spectral spatial information and local global information in HSI to improve the
classification performance of HSI.

2. This study proposes an improved ViT model that introduces the re-attention
mechanism and the local mechanism. We use the re-attention mechanism to increase the
diversity of attention maps at different levels. The local mechanism is introduced into
ViT, the improved attention mechanism of ViT global relation modeling and the locality
mechanism of local information aggregation are combined to make full use of the local and
global information of the data and improve the classification accuracy.

3. In order to train the model better, the Focal Loss function is used to increase the loss
weight of small-class samples and hard-to-classify samples in HSI data samples and reduce
the loss weight of easy-to-classify samples, so that the network can learn more useful
hyperspectral image information. In addition, using the Apollo optimizer to train the HSI
classification model resulted in better updating and computing network parameters that
affect model training and model output, thereby minimizing the loss function. The smaller
the loss function, the better the model, thus improving the classification model’s performance.

4. The effectiveness of the method is verified on the challenging HSI four public
datasets, the urban ground object classification is realized in the Pavia University dataset,
the mineral classification is realized on the Xuzhou dataset, and the classification of crops is
implemented on the Indian Pines and WHU-Hi-LongKou datasets. The effectiveness of the
method is demonstrated on public datasets in different application domains. Compared
with other representative methods, the classification results accuracy of the proposed
method is improved.

The remaining part of this paper is organized as follows. Section 2 describes the
details of the proposed classification method in detail. Section 3 describes the experimen-
tal datasets, experimental results and related analyses. Section 4 gives conclusions and
suggestions for future work.
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2. Related Works

The framework proposed in this paper for HSI image classification is shown in Figure 1.
First, the principal component analysis (PCA) method is used to remove redundant spectra
and reduce the time and space complexity of image processing. Considering that in order
to effectively adjust the receptive field size of neurons and cross-channel dependencies,
we proposed an attention-based adaptive spectral spatial residual method. Since CNN is
good for capturing local information but has difficulty processing HSI’s continuous data,
the extracted features are sent to the modified Vision Transformer model. The original ViT
model is improved by combining it with Re-Attention mechanism to increase the diversity
of the attention graph at different levels. Then, the local mechanism is introduced into the
ViT, locality is added to the ViT by introducing a depthwise convolution in the feedforward
network, and the transformed features are fed into the transformer encoder modules to
perform feature representation and learning. The following part is divided into four parts:
attention-based adaptive spectral spatial residual module, improved ViT, Apollo optimizer
and Focal loss function.
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Figure 1. The proposed network structure for HSI Classification. 
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Figure 1. The proposed network structure for HSI Classification.

2.1. Spectral–Spatial Feature Extraction

Let the hyperspectral data cube be I ∈ RM×N×D, where I is the original input, M is
the width, N is the height, and D is the number of spectral bands. Every HSI pixel in I
contains D spectral measures and forms a one-hot vector Y = (Y1, Y2, · · · , YC) ∈ R1×1×C,
where C represents the land cover category. To remove spectral redundancy, a princi-
pal component analysis was first performed on the raw input HSI data to reduce the
number of spectral bands from D to B while maintaining the same spatial dimension.
Let X ∈ RM×N×B be the data cube after PCA processing and B be the number of spec-
tral bands after PCA [24]. Thus, spectral bands are reduced, and spectral information is
preserved. Using the combined spectral and spatial information, a region size of S× S
centered on the pixel (i, j) is superimposed into X, defined as a spectral–spatial vector
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Xi,j =
[
Xi,j,1, · · · , Xi,j,B

]
∈ RS×S×B. Taking the HSI digital cube X ∈ RS×S×B as input, the

adaptive spectral space kernel feature map V ∈ RS×S×B is generated as output [16]:

V = FASSK(X; θa) (1)

where θa is the trainable parameter in ASSK. By automatically adjusting the receptive field
size, neurons can jointly learn spectral spatial features and amplify multi-scale information
of neurons in the next layer.

In order to enable neurons to adaptively adjust the size of the receptive field, we use
selective kernel convolution to learn the selection of the spectral–spatial kernel attention
feature maps between different receptive fields through FASSK, as shown in Figure 2.
Selective kernel convolutions between multiple kernels have different kernel sizes. The
basic idea is to use gates to control the flow of information from two branches carrying
information of different scales into the neurons of the next layer. To achieve this, the
gate needs to integrate information from branch offices, where multiple branches with
different kernel sizes are fused using softmax function attention guided by information
in these branches. Different attention to these branches produces different sizes of the
effective receptive fields of neurons in the fusion layer. F̂(l+1)

spectral : Xl → Û(l+1) ∈ RS×S×B

and F̃(l+1)
spatial : Xl → Ũ(l+1) ∈ RS×S×B are the transformations of the (l + 1)th layer, where

Xl is the input to the (l + 1)th layer spectral and spatial kernel selection transformation.
The output feature maps Û(l+1) and Ũ(l+1) are defined as:

Û(l+1) = F̂(l+1)
spectral

(
Xl
)
= Xl ∗W(l+1)

(1×1×7) + b(l+1) (2)

Ũ(l+1) = F̃(l+1)
spatial

(
Xl
)
= Xl ∗W(l+1)

(3×3×7) + b(l+1) (3)
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Among them, ∗ is the three-dimensional convolution operation, W l+1 is the weight of
the (l + 1)th convolution layer, b(l+1) is the bias, and two three-dimensional convolution
kernels with receptive field sizes (1 × 1 × 7) and (3 × 3 × 7) are used to extract the
spectral and spatial feature maps. F̂spectral extracts spectral features, and F̂spatial extracts
spatial features.

By automatically adjusting the size of the receptive field of neurons, the neurons
jointly learn the spectral–spatial features and amplify the multi-scale information flow of
the neurons in the next layer. Firstly, element-level summation is used to fuse the results of
the two branches:

U(l+1) = Ũ(l+1) + Û(l+1) (4)

Secondly, global information is embedded by using global average pooling (GAP) to
generate feature response vectors (FRVs) with channel statistics of the data. Specifically, the
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spatial dimension of U(l+1) ∈ RS×S×B is reduced to s(l+1)
b ∈ R1×1×B along the bth feature

map direction by averaging the spatial elements of S× S at each channel:

s(l+1)
b =

1
S× S

S

∑
i=1

S

∑
j=1

u(l+1)
b (i, j) (5)

Furthermore, to obtain neural activations of different channel features enabling adap-
tive kernel selection, a compact feature z(l+1) ∈ Rd×1 was created to enable guidance
for precise and adaptive selection. This is achieved by a simple fully connected layer,
which reduces the dimensionality to improve efficiency, and the feature weight vector is
defined as:

z(l+1) = ReLu
(

BN
(

W(l+1) · sl+1
b

))
(6)

