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Abstract: LiDAR data acquired by various platforms provide unprecedented data for forest inventory
and management. Among its applications, individual tree detection and segmentation are critical and
prerequisite steps for deriving forest structural metrics, especially at the stand level. Although there
are various tree detection and localization approaches, a comparative analysis of their performance
on LiDAR data with different characteristics remains to be explored. In this study, a new trunk-
based tree detection and localization approach (namely, height-difference-based) is proposed and
compared to two state-of-the-art strategies—DBSCAN-based and height/density-based approaches.
Leaf-off LiDAR data from two unmanned aerial vehicles (UAVs) and Geiger mode system with
different point densities, geometric accuracies, and environmental complexities were used to evaluate
the performance of these approaches in a forest plantation. The results from the UAV datasets
suggest that DBSCAN-based and height/density-based approaches perform well in tree detection
(F1 score > 0.99) and localization (with an accuracy of 0.1 m for point clouds with high geometric
accuracy) after fine-tuning the model thresholds; however, the processing time of the latter is much
shorter. Even though our new height-difference-based approach introduces more false positives, it
obtains a high tree detection rate from UAV datasets without fine-tuning model thresholds. However,
due to the limitations of the algorithm, the tree localization accuracy is worse than that of the other
two approaches. On the other hand, the results from the Geiger mode dataset with low point density
show that the performance of all approaches dramatically deteriorates. Among them, the proposed
height-difference-based approach results in the greatest number of true positives and highest F1
score, making it the most suitable approach for low-density point clouds without the need for
parameter/threshold fine-tuning.

Keywords: tree detection and localization; LiDAR; Geiger-mode; unmanned aerial vehicles (UAV);
forest inventory

1. Introduction

Forest ecosystems are of ecological and economic importance in providing various
ecosystem services such as carbon sequestration and timber and fiber production [1,2]. To
ensure appropriate management, an accurate and efficient forest inventory is critical [3].
Traditional forest inventory is carried out through intensive field measurements. Forested
lands usually cover large areas that contain too many trees to feasibly count in a costly
and timely manner. To address this issue, a small subset of trees are selected for field
measurements to help extrapolate the attributes for the entire region [4]. In recent decades,
with rapid advancements in sensors and platforms, remote sensing has emerged as a
useful alternative to traditional forest inventory, requiring far less tedious field work. For
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example, satellite imagery has already been adopted for various applications in forest map-
ping, including forest/non-forest area detection, composition and structure measurement,
biomass prediction, and impacts assessment for forest fires [5–8]. In addition, imagery with
a higher geometric resolution, acquired by manned aerial systems and unmanned aerial
vehicles (UAVs), has been adopted for growth monitoring, leaf area index (LAI) evaluation,
and canopy cover prediction [9–11]. One of the major limitations of image-based forest
inventory is that while the data provide plenty of planimetric information about the top
layer, information related to the forest vertical structure is inadequate. As a result, deriving
tree-level inventory metrics such as tree height, crown depth, and diameter at breast height
(DBH) from imagery is quite challenging [12].

At present, an increasing number of researchers are adopting LiDAR—an active
remote sensing technology that directly derives 3D coordinates from laser pulses—in forest
inventory. LiDAR units onboard manned aerial systems (i.e., airborne LiDAR) are the
most popular options, as they can efficiently cover a large area with a relatively fine spatial
resolution [13]. Most of these units are based on conventional linear LiDAR systems.
The acquired data have been used to derive various metrics for forest characteristics,
including LAI [14,15], terrain model [16,17], tree species [18], and stem volume and spatial
distribution [19,20]. Data collected by airborne linear LiDAR suffer from an insufficient
mapping of under canopy structure due to LiDAR’s limited viewing angles. To resolve
this issue, full-waveform LiDAR that records the entire return of the reflected laser pulse is
used to gain more information related to the vertical structure of trees [21,22]. However,
the accuracy of full-waveform LiDAR is usually low due to its large footprint. Moreover,
complex processing is required to extract useful information from a substantial amount
of data.

Modern single photon LiDAR (SPL) provides another alternative. Using Geiger-mode
LiDAR as an example, with low power signal emission and a high-sensitivity receiver, a
2D image array records reflected energy at the photon level. This allows for the Geiger-
mode LiDAR to operate at higher altitude and faster flying speed while capturing fine
details of the area of interest (i.e., higher point density) compared to traditional linear
LiDAR. Several studies have been conducted, extracting individual trees and deriving
vertical structure information using single photon LiDAR [23,24]. Regardless of the LiDAR
technology used, the acquirement of data through airborne LiDAR is constrained by cost
and weather conditions.

While airborne LiDAR is suitable for regional scale applications, UAV LiDAR provides
a promising tool for mapping a relatively small forest area with high spatial and temporal
resolution owing to its close sensor-to-object distance and ease of operation. Despite its
limited spatial coverage, a UAV-LiDAR system allows for fine details of internal forest
structure to be captured, along with tree canopy. Accordingly, UAV LiDAR is widely used
for fine-scale forest inventory including individual tree extraction, tree height evaluation,
and DBH estimation [25–28].