ReLu is the activation function, and BN is the batch normalization process. d is used
to achieve model convergence, and the compression ratio r is used to control z(l+1) for
compressing dimension:

d = max
(

C
r

, L
)

(7)

where L is the minimum value of d (L = 32 in our experiment).
Guided by the channel descriptor z(l+1), a discriminative spectral-spatial kernel feature

map is automatically selected. Specifically, apply z(l+1) to the softmax function:

al+1
spectral =

eA(l+1)
b z(l+1)

eA(l+1)
b z(l+1)

+ eB(l+1)
b z(l+1)

(8)

bl+1
spatial =

eB(l+1)
b z(l+1)

eA(l+1)
b z(l+1)

+ eB(l+1)
b z(l+1)

(9)

Among them, al+1
spectral and bl+1

spatial denote the soft attention vector for Û(l+1) and Ũ(l+1),

respectively. A(l+1)
b ∈ R1×d and B(l+1)

b ∈ R1×d are the bth row of A(l+1) ∈ RB×d and
B(l+1) ∈ RB×d, the final feature map V is obtained through the attention weights on each
kernel function:

V = al+1
spectral × Û(l+1) + bl+1

spatial × Ũ(l+1) (10)

Among them, al+1
spectral + bl+1

spatial = 1, V = [V1, V2, . . . , VB] and Vi ∈ RS×S, ∀i = 1, . . . , B.
The kernel feature map is made up of four ResBlocks in order to extract more robust

and discriminative spectral–spatial characteristics. Each ResBlock is made up of 24 kernels
that are separated into spectral characteristics based on the learning of distinct kernel
shapes and spatial features. The first two ResBlocks extract spatially focused spectral
characteristics, whereas the latter two extract spatially focused spectral features. As a result,
combining spectral and spatial data increase the model’s identification capabilities. A GAP
layer is utilized after re-blocking to transform 3D feature maps of size 7 × 7 × 24 into
feature vectors of size 1 × 1 × 24.

Efficient Feature Recalibration is recalibrated by residual and spectral spatial channels.
Among them, FEFR(·) takes the transformed feature map of the lth layer Xl ∈ RS×S×B as
the input, and generates the feature map recalibrated by the channel X̂l+1 ∈ RS×S×B as the
output, that is:

X̂l+1 = FEFR

(
Xl ; θb

)
(11)

where θb is the trainable parameter in the EFR module.
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2.2. Improved Vision Transformer

Transformer networks were developed to simulate long-term relationships between
sequence parts in machine translation. Although Transformer’s self-attention mechanism
can mimic the global interaction between token embeddings, it lacks a local method for
information sharing among small areas. We provide a locality mechanism to ViT by incor-
porating depth-wise convolution because locality is critical for HSI pictures. The upgraded
ViT blends global relation modeling’s attention mechanism with local information ag-
gregation’s locality mechanism. Locality is added to the ViT by introducing depthwise
convolutions in a feedforward network, and the Re-Attention mechanism based on the
original ViT is used to increase the diversity of attention maps at different levels.

When compared to standard convolution, depthwise convolution uses just channels
for calculation. That is, just one input feature map is convolved to obtain one channel
of the output feature map. As a result, depth-wise convolution is both parameter and
computation efficient. The patch is input to the Embedding layer, that is, the Linear
Projection of Flattened Patches in the Figure 1, a lot of vectors called tokens can be obtained.
Then, a new token is added in front of a series of tokens, and Positional Encoding will be
added to the patch embedding to retain the position. The closer the information is located,
the more similarly it tends to be encoded. In addition, the location information needs to be
added, corresponding to 0 ∼ n. Then, it is input into the transformer encoder to repeatedly
stack the block N times. The output of the transformer is classified by the MLP Head which
consists of LayerNorm and two fully connected layers, and the GELU activation function is
used for classification to obtain the final classification result [24].

Figure 3 depicts the transformer encoder, which consists of N stacks of the same layer.
Each layer consists of the re-attention mechanism and position-wise fully connected feed-
forward network. Around each of these two sublayers, we utilize a residual connection [25]
and a normalization layer [26]. That is, LayerNorm(x + Sublayer(x)) is the output of each
sublayer, where Sublayer(x) is an implementation function of the sublayer.

1. Re-Attention

Re-Attention successfully overcomes the problem of attention collapse and allows
for more in-depth ViT training, which collects complementing information from multiple
attention heads through interactions to promote the variety of attention maps. Specifically,
we use dynamic aggregation to create a new set of attention maps based on the head’s
attention maps. A learnable transition matrix Θ ∈ RH×H is defined and used to combine
the multi-head attention maps into a new regenerated map before multiplying by V. Re-
Attention is accomplished by the following manner [27]:

Re-Attention(Q, K, V) = Norm
(

ΘT
(

softmax
(

QKT
√

d

)))
V (12)

The transformation matrix Θ is multiplied by the self-attention map of the head
dimension. Norm is the normalizing function used to decrease hierarchical variance. The
softmax function is applied to rows of comparable matrices, and d is used to normalize
the result. The three learnable weight matrices include query (Q), key (K), and value (V).
Relationships between tokens are modeled by projecting the similarity between query key
pairs, resulting in attention scores.

2. Feed forward

After the Re-Attention layer, a feedforward network is attached. A token sequence
is first reshaped into a feature map on a 2D lattice. Then, two 1× 1 convolutions and one
depthwise convolution are applied to the feature map. Then, the feature map is reshaped
into a sequence of tokens, which is used as self-attention in the transformer layer of the
network. The specific description is as follows.
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The feedforward network consists of two input convolutions of size 1× 1 and trans-
forms features along the embedding dimension. The hidden dimension between the two
convolutional layers is expanded to learn richer feature representations. Since the feedfor-
ward network is applied to the sequence of tokens Z ∈ RN×d by position, the reshaped
features of the sequence of tokens are represented as:

Zr = Seq2Img(Z), Zr ∈ Rh×w×d (13)

The sequence is converted into a 2D feature map using Seq2Img. To re-establish token
closeness, each token is placed at the pixel position of the feature map, offering a chance to
reinstate locality into the network.

There is no information exchange between neighboring pixels since the feature map
just performs the 1× 1 convolution. Furthermore, the transformer’s attention section only
captures the global interdependence between all tokens. In the inverted residual block,
there is a depthwise convolution. Each channel is given k × k (k > 1) convolution kernels
by depthwise convolution. To calculate a new feature, the features from k × k kernels
are combined. Therefore, depthwise convolution is a good approach to bring locality into
the network. The depthwise convolution is introduced into the transformer feedforward
network, and the calculation formula is [23]:

Yr = f ( f (Zr ∗Wr
1) ∗Wd) ∗Wr

2 (14)

Y = Img2Seq(Yr) (15)
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f (·) is the nonlinear activation function. The bias phrase has been eliminated for
clarity. In most cases, the dimensional expansion ratio γ is set to 4. Wr

1 ∈ Rd×γd×1×1 is
reshaped from W1 and represents the convolution kernel. Wd ∈ Rγd×1×k×k is the kernel of
depthwise convolution. The Img2Seq function returns the image feature map to a series of
tokens which is used in the following self-attention layer.

2.3. Apollo Optimizer

The optimizer is used to update and compute network parameters that influence
model training and output in order to approach or attain the optimal value, reducing (or
maximizing) the loss function. This work employs Apollo, a non-convex quasi-Newtonian
stochastic optimization technique that is both simple and computationally efficient. This
approach is useful for large-scale optimization issues involving big data sets or high-
dimensional parameter spaces, such as deep neural network machine learning, and using
the Apollo optimizer improves HSI data categorization accuracy. The method approximates
the Hessian through a diagonal matrix, dynamically introduces the curvature of the loss
function, and the update and storage of the Hessian diagonal is as efficient as the adaptive
first-order optimization method of linear complexity. The Hessian is replaced with its
adjusted absolute value to handle non-convexity and ensure that it is positive definite.

The Apollo optimizer formula is as follows [28]:

θt+1 = θt − H−1
t gt (16)

where gt = ∇ f (θt) is the gradient at θt, and Ht = ∇2 f (θt) is the Hessian matrix:

θt+1 = θt − ηtB−1
t gt (17)

where ηt is the step size, and Bt is the approximation of the Hessian matrix for each
parameter update. Exponential moving averages (EMVs) are applied to gt, and bias
correction is initialized:

mt+1 =
β
(
1− βt)

1− βt+1 mt +
1− β

1− βt+1 gt+1 (18)

where 0 < β < 1 is the decay rate of the EMV. For each parameter Bt, the update formula is
as follows:

Λ , Bt+1 − Bt =
sT

t yt − sT
t Btst

‖st‖4
4

Diag
(

s2
t

)
(19)

Among them, yt = gt+1 − gt, st = θt+1 − θt, and s2
t is the element-wise squared vector

of st, Diag
(
s2

t
)

is a diagonal matrix consisting of the vector’s diagonal elements s2
t , and

‖ · ‖4 is the 4-norm of the vector.
Replace the step size bias in the stochastic gradient gt with the modified gradient

gt
′ = ηtgt. Combined with the corresponding corrected yt

′ = gt+1
′ − gt

′ = ηtyt, modify
the update term Λ in formula (19) and replace yt with yt

′:

Λ′ =
sT

t yt
′ − sT

t Btst

‖st‖4
4

Diag
(

s2
t

)
= −dT

t yt + dT
t Btdt

‖dt‖4
4

Diag
(

d2
t

)
(20)

where dt = − st
ηt

= B−1
t gt is the updated direction after correction.

When calculating the update direction with Bt as preprocessing, we use its abso-
lute value:

|Bt| =
√

BT
t Bt (21)
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where
√
· is the positive definite square root of the matrix. Apollo uses a diagonal matrix to

represent Bt. In order to deal with the non-convexity of the objective function, the absolute
value of Bt is corrected with the convexity hyperparameter σ:

Dt = recti f y(Bt, σ) = max(|Bt|, σ) (22)

Among them, the rectify (·, σ) function is similar to the corrected linear unit (ReLu),
and the threshold is set to σ.

2.4. Focal Loss

Various samples have the same amount of loss in cross-entropy measures prediction;
however, in the real HSI classification job, the quantity of samples of different categories
varies substantially, as does the classification difficulty of the same category of samples. The
categorization complexity of distinct samples varies according to the differences between
them. If the same weight is utilized to optimize each instance’s prediction results, the
prediction results for difficult-to-classify data will be relatively bad. Furthermore, the
categorization findings of certain instances are not optimal due to the effect of mixed pixels.
The model must adaptively alter the proportion of each instance in the loss according to the
classification difficulty in order to enhance classification performance and pay attention to
small-class samples and difficult-to-classify samples at the same time. More “optimization
resources” should be allocated to challenging classification samples [29]. Focal Loss [30],
an improved variant of cross entropy loss, is used in this research, which is defined as:

CE(p, y) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,k log pi,k (23)

Assuming there are K label values, y is the real label, pi,k is the probability of predicting
the kth label value for the ith sample, and N represents the number of samples. A common
way to address class imbalance is to introduce a weighting factor α ∈ R1×N , which is
between [0, 1]:

CE(p, y) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

αiyi,k log pi,k (24)

A more formal approach is to add a tuning factor (1− pt)
γ to the cross-entropy loss

function, with tunable focusing parameter γ ≥ 0.

CE(p, y) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

(1− pi,k)
γyi,k log pi,k (25)

Combining the above two formulas, the Focal Loss is obtained:

FL(p, y) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

αi(1− pi,k)
γyi,k log(pi,k) (26)

3. Experimental Results

The experiments were carried out on the Windows 10 operating system, and the
classification methods were implemented using the Python language and PyTorch library.
The experimental environment is an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz
processor, 16 GB memory, and a GeForce GTX 1650Ti graphics card. In order to minimize
the experimental error and chance, all the experimental data in this paper are the average
results of 10 iterations. In order to adapt to hardware resources and reduce the amount
of computation per batch during network training, the size of the input data is set to
32 × 32. All experimental networks can reach a stable convergence state after training
up to 100 epochs. In order to ensure that all methods can achieve the best classification
effect, this paper sets the maximum number of training epochs to 200 and adopts the early
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stopping method to avoid the overfitting problem. We use the Apollo optimizer to learn
the mixing operation parameters, where the learning rate is set to 0.0004. Three indicators
of comprehensive accuracy (OA), average accuracy (AA) and the Kappa coefficient (K) are
used to quantitatively evaluate the experimental results.

3.1. Hyperspectral Datasets Description

In this study, we conduct experiments on four different HSI datasets, including Indian
Pines datasets, Pavia University datasets, Xuzhou datasets and WHU-Hi-LongKou datasets.
The datasets used are described in detail below. The number of samples per class, a false
color map and a ground truth map of the datasets are shown in Tables 1–4.