Compared to the above modalities, proximal LiDAR—e.g., terrestrial laser scanning
(TLS) and backpack LiDAR—provides the highest level of details of the internal forest
structure. Using TLS data, accurate single tree modeling is possible for estimating metrics
such as DBH, tree height, and stem volume [29–31]. However, it is highly time-consuming
to collect overlapping TLS scans and register them together. With similar sensor-to-object
distances as TLS, backpack LiDAR systems provide an efficient alternative for capturing
detailed vertical structure information [32,33]. However, intermittent access to the global
navigation satellite system (GNSS) signal under the canopy deteriorates the accuracy of the
trajectory and, consequently, the geometric quality of the derived point cloud.

Comprehensive studies have been conducted to compare the impact of varying char-
acteristics of LiDAR data from these different modalities on forest inventory [24,25,34–42].
The major findings can be summarized as follows:
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• Airborne LiDAR systems (ALS) with large spatial coverage are suitable for regional
canopy height model (CHM) generation, while small foot-print LiDAR from low
altitude flights provides high-resolution data for individual tree isolation;

• UAV and Geiger-mode LiDAR are adequate for individual tree localization and tree
height estimation. Although the former has a higher point density and better pene-
tration ability, the latter is capable of deriving accurate point clouds with reasonable
resolution over much larger areas;

• Due to the occlusion problem caused by dense canopy, it is recommended to conduct
UAV flights under leaf-off conditions to derive digital terrain model (DTM) and
timber volume;

• Compared to ALS and UAV LiDAR, Backpack LiDAR can capture a fine level of detail
with high precision, allowing for the derivation of forest inventory metrics at the
stand level.

Among all forest inventory applications using 3D point clouds, individual tree de-
tection, localization, and segmentation are critical and prerequisite steps for the further
derivation of forest structural metrics such as tree height, DBH, canopy cover, and stem
volume. Extensive approaches to detecting, localizing, and segmenting individual trees
from various forest environments have been proposed. Such approaches can be catego-
rized into two groups: crown-based and trunk-based strategies. Crown-based strategies
identify and segment individual tree crowns using LiDAR point clouds related to the forest
upper-canopy. This task is mainly conducted in two ways: using rasterized point clouds or
original 3D points. The former typically detects trees from a CHM/digital surface model
(DSM) in two steps: (i) use the local maximum height as the treetop; (ii) delineate tree
crowns as individual trees using different algorithms—e.g., region growing [43], local
maximum filtering [44,45], and marker-controlled watershed segmentation [46–48]. Instead
of using CHM/DSM, Shao et al. [49] developed an approach that relies on a point density
model (PDM). They assumed that the center of each individual tree would intercept more
LiDAR points than the edges and used a marker-controlled watershed segmentation to
delineate individual crowns from PDM. To avoid the artifacts introduced by the interpola-
tion process in CHM/PDM generation, several approaches that directly detect individual
trees from original 3D point clouds were proposed. For instance, Li et al. [50] developed
a top-down region growing approach that segmented individual trees from the tallest to
the shortest. Overall, crown-based strategies could accurately identify large and dominant
trees but exhibit poor performance when detecting small trees below the canopy [51].

Trunk-based strategies rely on point clouds that capture tree trunks for detection and
localization, followed by a segmentation process based on the identified tree locations.
These strategies are usually preferable when adequate point density is present in the
understory layer, since trunks are naturally separated from each other while the canopy
tends to interlock [51]. Based on the assumption that the intensity values of tree trunks
in the LiDAR point cloud are higher than those from smaller branches and foliage, Lu
et al. [52] extracted tree trunks and then segmented individual trees by assigning LiDAR
points to the tree trunks with the closest planimetric distance. Several approaches adopted
the Density Based Spatial Clustering of Applications with Noise (DBSCAN)—a clustering
algorithm—for trunk detection [32,53–55]. DBSCAN is well-suited to automatic trunk
detection as the algorithm does not require the number of clusters (in this case, the number
of trees) as an input. Tao et al. [53] adopted DBSCAN on a horizontal slice of normalized
LiDAR point cloud at 1.3 m height to perform trunk detection. Then, based on the detected
tree trunks, a comparative shortest-path algorithm that follows a bottom-up scheme was
developed to assign each LiDAR point to individual trees for segmentation. Given that the
input parameters of DBSCAN need to be manually assigned, Fu et al. [55] proposed an
improved DBSCAN-based tree detection algorithm. In this approach, a distance distribution
matrix was constructed and used to automatically derive the DBSCAN parameters. Once
tree trunks were derived, a bottom-up region growing clustering algorithm was used
to group point clouds that belong to individual trees. DBSCAN-based approaches have
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been tested on high-quality data—e.g., TLS [56], backpack LiDAR [32], and below-canopy
UAV flights [51,54]—and good results have been achieved. Instead of purely relying on
density, Lin et al. [51] proposed an approach based on both elevation information and
density by assuming that the higher elevation and/or point density in the understory layer
correspond to tree locations. Two-dimensional (2D) cells of the area of interest are created,
where the sum of elevations of all points in each cell is evaluated. Then, 2D peak detection is
performed to identify the local maxima as the tree location. Finally, segmentation is carried
out by assigning each LiDAR point to the tree trunk with the smallest planimetric distance.
The authors stated that the height/density-based approach outperforms DBSCAN when
dealing with point clouds with relatively sparse density [51].

Although promising results have been achieved through DBSCAN-based and
height/density-based approaches, both strategies require threshold fine-tuning for tree
detection and localization. Therefore, a more parameter-robust strategy is needed to re-
duce the amount of manual intervention in forest inventory procedures. Moreover, the
abovementioned trunk-based strategies rely on a substantial number of points with high
geometric accuracy being detected on tree trunks for accurate tree detection. Their perfor-
mance under different LiDAR data characteristics (especially point density and geometric
accuracy), as well as their environmental complexity, remains to be investigated.

In this study, a height-difference-based tree trunk detection and localization approach
(hereafter denoted as the height-difference-based approach) is proposed. This approach is
based on the hypothesis that LiDAR points belonging to a tree trunk exhibit large height
differences in a local neighborhood. Without relying on LiDAR point density information,
the parameters can be defined in a more intuitive way, considering the geometric character-
istics of trees (e.g., trunk diameter and average trunk spacing). In this paper, we compare
the performance of three trunk-based tree detection and localization approaches including
(i) DBSCAN-based approach, (ii) height/density-based approach, and (iii) the proposed
height-difference-based approach.

To ensure a fair comparison among different algorithms, a common framework is
adopted for LiDAR data preprocessing and understory layer partitioning. Then, the
aforementioned three approaches are adopted for individual tree detection and localization,
followed by a segmentation process based on trunk location and planimetric distance. UAV
LiDAR and Geiger-mode LiDAR are the ideal modalities to acquire finely detail data and
derive metrics for individual trees over large areas at a reasonable cost. Therefore, two UAV
and one Geiger-mode LiDAR datasets over a plantation area under leaf-off conditions are
used to evaluate the performance of the approaches. It is worth mentioning that, for one
piece of UAV data, the LiDAR system calibration parameters were out-of-date, resulting in
point clouds with low geometric accuracy. To resolve this issue, we also propose a novel
system calibration process using tree trunks and ground patches. Lastly, a comparative
analysis is performed according to the tree detection and localization accuracy under
different scenarios, as well as the execution time. The key contributions of this work can be
summarized as follows:

• Propose a new tree detection and localization approach based on the local height
differences related to tree trunks;

• Propose a novel system calibration approach for the UAV LiDAR system based on tree
trunks and ground patches extracted from a forest dataset;

• Conduct a comparative analysis of three different tree trunk detection/localization
strategies—DBSCAN-based approach, height/density-based approach, and height-
difference-based approach, while highlighting the main differences;

• Assess the impact of point density, geometric quality, and environmental complexity
on the performance of these three approaches, providing recommendations on the
selection of appropriate tree detection and localization approaches for leaf-off LiDAR
data with different characteristics.

The remainder of the paper is structured as follows: Section 2 describes the study
area, utilized LiDAR systems, and characteristics of the acquired datasets. Section 3



Remote Sens. 2022, 14, 3738 5 of 31

introduces the proposed tree detection and segmentation framework, along with the
three tree detection and localization approaches, as well as a novel UAV-LiDAR system
calibration strategy. Section 4 presents the experimental results, and Section 5 discusses key
findings. Finally, Section 6 provides conclusions and recommendations for future work.

2. Data Acquisition Systems and Dataset Description

Three datasets were acquired for this study over a forest plantation under leaf-off
conditions using two UAV-based mobile mapping systems and a Geiger-mode LiDAR
onboard a manned aircraft. The two UAV systems were developed in-house by the Digital
Photogrammetry Research Group at Purdue University. The Geiger-mode LiDAR data were
provided by VeriDaaS Corporation (Denver, CO, USA). This section starts by introducing
the UAV and Geiger-mode data acquisition systems, followed by a description of the study
site and characteristics of the three datasets used in this study.

2.1. Mobile LiDAR Systems
2.1.1. UAV LiDAR Systems

In this study, two in-house developed UAV systems were used—denoted as UAV-1
and UAV-2. The UAV-1 (as shown in Figure 1) payload consists of a Velodyne VLP-32C Li-
DAR [57] and a Sony α7R III camera. The payload of the UAV-2 is the same as UAV-1 except
for its camera, which is a Sony α7R camera. The LiDAR data were directly georeferenced
through an Applanix APX15 v3 position and orientation unit with an integrated global nav-
igation satellite system/inertial navigation system (GNSS/INS) [58]. The VLP-32C scanner
is a spinning multi-beam LiDAR unit assembled with 32 radially oriented laser rangefind-
ers. Unlike linear LiDAR systems, which have only one laser beam, a multi-beam LiDAR
rotates and fires multiple beams in different directions, which mitigate occlusion problems
since an object space location can be captured by multiple laser beams at different times.
The rotation axes of the LiDAR units on both UAV systems were set to be approximately
parallel to the flying direction. To obtain the most accurate point cloud possible, a point is
only reconstructed when the laser beam pointing direction is less than ±70◦ from the nadir.
System calibrations of these two UAV systems were conducted using an in situ calibration
procedure [59]. The expected accuracy of the acquired point cloud was estimated based on
the individual sensor specifications and system calibration accuracy using a LiDAR Error
Propagation calculator [60]. At a flying height of 50 m, the calculator suggests that the
horizontal/vertical accuracy values are within ±5–6 cm at the nadir position. At the edge
of the swath, i.e., ±70◦ from the nadir, the horizontal/vertical accuracy values would be
within ±8–9 cm and ±5–6 cm, respectively.