1. Data in the Indian Pines dataset were obtained by the AVIRIS sensor over the Indian
Pines Agricultural Proving Ground in northwestern Indiana, USA. The original data have
a total of 224 bands, 4 zero bands and 20 water absorption bands (104–108, 150–163 and
220) are removed, and the remaining 200 bands are for experimental study, ranging from
0.4 to 2.5 µm. the space size is 145 × 145 pixels with 16 different types of plants.

Table 1. Indian Pines Dataset Labeled Sample Counts.

No. Class Color Sample Numbers False-Color Map Ground-Truth Map

1 Alfalfa
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2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the
University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial
resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from
0.43 to 0.86 µm. Twelve noise bands are removed, and the remaining 103 bands are available
for experiments with 9 categories.

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and HySpex
VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in November 2014,
and the experimental area is located near a coal mining area. The size of the dataset
is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there are
436 bands for experiments with 9 categories.
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2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 
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Table 3. Xuzhou Dataset Labeled Sample Counts.

No. Class Color Sample Numbers False-Color Map Ground-Truth Map
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3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-
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Table 3. Xuzhou Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Bareland-1  26,396 

  

2 Lakes  4027 

3 Coals  2783 

4 Cement  5214 

5 Crops-1  13,184 

6 Trees  2436 

7 Bareland-2  6990 

8 Crops-2  4777 

9 Red-tiles  3070 

Total  68,877   

4. The WHU-Hi-LongKou dataset [33,34] consists of an 8 mm focal length head-wall 

nano-Hyperspec imaging sensor, mounted on the DJI Matrice 600 Pro (DJI M600 Pro) 

drone platform in 2018 Obtained in Longkou Town, Hubei Province, China, on July 7, 

2008. The study area is a simple agricultural scenario containing six crops: corn, cotton, 

sesame, broad-leaf soybean, narrow-leaf soybean, and rice, with a total of nine categories. 

The image size is 550 × 400 pixels with 270 bands between 0.4~1 μm, and the spatial reso-

lution of the hyperspectral image carried by the UAV is about 0.463 m. 

Table 4. WHU-Hi-LongKou Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Corn  34,511 

  

2 Cotton  8374 

3 Sesame  3031 

4 Broad-leaf soybean  63,212 

5 Narrow-leaf soybean  4151 

6 Rice  11,854 

7 Water  67,056 

8 Roads and houses  7124 

9 Mixed weed  5229 

Total  204,542   

3.2. Comparison of the Proposed Methods with the State-of-the-Art Methods 

In this section, to evaluate the classification performance of our proposed method, 

the proposed method is validated by using several comparative experiments, including 

the traditional method RBF-SVM [35] and the deep-learning-related methods CNN [36], 

HybirdSN [14], PyResNet [37], SSRN [15], SSFTT [38] and A2S2KResNet [16]. For RBF-

SVM, the radial basis function is used as the kernel, and the grid search method is used to 

find the exponential growing sequence. In each dataset, the number of training samples 

is 10% of the total number of samples. The experimental results of the proposed method 

are shown in Tables 5–8. It can be seen that the OA, AA and Kappa values achieved by 

the proposed method are the best, with OA reaching 98.81%, 99.76%, 99.80% and 99.89% 

on the Indian Pines, Pavia University, Xuzhou and WHU-Hi-LongKou datasets, respec-

tively. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 
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3 Gravel  2099 
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5 Painted metal sheets  1345 
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7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 
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3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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8 Hay-windrowed  478 
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2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 
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4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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2 Corn-notill  1428 

3 Corn-mintill  830 

4 Corn  237 

5 Grass-pasture  483 

6 Grass-trees  730 

7 Grass-pasture-mowed  28 

8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Alfalfa  46 

  

2 Corn-notill  1428 

3 Corn-mintill  830 

4 Corn  237 

5 Grass-pasture  483 

6 Grass-trees  730 
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8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 

  

3070

Total 68,877

4. The WHU-Hi-LongKou dataset [33,34] consists of an 8 mm focal length head-wall
nano-Hyperspec imaging sensor, mounted on the DJI Matrice 600 Pro (DJI M600 Pro) drone
platform in 2018 Obtained in Longkou Town, Hubei Province, China, on 7 July 2008. The
study area is a simple agricultural scenario containing six crops: corn, cotton, sesame,
broad-leaf soybean, narrow-leaf soybean, and rice, with a total of nine categories. The
image size is 550 × 400 pixels with 270 bands between 0.4~1 µm, and the spatial resolution
of the hyperspectral image carried by the UAV is about 0.463 m.

Table 4. WHU-Hi-LongKou Dataset Labeled Sample Counts.

No. Class Color Sample Numbers False-Color Map Ground-Truth Map

1 Corn
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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2 Corn-notill  1428 

3 Corn-mintill  830 

4 Corn  237 

5 Grass-pasture  483 

6 Grass-trees  730 

7 Grass-pasture-mowed  28 

8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 
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1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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Table 3. Xuzhou Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Bareland-1  26,396 

  

2 Lakes  4027 

3 Coals  2783 

4 Cement  5214 

5 Crops-1  13,184 

6 Trees  2436 

7 Bareland-2  6990 

8 Crops-2  4777 

9 Red-tiles  3070 

Total  68,877   

4. The WHU-Hi-LongKou dataset [33,34] consists of an 8 mm focal length head-wall 

nano-Hyperspec imaging sensor, mounted on the DJI Matrice 600 Pro (DJI M600 Pro) 

drone platform in 2018 Obtained in Longkou Town, Hubei Province, China, on July 7, 

2008. The study area is a simple agricultural scenario containing six crops: corn, cotton, 

sesame, broad-leaf soybean, narrow-leaf soybean, and rice, with a total of nine categories. 

The image size is 550 × 400 pixels with 270 bands between 0.4~1 μm, and the spatial reso-

lution of the hyperspectral image carried by the UAV is about 0.463 m. 