Figure 1. The UAV-1 mobile mapping system and onboard sensors used in this study.

2.1.2. Geiger-Mode LiDAR System

Unlike traditional linear LiDAR, which has high signal emission power and a low-
sensitivity receiver, Geiger-mode LiDAR is a relatively new technology that has low signal
emission power and a high-sensitivity receiver. The beam divergence of a Geiger-mode
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LiDAR is large (e.g., a cone) and can illuminate a large area, as shown in Figure 2a. The
returning signal covers the entire field of view (FOV) of its 2D receiver, which consists of an
array of Geiger-mode Avalanche Photodiode (GmAPD) detectors, as shown in Figure 2b.
The GmAPD detectors are designed to be extremely sensitive. Compared to linear LiDAR
with a low-sensitivity receiver, which requires hundreds of photons to record a response,
the GmAPD detectors record the energy reflected from a single photon [61]; thus, mea-
surements were acquired at a much higher density [62,63] than linear LiDAR systems.
The design of the Geiger-mode LiDAR system allows for it to operate at a lower energy,
higher altitude, and faster flying speed. In this study, the Geiger mode LiDAR dataset was
provided by VeriDaaS Corporation. The VeriDaaS system has an array of 32 by 128 GmAPD
detectors, as shown in Figure 2c, which effectively collect 204,800,000 observations per
second when using a pulse repetition rate of 50 kHz. The use of a Palmer scanner, together
with a 15◦ scan angle of the laser and scan pattern with a 50% swath overlap, enables multi-
view data collection, which can minimize occlusions. This system is directly georeferenced
through an Applanix POS AV 610 [64].

Figure 2. Illustration of Geiger-mode LiDAR: (a) the coverage of a single pulse, (b) FOV of the Geiger
mode APD illuminated by a laser pulse, and (c) the detector array, together with recorded returns.

2.2. Study Site and Dataset Description
2.2.1. Study Site

The data collection site is located at Martell Forest, a research forest owned and
managed by Purdue University, in West Lafayette, IN, USA. The study site consists of two
plantation plots (shown in Figure 3a)—Plot 115 and Plot 119—which were planted in 2007
and 2008, respectively. The region of interest (ROI) contains 11 rows from Plot 119 and
21 rows from Plot 115. Row 16 in Plot 115 (highlighted by the white box in Figure 3a) will
be used in the qualitative analysis in the experimental results (in Section 4). The main
species of these two plots is northern red oak (Quercus rubra) with burr oak (Q. macrocarpa)
as the training species. Trees in these two plots were planted in a grid pattern. The row
spacing (east–west direction) was approximately 5 m, and adjacent tree spacing in a given
row (north-south direction) was approximately 2.5 m. The tree heights ranged from 10 to
12 m when measured at year 13. The average DBH was 11.3 cm and 12.7 cm in Plots 119
and 115, respectively. The understory vegetation, e.g., herbaceous species and voluntary
seedlings, was controlled on an annual basis for Plot 115 but not in Plot 119. In 2021, there
were in total of 1504 trees in the ROI. It should be noted that a tree-thinning activity took
place in late February 2022 on Plot 115, and 383 trees were cut down, as shown in Figure 3b.
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Figure 3. Study site at Martell Forest: (a) aerial photo adapted from a Google Earth Image captured
in 2021 and (b) remaining/removed trees after the thinning activity in February 2022.

2.2.2. Dataset Description

Three datasets were collected in this study over the ROI on different dates: (i) LiDAR
data collected by UAV-1 on 13 March 2021 (denoted as dataset UAV-2021), (ii) LiDAR data
collected by Geiger mode system on 12 December 2021 (denoted as dataset Geiger-2021),
and (iii) LiDAR data collected by UAV-2 on 3 March 2022 (denoted as dataset UAV-2022).
UAV-2021 and Geiger-2021 datasets were acquired before the tree-thinning activity, while the
UAV-2022 dataset was acquired afterwards. The detailed information and characteristics of
these datasets are introduced below:

UAV-2021: This dataset was captured by the UAV-1 system on 13 March 2021. The
UAV was flown at 40 m above-ground at a speed of 3.5 m/s. The lateral distance between
adjacent flight lines was 11m. The side lap percentage of the point cloud is 95% when
considering ± 70◦ off-nadir reconstruction. As mentioned in Section 2.1.1, the horizontal
and vertical accuracy of the derived point cloud is within the range of 5–6 cm at nadir
position. The dataset has high point density and geometric accuracy. The reconstructed
point cloud after normalizing the height information relative to the ground level (i.e.,
normalized height point cloud) [41] and density map of this dataset are shown in Figure 4a.
The height normalization step will be introduced in the Section 3.