Table 4. WHU-Hi-LongKou Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Corn  34,511 

  

2 Cotton  8374 

3 Sesame  3031 

4 Broad-leaf soybean  63,212 

5 Narrow-leaf soybean  4151 

6 Rice  11,854 

7 Water  67,056 

8 Roads and houses  7124 

9 Mixed weed  5229 

Total  204,542   

3.2. Comparison of the Proposed Methods with the State-of-the-Art Methods 

In this section, to evaluate the classification performance of our proposed method, 

the proposed method is validated by using several comparative experiments, including 

the traditional method RBF-SVM [35] and the deep-learning-related methods CNN [36], 

HybirdSN [14], PyResNet [37], SSRN [15], SSFTT [38] and A2S2KResNet [16]. For RBF-

SVM, the radial basis function is used as the kernel, and the grid search method is used to 

find the exponential growing sequence. In each dataset, the number of training samples 

is 10% of the total number of samples. The experimental results of the proposed method 

are shown in Tables 5–8. It can be seen that the OA, AA and Kappa values achieved by 

the proposed method are the best, with OA reaching 98.81%, 99.76%, 99.80% and 99.89% 

on the Indian Pines, Pavia University, Xuzhou and WHU-Hi-LongKou datasets, respec-

tively. 
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4. The WHU-Hi-LongKou dataset [33,34] consists of an 8 mm focal length head-wall 

nano-Hyperspec imaging sensor, mounted on the DJI Matrice 600 Pro (DJI M600 Pro) 

drone platform in 2018 Obtained in Longkou Town, Hubei Province, China, on July 7, 

2008. The study area is a simple agricultural scenario containing six crops: corn, cotton, 
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2 Cotton  8374 
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4 Broad-leaf soybean  63,212 

5 Narrow-leaf soybean  4151 

6 Rice  11,854 

7 Water  67,056 

8 Roads and houses  7124 

9 Mixed weed  5229 

Total  204,542   

3.2. Comparison of the Proposed Methods with the State-of-the-Art Methods 

In this section, to evaluate the classification performance of our proposed method, 

the proposed method is validated by using several comparative experiments, including 

the traditional method RBF-SVM [35] and the deep-learning-related methods CNN [36], 

HybirdSN [14], PyResNet [37], SSRN [15], SSFTT [38] and A2S2KResNet [16]. For RBF-

SVM, the radial basis function is used as the kernel, and the grid search method is used to 

find the exponential growing sequence. In each dataset, the number of training samples 

is 10% of the total number of samples. The experimental results of the proposed method 

are shown in Tables 5–8. It can be seen that the OA, AA and Kappa values achieved by 

the proposed method are the best, with OA reaching 98.81%, 99.76%, 99.80% and 99.89% 

on the Indian Pines, Pavia University, Xuzhou and WHU-Hi-LongKou datasets, respec-

tively. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Alfalfa  46 

  

2 Corn-notill  1428 

3 Corn-mintill  830 

4 Corn  237 

5 Grass-pasture  483 

6 Grass-trees  730 

7 Grass-pasture-mowed  28 

8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Alfalfa  46 

  

2 Corn-notill  1428 

3 Corn-mintill  830 

4 Corn  237 

5 Grass-pasture  483 

6 Grass-trees  730 

7 Grass-pasture-mowed  28 

8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 
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3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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Table 1. Indian Pines Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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3 Corn-mintill  830 
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5 Grass-pasture  483 

6 Grass-trees  730 
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8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 

  

2 Meadows  18,649 

3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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8 Hay-windrowed  478 

9 Oats  20 

10 Soybean-notill  972 

11 Soybean-mintill  2455 

12 Soybean-clean  593 

13 Wheat  205 

14 Woods  1265 

15 Buildings-Grass-Trees-Drives  386 

16 Stone-Steel-Towers  93 

Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 
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3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 
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4 Trees  3064 
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6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-

vember 2014, and the experimental area is located near a coal mining area. The size of the 

dataset is 500 × 260 pixels, the noise bands from 415 to 2508 nm are removed, and there 

are 436 bands for experiments with 9 categories. 
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No. Class Color Sample Numbers False-Color Map Ground-Truth Map 
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Total  10,249   

2. Data in the Pavia University dataset were obtained by ROSIS-03 sensors over the 

University of Pavia, Pavia, Italy. The size of the dataset is 610 × 340 pixels, and the spatial 

resolution is 1.3 m. The original data have 115 bands with spectral coverage ranging from 

0.43 to 0.86 μm. Twelve noise bands are removed, and the remaining 103 bands are avail-

able for experiments with 9 categories. 

Table 2. Pavia University Dataset Labeled Sample Counts. 

No. Class Color Sample Numbers False-Color Map Ground-Truth Map 

1 Asphalt  6631 
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3 Gravel  2099 

4 Trees  3064 

5 Painted metal sheets  1345 

6 Bare Soil  5029 

7 Bitumen  1330 

8 Self-Blocking Bricks  3682 

9 Shadows  947 

Total  42,776   

3. Data in the Xuzhou dataset [31,32] were acquired by HySpex SWIR-384 and 

HySpex VNIR-1600 imaging spectrometers in Xuzhou, Jiangsu Province, China, in No-
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3.2. Comparison of the Proposed Methods with the State-of-the-Art Methods

In this section, to evaluate the classification performance of our proposed method,
the proposed method is validated by using several comparative experiments, including
the traditional method RBF-SVM [35] and the deep-learning-related methods CNN [36],
HybirdSN [14], PyResNet [37], SSRN [15], SSFTT [38] and A2S2KResNet [16]. For RBF-
SVM, the radial basis function is used as the kernel, and the grid search method is used to
find the exponential growing sequence. In each dataset, the number of training samples is
10% of the total number of samples. The experimental results of the proposed method are
shown in Tables 5–8. It can be seen that the OA, AA and Kappa values achieved by the
proposed method are the best, with OA reaching 98.81%, 99.76%, 99.80% and 99.89% on
the Indian Pines, Pavia University, Xuzhou and WHU-Hi-LongKou datasets, respectively.

Table 5. Classification results of all methods on Indian Pines dataset.

Class
Method

RBF-SVM CNN HybirdSN PyResNet SSRN SSFTT A2S2KResNet Proposed

1 65.07 ± 9.65 81.93 ± 7.74 82.99 ± 25.02 91.31 ± 3.43 85.38 ± 2.10 99.76 ± 0.73 91.62 ± 2.05 98.70 ± 3.16
2 71.34 ± 2.01 74.70 ± 9.07 89.21 ± 4.71 87.74 ± 7.82 98.07 ± 1.64 94.85 ± 1.15 98.67 ± 1.05 98.57 ± 1.13
3 75.53 ± 2.58 59.56 ± 6.96 89.13 ± 3.73 80.27 ± 8.06 97.09 ± 1.29 99.24 ± 0.47 98.81 ± 0.65 98.96 ± 0.67
4 61.18 ± 6.84 45.37 ± 5.60 89.50 ± 6.70 82.60 ± 5.87 97.95 ± 1.97 99.30 ± 1.08 99.37 ± 0.87 98.87 ± 1.00
5 88.76 ± 2.97 89.37 ± 4.67 96.73 ± 4.55 96.82 ± 3.32 96.68 ± 1.29 98.78 ± 0.94 98.97 ± 0.80 98.77 ± 0.83
6 89.16 ± 1.77 94.88 ± 3.44 97.49 ± 2.12 92.57 ± 5.47 97.46 ± 4.53 99.37 ± 0.39 98.86 ± 1.01 99.35 ± 0.67
7 85.05 ± 9.27 81.91 ± 13.10 82.27 ± 9.19 93.94 ± 6.50 70.00 ± 5.83 98.40 ± 3.20 97.93 ± 6.21 97.02 ± 7.70
8 90.32 ± 1.50 97.83 ± 1.22 95.70 ± 3.99 92.27 ± 3.57 98.50 ± 1.97 99.79 ± 0.45 100.00 ± 0.00 99.92 ± 0.12
9 71.14 ± 13.65 57.26 ± 12.84 70.23 ± 9.42 92.85 ± 1.53 74.27 ± 10.90 67.22 ± 7.29 81.70 ± 10.54 96.02 ± 5.45