Geiger-2021: This dataset was collected and processed by VeriDaaS Corporation under
the USGS QL1 specifications. The vertical accuracy is better than 10 cm and the nominal
spacing is less than 35 cm—i.e., nominal pulse density is more than 8 points per square
meter. The data were acquired on 12 December 2021 at an altitude of approximately
3700 m above ground. Data processing began with an initial refinement to achieve a point
density of 50 points per square meter over flat terrain. Then, the point cloud was spatially
manipulated by aligning points in overlapping flight lines through a block adjustment
procedure. This block adjustment procedure can improve the point cloud quality by
compensating for inherent georeferencing errors introduced by the GNSS/INS system. The
estimated accuracy of the post-processed point cloud is 5 cm along the vertical direction,
which meets the USGS QL0 specifications. The normalized height point cloud and point
density for this dataset are shown in Figure 4b.
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Figure 4. Normalized height point cloud (colored by height) and point density map for (a) UAV-2021,
(b) Geiger-2021, and (c) UAV-2022 datasets.

UAV-2022: This dataset was captured by the UAV-2 system on 3 March 2022. The only
difference in flight configuration between UAV-2022 and UAV-2021 datasets is the lateral
distance between neighboring flight lines—the distance is 13 m in this dataset. This leads to
a side lap percentage of about 80%. The normalized height point cloud (colored by height)
and density map of the UAV-2022 dataset are shown in Figure 4c. The point density is a
little lower than that of the UAV-2021 dataset. As mentioned before, data acquisition was
conducted after tree-thinning activity. During this management practice, a large amount of
tree debris was left at the study site. Figure 5 presents the normalized height point clouds
in the 1–3 m height range for the UAV-2021 and UAV-2022 datasets. It can be seen from
the figures that the UAV-2021 dataset has a very clear definition of tree locations while
the debris within Plot 115 in the UAV-2022 dataset is visible, thus leading to the expected
difficulties in the tree detection and localization process, as will be shown in the Section 4.
Moreover, it is worth mentioning that the mounting parameters of the UAV-2 system are
out-of-date. This leads to the relatively low geometric accuracy of the UAV-2022 dataset.
Figure 6 shows a sample tree from the abovementioned datasets. Among them, UAV-2021
provides the best tree definition, with high point density and geometric accuracy. On the
other hand, a misalignment of around 0.5 m in the X direction can be observed from the
UAV-2022 dataset due to the inaccurate mounting parameters, while the alignment in the Y
direction is relatively good. In terms of the Geiger-2021 dataset, the point density is low, and
the definition of the tree trunk is not complete. These datasets with different characteristics
were used to analyze the performance of the tree detection and localization approaches.
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Figure 5. Normalized height point cloud in the 1–3 m height range for (a) UAV-2021 and (b) UAV-2022
datasets.

Figure 6. A sample tree from the UAV-2021, Geiger-2021, and UAV-2022 datasets (colored by height)
as well as the combined one (colored by dataset ID) from the views in (a) X-Z and (b) Y-Z planes.

3. Methodology

In this section, an overview is given of the procedures for tree detection, localization,
and segmentation framework (Section 3.1). Then, in Section 3.2, detailed descriptions
of the DBSCAN-based, height/density-based, and proposed height-difference-based tree
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detection and localization approaches are presented. Lastly, the LiDAR system calibration
using tree trunks and terrain patches is introduced.

3.1. General Workflow for Tree Detection, Localization, and Segmentation

In this study, tree detection, localization, and segmentation are conducted through
four main stages: point cloud height normalization, the partitioning of potential trunk
points, the detection and localization of tree trunks, and individual tree segmentation.
This is schematically illustrated in Figure 7. As mentioned in Section 1, three different
strategies will be adopted at the third stage in this framework for comparative analysis. In
this subsection, a summary of each stage will be introduced.

Figure 7. Workflow of the proposed tree detection, localization, and segmentation framework.

To begin with, a ground filtering algorithm—the adaptive cloth simulation [65]—is
applied to the original LiDAR point cloud for DTM generation. This algorithm improves
the original cloth simulation [66] by redefining the rigidness of each particle on the cloth
according to the point density of the initially defined bare-earth point cloud. By doing
so, the impact of the uneven, sparse point cloud distribution along the lower canopy
on DTM generation is mitigated. Then, the point cloud normalization is carried out by
subtracting the corresponding ground height from each LiDAR point. As a result, the
height information of the normalized height point cloud is relative to the ground level. In
the second stage, potential LiDAR points corresponding to trunks (hereafter denoted as
hypothesized trunk portion) are extracted from the normalized height point cloud through
user-defined minimum (hmin) and maximum (hmax) height thresholds, as illustrated in
Figure 7. In this case, the majority of the canopy and shrub part is removed, leaving only
the portion that is believed to correspond to trunks [51].

In the third stage, tree detection and localization are performed using the partitioned
point cloud from the previous step. In this study, three different approaches were ap-
plied based on different hypotheses. In the DBSCAN-based approach, only the density
information is considered, where a higher point density is assumed to be associated with
tree locations. The height/density-based approach hypothesizes that a higher point den-
sity, along with higher elevation, corresponds to tree locations. Different from the two
existing strategies, the proposed height-difference-based approach relies on tree geometry,
assuming that high local height differences correspond to tree locations. These approaches
will be presented in the next subsection. Lastly, individual trees are segmented from the
normalized height point cloud based on the estimated trunk locations and 2D distance.
More specifically, each LiDAR point is assigned to the tree with the closest planimetric
distance. In this sense, a 2D Voronoi diagram is established along the XY plane using the
trunk locations, as shown in Figure 7.
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3.2. Tree Detection and Localization Strategies
3.2.1. DBSCAN-Based Approach