10 75.74 ± 2.60 68.54 ± 4.98 88.03 ± 5.51 85.21 ± 7.20 96.94 ± 1.54 97.54 ± 0.89 97.90 ± 1.24 97.51 ± 1.09
11 77.97 ± 1.29 88.46 ± 3.55 91.62 ± 2.26 89.28 ± 6.57 99.07 ± 0.61 99.22 ± 0.35 99.16 ± 0.42 99.18 ± 0.50
12 73.24 ± 3.75 64.95 ± 10.02 87.51 ± 5.96 86.97 ± 8.25 98.23 ± 1.62 95.96 ± 1.09 98.33 ± 1.25 98.59 ± 1.41
13 90.80 ± 4.36 98.47 ± 1.05 97.01 ± 3.26 98.36 ± 1.52 98.03 ± 2.21 98.86 ± 0.71 99.17 ± 1.15 99.46 ± 0.86
14 91.74 ± 0.88 98.20 ± 0.35 97.76 ± 0.91 94.17 ± 4.02 99.27 ± 0.65 99.38 ± 0.88 99.25 ± 0.51 99.15 ± 0.60
15 74.41 ± 6.25 53.50 ± 5.01 94.66 ± 3.60 91.22 ± 3.92 98.85 ± 1.10 98.01 ± 1.21 98.58 ± 1.06 98.65 ± 1.13
16 98.16 ± 2.27 93.67 ± 4.80 92.23 ± 7.19 95.80 ± 4.88 88.71 ± 14.42 91.69 ± 5.79 94.46 ± 4.95 94.33 ± 3.67

OA (%) 80.01 ± 0.66 78.31 ± 2.82 92.08 ± 1.72 87.27 ± 4.82 97.97 ± 0.58 98.07 ± 0.39 98.51 ± 0.26 98.81 ± 0.32
AA (%) 79.35 ± 2.40 78.04 ± 1.78 90.13 ± 5.38 90.71 ± 3.47 86.72 ± 7.45 96.08 ± 1.44 97.05 ± 1.35 98.83 ± 0.63
K × 100 77.09 ± 0.77 75.04 ± 3.11 90.96 ± 1.97 85.49 ± 5.37 97.69 ± 0.67 97.85 ± 0.50 98.58 ± 0.30 98.65 ± 0.36

Table 6. Classification results of all methods on Pavia University dataset.

Class
Method

RBF-SVM CNN HybirdSN PyResNet SSRN SSFTT A2S2KResNet Proposed

1 81.26 ± 5.08 96.14 ± 1.60 87.42 ± 10.30 94.44 ± 3.69 99.40 ± 1.31 99.72 ± 0.21 98.95 ± 1.52 99.72 ± 0.14
2 84.53 ± 3.81 96.67 ± 0.99 99.57 ± 0.28 96.49 ± 2.42 99.97 ± 0.03 99.98 ± 0.01 99.98 ± 0.03 99.98 ± 0.02
3 56.56 ± 16.17 73.84 ± 11.76 72.11 ± 16.92 88.58 ± 11.05 98.96 ± 2.16 98.97 ± 0.85 99.05 ± 1.40 99.34 ± 0.85
4 94.34 ± 3.50 75.32 ± 13.62 81.59 ± 11.63 98.86 ± 1.67 99.82 ± 0.26 98.70 ± 0.42 99.66 ± 0.72 99.71 ± 0.22
5 95.38 ± 3.40 99.75 ± 0.18 79.47 ± 8.35 98.77 ± 1.83 99.89 ± 0.13 99.85 ± 0.26 99.94 ± 0.11 99.76 ± 0.25
6 80.66 ± 7.54 79.30 ± 5.72 98.88 ± 0.75 92.77 ± 7.60 99.97 ± 0.04 99.99 ± 0.01 99.92 ± 0.09 99.85 ± 0.22
7 69.13 ± 11.04 68.22 ± 14.45 72.33 ± 15.73 95.61 ± 4.39 99.98 ± 0.06 99.55 ± 0.38 99.90 ± 0.31 99.53 ± 0.52
8 71.16 ± 6.24 80.58 ± 3.89 78.22 ± 9.17 89.20 ± 3.55 98.72 ± 0.87 99.02 ± 0.63 98.72 ± 0.83 99.13 ± 0.60
9 99.94 ± 0.07 97.25 ± 5.10 66.95 ± 16.17 99.12 ± 0.55 99.87 ± 0.18 96.63 ± 1.33 99.95 ± 0.09 99.31 ± 0.54

OA(%) 82.06 ± 2.78 87.95 ± 3.47 91.71 ± 8.31 93.80 ± 5.35 99.70 ± 0.32 99.62 ± 0.07 99.62 ± 0.33 99.76 ± 0.06
AA(%) 79.22 ± 5.87 85.23 ± 4.22 76.28 ± 2.29 94.87 ± 1.89 99.62 ± 0.35 99.15 ± 0.19 99.56 ± 0.34 99.60 ± 0.09
K × 100 75.44 ± 4.26 84.19 ± 4.28 88.83 ± 11.41 91.70 ± 7.23 99.61 ± 0.42 99.50 ± 0.10 99.50 ± 0.44 99.69 ± 0.08

Table 7. Classification results of all methods on Xuzhou dataset.