The use of a DBSCAN algorithm to detect and locate trunks relies on the hypothesis
that higher point density corresponds to tree location. DBSCAN is an algorithm developed
to detect clusters in large spatial datasets with noise [67,68]. This algorithm requires two pre-
defined thresholds: the neighborhood distance threshold denoted by ε and the minimum
number of neighboring points minPts. Three types of points are defined by DBSCAN: core
points, border points, and noise points. Starting from a random seed point P1 that has not
been classified, the number of points in this neighborhood with the radius of ε is counted.
If the number of points (including the seed point itself) is not smaller than minPts, this
seed point P1 is defined as a core point. Then, the same procedure is performed on the
neighboring points P2 of this core point P1. If enough neighboring points are identified, this
point P2 is considered a core point that is connected to core point P1; otherwise, this point
is considered a border point. The process subsequently identifies core points and border
points from existing seed points until no new core points are identified. Ultimately, the
connected core points and border points form a cluster (i.e., an individual tree in this study).
The remaining points with insufficient points in their neighborhood are classified as noise
points. The above steps are illustrated in Figure 8. It is worth mentioning that, in this study,
the DBSCAN algorithm is performed on the planimetric coordinates of the LiDAR points.
All LiDAR points within the hypothesized trunk portion are either included in clusters
or classified as noise points. Finally, the trunk location is computed as the centroid of the
respective cluster. Figure 9 illustrates a sample result from the DBSCAN-based approach.

Figure 8. Illustration of the DBSCAN process to identify a cluster: connected core and border points
form a cluster while the remaining ones are classified as noise.

Figure 9. Sample result for DBSCAN-based tree detection and localization approach.

A summary of involved parameters and the strategy for determining these parameters
are listed below:
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• Neighborhood distance threshold, ε: The distance threshold is chosen based on prior
knowledge about the diameter of the majority of trees.

• Minimum number of neighboring points, minPts: This parameter is dependent on the
2D point density related to trunks. Visual inspection of the partitioned point clouds
and fine-tuning need to be conducted to come up with an appropriate value.

3.2.2. Height/Density-Based Approach

The height/density-based tree detection and localization approach was proposed by
Lin et al. [51] based on the hypothesis that a higher point density and higher elevation
correspond to trunk locations. Initially, 2D cells with size of sc are created along the XY
plane over the hypothesized trunk portion. The sum of elevations of all points within each
cell is evaluated. This metric reflects the point density and height of the point cloud in a
local neighborhood. Then, a 2D peak detection process is carried out to identify the local
maxima of the metric, which would correspond to trunk locations. Two parameters are
used for peak detection: size of the square local neighborhood in 2D (sl) and minimum
prominence of a peak (pmin). The former is used to define the region where, at most, one
peak can be selected as a detected tree, while the latter is a measurement of how much a
peak stands out from the surrounding bases of the signal, as illustrated in Figure 10 for a
1-D case. For each peak, a horizontal line (dashed line in the figure) from the current peak
is extended until it either reaches the border of the local neighborhood or intersects with
the signal at the slope of a higher peak. Within this range, the base with the largest value
is used to compute the prominence p as the difference between the peak and this base.
For each local neighborhood, the peak with the largest prominence value is selected as a
detected tree as long as the value is larger than pmin. Moreover, the tree location is derived
as the center of this cell. A sample result illustrating the height/density-based approach is
shown in Figure 11.

Figure 10. Illustration of the prominence of a peak for 1-D signal.

Figure 11. Sample result for height/density-based tree detection and localization approach.

In summary, the parameters and strategy used to determine the parameters for this
approach are listed below:

• 2D cell size, sc: This parameter is chosen based on the knowledge of the level of
details/density that can be captured by LiDAR systems on tree trunks. If a small
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threshold is selected, the derived metrics will be noisy, as there are not enough points
to describe a tree trunk in the neighborhood. On the other hand, choosing a large sc
will affect the prediction accuracy of the tree locations.

• 2D local neighborhood size, sl : Given that only one tree will be detected from a local
neighborhood, the size is determined based on prior knowledge related to tree spacing
within the ROI.

• Minimum prominence, pmin: This parameter needs to be fine-tuned for each dataset
since it is related to the 2D point density, which depends on technical factors pertaining
to data acquisition, as well as the height range for the hypothesized trunk portion.

3.2.3. Height-Difference-Based Approach

To avoid the requirement for fine-tuning the parameters, we proposed a tree detection
and localization approach that does not rely on point density. Instead, tree geometry is
used in this approach by assuming that the tree trunk grows vertically and high local height
differences correspond to trunk locations. Using the partitioned normalized height point
cloud as input, tree detection and localization are performed in three main steps: estimation
of maximum local height difference within a local neighborhood, trunk candidate selection,
and trunk detection/localization, as illustrated in Figure 12.

Figure 12. Illustration of steps involved in height-difference-based approach to tree/trunk detection
and localization.

The maximum local height difference estimation starts with the creation of uniformly
distributed seed points with a spacing of dseed along the XY plane over the hypothesized
trunk portion. For each seed point, a vertical cylinder centered at this point with radius
rcyl and infinite height was created. The maximum local height difference value of this
seed point was computed using the largest/smallest height from the points within this
cylinder. To speed up the search process for finding LiDAR points within a cylinder, a
KD-Tree was created for the partitioned point cloud. In case the maximum local height
difference value of a given seed point was larger than a predefined threshold h_di fmin,
this point was considered a trunk candidate point. By doing this, several candidate points
can be identified for a single tree trunk. In the next step, all candidate points are sorted
based on the computed height different values. The candidate point with the largest
value is regarded as the detected tree location. Then, neighboring candidate points with a
planimetric distance from this tree location that is smaller than a user-defined threshold
d_trunkmin are removed. The same steps are conducted on the remaining candidate points
to derive all tree locations.

A summary of the parameters and strategy used to determine these parameters is
listed below:

• Spacing between seed points, dseed: The spacing is determined based on the prior
knowledge of average tree diameter and the level of details captured by LiDAR
systems on tree trunks. This parameter should be small enough to ensure that there
are several seed points for a tree trunk. However, choosing a small dseed will result in a
longer processing time.
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• Cylinder radius, rcyl : This parameter also depends on the prior knowledge of average
tree diameter and the level of details captured by the LiDAR system on tree trunks.
More specifically, rcyl is chosen to guarantee that: (i) the cylinder radius is at a similar
level to the trunk diameter and (ii) the cylinder contains an adequate number of LiDAR
points.

• Minimum height difference value, h_di fmin: This height difference threshold depends
on the hmax and hmin values used in the partitioning step. In general, this value can be
selected as from 1/2 to 2/3 of (hmax − hmin).

• Minimum distance between trunks, d_trunkmin: This distance is determined based on
prior knowledge related to the tree spacing within the ROI.

3.3. UAV System Calibration Using Tree Trunks and Terrain Patches

As mentioned in Section 2, the mounting parameters of the UAV-2 system are out-
of-date, leading to an inaccurate point cloud. Point cloud misalignment is observed at
the tree trunks as well as the terrain. In this study, we proposed a novel UAV LiDAR
system calibration approach relying on the identified features in a forest. The features
used for the calibration process include tree trunks and planar patches. The former are
modeled as cylindrical features; the latter are modeled as planar features. The conceptual
basis of such calibration is that inaccurate system calibration parameters will result in a
misalignment of LiDAR points corresponding to the same feature. By minimizing the
discrepancy related to these features, system calibration parameters can be refined through
a non-linear least-squares adjustment (LSA) process.

The feature extraction procedure is presented first. The adaptive cloth simulation
algorithm [65] is adopted on the original LiDAR point cloud to generate DTM and separate
bare-earth points from above-ground points. More specifically, LiDAR points whose heights
are in the range of Hmin and Hmax (e.g., 1.5 m and 3.5 m) above the DTM are extracted
as the above-ground point cloud portion pertaining to the trunks, while the ones whose
heights are no higher than a certain value (e.g., 0.5 m) above the DTM form the bare-earth
point cloud. Despite the inaccurate mounting parameters, we can observe that the level of
discrepancy in the tree trunk is relatively small (within 1.0 m, as shown in Section 2.2.2).
Given this, tree locations detected in the previous steps are used as seed points to identify
the corresponding LiDAR points from the above-ground point cloud. More specifically,
for a detected tree, its planimetric location (Xt, Yt) is used to derive the ground height ZG
from the DTM. Then, the seed point that corresponds to the above-ground point cloud is
defined as (Xt, Yt, ZG + ∆Z), where ∆Z is a user-defined height above ground (in this study,
∆Z is chosen as somewhere between Hmin and Hmax values; e.g., 2.5 m). For each seed
point, a spherical region with a predefined radius (e.g., 0.5 m) is created. LiDAR points
from the above-ground point cloud within this spherical region are used to determine
whether a cylindrical feature exists using Principal Component Analysis (PCA) [69]. If
a cylindrical feature exists, the parameters of the best-fitting cylinder are estimated via
an iterative model fitting and outlier removal. Region-growing is then performed to
sequentially augment the neighboring points that belong to the current feature if their
normal distance from the fitted cylinder is smaller than a multiplication factor times the
RMSE of the fitted model. The augmenting process proceeds until no more points can be
added to the feature in question. As a result, LiDAR points belonging to individual trees
and the feature parameters representing the cylinder model are derived. In terms of terrain
patches’ extraction, seed points that are uniformly distributed in 2D are generated over the
ROI where the Z coordinates are derived from DTM. These seed points are then used to
extract terrain patches from the bare-earth point cloud. Similar to tree trunk extraction, for
each seed point, its neighboring LiDAR points are used to check if a plane exists, and, if yes,
to derive the plane parameters through an iterative plane-fitting. Through a sequentially
augmentation process, LiDAR points belonging to terrain patches and plane parameters
are derived. The derived tree trunks and terrain patches are used to refine the mounting
parameters through LSA.
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Before discussing the details of the LSA process, a mathematical model for deriving 3D
geospatial information from LiDAR is presented. LiDAR data reconstruction is based on the
point positioning equation, as represented by Equation (1). In this equation, rlu(t)