Class
Method

RBF-SVM CNN HybirdSN PyResNet SSRN SSFTT A2S2KResNet Proposed

1 96.38 ± 0.32 97.16 ± 1.20 99.36 ± 0.25 94.92 ± 1.27 99.83 ± 0.09 99.59 ± 0.21 99.47 ± 0.51 99.84 ± 0.03
2 99.81 ± 0.15 99.06 ± 0.89 99.49 ± 0.46 99.99 ± 1.37 99.99 ± 0.01 99.98 ± 0.03 100.00 ± 0.00 99.98 ± 0.03
3 93.71 ± 0.69 87.15 ± 2.51 96.94 ± 1.41 95.55 ± 4.04 99.71 ± 0.16 99.54 ± 0.25 99.16 ± 0.58 99.49 ± 0.22
4 97.31 ± 0.47 85.76 ± 8.60 98.39 ± 0.61 93.85 ± 1.24 99.70 ± 0.54 99.92 ± 0.08 99.86 ± 0.02 99.94 ± 0.05
5 94.64 ± 0.49 94.03 ± 1.37 98.92 ± 0.35 97.34 ± 4.50 99.52 ± 0.36 99.56 ± 0.20 99.64 ± 0.29 99.75 ± 0.10
6 88.72 ± 1.11 62.30 ± 3.70 96.47 ± 0.99 84.85 ± 2.88 99.20 ± 0.49 99.64 ± 0.17 99.03 ± 0.37 99.46 ± 0.22
7 87.00 ± 0.82 73.31 ± 5.18 98.43 ± 0.56 88.63 ± 2.96 99.59 ± 0.42 99.90 ± 0.05 99.64 ± 0.13 99.77 ± 0.14
8 98.18 ± 0.27 93.97 ± 2.32 99.28 ± 0.44 98.36 ± 2.55 99.77 ± 0.15 99.94 ± 0.13 99.70 ± 0.13 99.77 ± 0.23
9 97.67 ± 0.61 98.63 ± 0.36 99.38 ± 0.35 98.58 ± 2.81 99.89 ± 0.12 99.62 ± 0.16 99.88 ± 0.17 99.88 ± 0.12

OA (%) 95.16 ± 0.13 90.56 ± 1.10 98.91 ± 0.16 95.44 ± 0.09 99.71 ± 0.13 99.68 ± 0.06 99.58 ± 0.23 99.80 ± 0.02
AA (%) 94.82 ± 0.20 87.93 ± 1.16 98.52 ± 0.29 94.67 ± 0.11 99.69 ± 0.16 99.72 ± 0.04 99.60 ± 0.18 99.77 ± 0.04
K × 100 93.84 ± 0.16 88.04 ± 1.36 98.61 ± 0.21 93.89 ± 1.13 99.64 ± 0.17 99.60 ± 0.09 99.47 ± 0.30 99.75 ± 0.02
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Table 8. Classification results of all methods on WHU-Hi-LongKou dataset.

Class
Method

RBF-SVM CNN HybirdSN PyResNet SSRN SSFTT A2S2KResNet Proposed

1 99.52 ± 0.68 96.74 ± 1.64 89.91 ± 9.97 99.97 ± 0.02 99.97 ± 0.04 99.96 ± 0.02 99.92 ± 0.12 99.96 ± 0.04
2 94.13 ± 3.99 71.28 ± 3.89 80.25 ± 10.79 99.70 ± 0.07 99.79 ± 0.15 99.92 ± 0.08 99.79 ± 0.24 99.82 ± 0.12
3 99.09 ± 0.29 42.95 ± 2.54 78.29 ± 15.58 99.81 ± 0.10 99.91 ± 0.15 99.93 ± 0.14 99.98 ± 0.03 99.99 ± 0.02
4 98.87 ± 0.09 98.19 ± 0.46 89.79 ± 9.93 99.84 ± 0.06 99.84 ± 0.06 99.89 ± 0.04 99.86 ± 0.22 99.95 ± 0.03
5 92.46 ± 0.09 54.82 ± 2.50 72.38 ± 11.83 99.21 ± 0.40 99.32 ± 0.53 99.56 ± 0.30 96.43 ± 9.03 99.42 ± 0.29
6 99.76 ± 0.89 92.92 ± 3.53 87.66 ± 11.52 99.84 ± 0.06 99.96 ± 0.04 99.86 ± 0.13 99.17 ± 2.36 99.92 ± 0.07
7 99.98 ± 0.01 99.89 ± 0.10 93.20 ± 0.14 99.98 ± 0.01 99.99 ± 0.01 99.97 ± 0.01 99.98 ± 0.01 99.98 ± 0.02
8 97.40 ± 0.34 83.06 ± 9.43 78.82 ± 10.47 95.11 ± 0.39 98.92 ± 0.06 98.41 ± 0.53 98.45 ± 1.21 98.92 ± 0.55
9 97.63 ± 0.50 66.60 ± 4.38 74.76 ± 6.03 98.91 ± 0.31 98.30 ± 0.08 98.07 ± 0.69 99.03 ± 0.48 98.32 ± 0.89

OA (%) 98.95 ± 0.03 91.42 ± 0.94 90.88 ± 9.58 99.63 ± 0.57 99.83 ± 0.03 99.81 ± 0.02 99.69 ± 0.47 99.89 ± 0.03
AA (%) 97.65 ± 0.01 77.16 ± 1.57 81.67 ± 7.95 99.15 ± 1.14 99.55 ± 0.11 99.50 ± 0.08 99.18 ± 1.28 99.67 ± 0.11
K × 100 98.68 ± 0.04 88.91 ± 1.18 86.85 ± 9.20 99.52 ± 0.75 99.78 ± 0.04 99.76 ± 0.03 99.60 ± 0.62 99.86 ± 0.04

To show the classification results more clearly, we present the classification results
of eight methods on the four hyperspectral datasets, as shown in Figures 4–7. Obviously,
our proposed method has more accurate classification results compared to other methods.
Compared with deep-learning-based methods on the four datasets, there are more noise
scatters in the classification graph of EMP-SVM, CNN, Hybird, PyResNet, SSRN, SSFTT,
and A2S2KResNet classification methods still have some misclassifications. Compared
with ground truth, it can be seen that the proposed method can obtain more accurate
classification results, which further proves the effectiveness of the proposed method in the
classification of hyperspectral data.
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(c) CNN; (d) HybirdSN; (e) PyResNet; (f) SSRN; (g) SSFTT; (h) A2S2KResNet; (i) Proposed.

3.3. Ablation Experiments

Among them, we performed ablation experiments on the Indian Pines dataset to verify
the effectiveness of the proposed method. The experimental results are shown in Table 9.

When we only use the A2S2kResNet model to classify hyperspectral data, its OA
on Indian pines dataset is only 98.51%. When A2S2KResNet is combined with ViT
(A2S2KResNet + ViT), the OA is 98.61%, which proves that the ViT model can slightly
improve the classification performance of the model. When the A2S2KResNet + ViT model
is combined with Focal Loss function or Apollo optimizer, the OAs are 98.63% and 98.75%,
respectively. It is proven that Focal Loss function and Apollo optimizer are slightly helpful
to A2S2kResNet + ViT model. When A2S2KResNet + ViT is combined with Focal Loss
function and Apollo optimizer, which is the HSI classification model proposed by us in this
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paper, it achieves the highest classification accuracy on Indian Pines dataset, which further
proves the effectiveness of our method in improving the classification performance of HSI.
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Figure 7. The classification results of WHU-Hi-LongKou dataset. (a) Ground-truth map; (b) RBF-
SVM; (c) CNN; (d) HybirdSN; (e) PyResNet; (f) SSRN; (g) SSFTT; (h) A2S2KResNet; (i) Proposed.

Table 9. Comparison of ablation experiments on Indian Pines dataset.

Surface
Support

A2S2KResNet A2S2KResNet + ViT A2S2KResNet + ViT
+ Loss

A2S2KResNet + ViT
+ Apollo Proposed

1 91.62 ± 2.05 98.21 ± 3.30 98.74 ± 2.20 97.66 ± 3.43 98.70 ± 3.16
2 98.67 ± 1.05 98.61 ± 1.02 98.60 ± 0.67 98.36 ± 7.82 98.57 ± 1.13
3 98.81 ± 0.65 98.52 ± 1.24 98.97 ± 0.86 98.74 ± 8.06 98.96 ± 0.67
4 99.37 ± 0.87 98.97 ± 1.23 97.62 ± 2.16 98.71 ± 5.87 98.87 ± 1.00
5 98.97 ± 0.80 98.75 ± 1.58 98.29 ± 1.37 99.00 ± 3.32 98.77 ± 0.83
6 98.86 ± 1.01 98.87 ± 0.71 99.04 ± 0.77 99.13 ± 5.47 99.35 ± 0.67
7 97.93 ± 6.21 94.65 ± 7.23 96.91 ± 5.59 93.24 ± 6.50 97.02 ± 7.70
8 100.00 ± 0.00 99.82 ± 0.26 99.14 ± 2.33 99.30 ± 3.57 99.92 ± 0.12
9 81.70 ± 10.54 83.00 ± 12.20 84.24 ± 16.59 92.18 ± 1.53 96.02 ± 5.45
10 97.90 ± 1.24 97.4 ± 1.21 97.60 ± 1.55 97.88 ± 7.20 97.51 ± 1.09
11 99.16 ± 0.42 99.17 ± 0.39 99.16 ± 0.35 98.93 ± 6.57 99.18 ± 0.50
12 98.33 ± 1.25 97.86 ± 1.29 98.11 ± 1.16 98.02 ± 8.25 98.59 ± 1.41
13 99.17 ± 1.15 99.34 ± 1.06 98.52 ± 1.36 99.16 ± 1.52 99.46 ± 0.86
14 99.25 ± 0.51 99.36 ± 0.73 99.00 ± 0.67 98.99 ± 4.02 99.15 ± 0.60
15 98.58 ± 1.06 98.23 ± 2.01 98.12 ± 0.82 98.54 ± 3.92 98.65 ± 1.13
16 94.46 ± 4.95 95.5 ± 4.17 96.16 ± 3.64 95.34 ± 4.88 94.33 ± 3.67

OA (%) 98.51 ± 0.26 98.61 ± 0.40 98.63 ± 0.33 98.75 ± 0.33 98.81 ± 0.32
AA (%) 97.05 ± 1.35 96.62 ± 1.37 97.39 ± 1.37 97.70 ± 1.03 98.83 ± 0.63
K × 100 98.58 ± 0.30 98.30 ± 0.46 98.42 ± 0.37 98.43 ± 0.38 98.65 ± 0.36

4. Discussions

This paper made some modifications and designed an HSI classification method.
This study proposes an improved ViT model that introduces a re-attention mechanism
and a local mechanism. Then, the improved ViT model is combined with the attention-
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based adaptive spectral–spatial kernel, which systematically combines bands from shallow
to deep, enables neurons to adaptively adjust the receptive field size, and successfully
handles the long-range dependence of the spectrum, making full use of the spectral–spatial
information and local global information in HSI to improve the classification performance.
The Focal Loss function is used to increase the loss weight of small-class samples and
hard-to-classify samples in HSI data samples and Apollo. Furthermore, a quasi-Newton
method for nonconvex stochastic optimization is introduced to dynamically incorporate
the curvature of the loss function by approximating the Hessian via a diagonal matrix.

It can be seen from Tables 5–8 that the classical RBF-SVM method and several deep-
learning-based methods including CNN, HybirdSN, PyResNet, SSRN, SSFTT, and A2S2KResNet
are considered for comparison. All experimental results show that the proposed method
achieves the best performance on all datasets. The suggested technique obtained superior
performance in terms of classification accuracy on the four popular HSI datasets, according
to all experimental results. Taking the Indian Pines dataset as an example, the OA, AA
and K of the proposed method are improved by 18.8%, 19.48% and 21.56%, respectively,
compared with RBF-SVM. Furthermore, compared with CNN, the OA of the proposed
method is improved by 20.5%, 15.5%, 9.24% and 8.47% on the Indian, Pavia, Xuzhou
and WHU-Hi-Longkou datasets, respectively. For the Pavia University dataset, the pro-
posed method improves the OA by 8.05%, 5.96%, 0.06%, 0.14% and 0.22% compared with
HybirdSN, PyresNet, SSRN, SSFTT and A2S2KResNet, respectively.

Furthermore, to verify the effectiveness of the proposed method for different HSI
dataset, Figures 8–11 show the classification results of different methods for each class.
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Figure 8. Classification results comparison for each class on the Indian Pines dataset.

We can see that our method achieves the highest classification accuracy for almost
every class for four different datasets. For example, for the Oats category in the Indian Pines
dataset, our method improves OA by 3.17% over the state-of-the-art among other methods.
The effectiveness of the method is demonstrated in different datasets in different application
domains. The urban land feature classification is realized on the Pavia University dataset,
the mineral classification is realized on the Xuzhou dataset and the Indian Pines dataset
and WHU-Hi-LongKou datasets are implemented for fine crop classification.
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Figure 10. Classification results comparison for each class on the Xuzhou dataset.
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5. Conclusions

In this study, an attention-based adaptive spectral–spatial kernel combined with an
improved ViT network architecture is proposed to classify HSI images. For the spectra of
HSI images that are approximately continuous, the proposed method fully utilized the
local and global information of the data. Compared with classical methods and some deep-
learning-based methods, the proposed method achieves excellent performance on four
different datasets in urban land classification, crop classification and mineral classification.
In the future research process, we will study strategies to improve the transformer’s
architecture to make it more suitable for HSI classification, build lightweight networks and
reduce network complexity while ensuring the network’s working performance.
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