I , which is
derived from raw LiDAR measurements at the firing time (including range measurement
and orientation of the laser beam relative to the laser unit reference frame), denotes the
position of the laser beam footprint relative to the laser unit frame; rm

b(t) and Rm
b(t) are the

position and orientation information of the IMU body frame coordinate system relative
to the mapping frame at firing time t; rb

lu and Rb
lu represent the lever arm and boresight

rotation matrix relating the laser unit system and IMU body frame; and rm
I is the coordinates

of object point I in the mapping frame.

rm
I = rm

b(t) + Rm
b(t)r

b
lu + Rm

b(t)R
b
lurlu(t)

I (1)

The mathematical model of the LSA involves observation equations—i.e., the nor-
mal distance—coming from cylindrical and planar features, as graphically illustrated and
mathematically introduced in Figure 13 and Equation (2), respectively. The LSA estimates
mounting parameters to minimize the weighted squared sum of the normal distances
between each LiDAR point and its corresponding parametric model, as presented in
Equation (3). Here, Fm

k represents the feature parameters for the kth feature in the map-
ping frame; nd

(
rm

I , Fm
k
)

denotes the normal distance between the LiDAR point I and its
corresponding feature Fm

k ; wFm
k

is the weight of the normal distance observation relative
to each feature, which is assigned based on the expected accuracy. Considering that the
UAV system was operated in open sky with continuous accessibility to GNSS signal, the
derived post-processed trajectory is relatively accurate. Therefore, trajectory information—
i.e., rm

b(t)/Rm
b(t)—is fixed in the LSA, while mounting parameters and feature parameters

are refined.
nd(rm

I , Fm
k ) = 0 (2)

argmin
rb

lu ,Rb
lu ,Fm

k

∑
∀ points and features

wFm
k
(nd(rm

I , Fm
k ))2 (3)

Figure 13. Schematic diagram illustrating the normal distance from each LiDAR point to its corre-
sponding parametric model: (a) planar features for terrain patches and (b) cylindrical features for
tree trunks.

4. Experimental Results

This section starts by introducing system calibration results for the UAV-2022 dataset.
Next, a comparative evaluation of the three tree detection and localization strategies used
to deal with point clouds with different characteristics will be presented.

4.1. System Calibration Results for UAV-2022 Dataset

The proposed system calibration approach using tree trunks and terrain patches was
conducted on the UAV-2022 dataset. Figure 14 shows the extracted features for calibration.
In total, 406 tree trunks and 3095 terrain patches were derived. The expected accuracy
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for normal distance related to these features was set to 5 cm. In the LSA process, LiDAR
boresight angles (∆ω, ∆φ, ∆κ), as well as lever arm components in X and Y directions
(∆X and ∆Y), were estimated. The Z lever arm component was fixed, as it requires
vertical control [70]. The derived square root of a posteriori variance factor (σ̂0) of the
LSA is 1.15, which is close to 1. This reveals that the assigned a priori variances for
the LiDAR observations are reasonable. The initial (i.e., out-of-date) and refined system
calibration parameters, along with their STD values, are presented in Table 1. The STD
values for the estimated mounting parameters are small. Moreover, it has been observed
that the estimated mounting parameters are not highly correlated. Based on the low
correlation and small STDs of the estimated parameters, one can conclude that the LiDAR
mounting parameters are accurately estimated using the proposed strategy. Additionally,
by comparing the refined mounting parameters to the out-of-date ones in Table 1, most of
the mounting parameters remain stable, except for the ∆κ angle, which exhibits a change of
0.25 degrees.

Figure 14. Top view of extracted features and zoom-in window showing sample features in perspec-
tive view for system calibration from the UAV-2022 dataset: (a) tree trunks and (b) terrain patches
colored by feature ID.

Table 1. Initial (out-of-date) and refined system calibration parameters using the proposed system
calibration approach for the UAV-2022 dataset.

Mounting
Parameters ∆ω(◦) ∆φ(◦) ∆κ(◦) ∆X(m) ∆Y(m) ∆Z(m)

Initial 1.261 −0.276 0.129 −0.115 0.022 0.100

Refined 1.217
±0.001

−0.307
±0.001

−0.121
±0.002

−0.101
±0.001

0.024
±0.001 N\A

The system calibration results are evaluated both qualitatively and quantitatively.
Figure 15 presents a sample tree from the UAV-2 system using the inaccurate and refined
mounting parameters. It can be seen from this figure that the misalignment was minimized
(mainly in the X direction) after the system calibration and the resulting point cloud have
similar level of geometric accuracy to the UAV-2021 dataset (Figure 6). To quantify the
performance of the proposed system calibration approach, Table 2 reports the mean, STD,
and RMSE values of normal distances from the LiDAR feature points to their corresponding
best-fitting cylinder/plane before and after mounting parameter refinement. The achieved
improvements in the RMSE values range from 16 cm to 9 cm and 12 cm to 6 cm for tree
trunks and terrain patches, respectively.
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Figure 15. A sample tree from the UAV-2022 dataset using the out-of-date/refined LiDAR-mounting
parameters (colored by height) as well as the combined one (the former is colored in blue, while the
latter is colored in red) based on the views in (a) X-Z and (b) Y-Z planes.

Table 2. Quantitative evaluation of point cloud alignment before and after system calibration.

Number of
Features

Number of
Points

Before Calibration After Calibration

Mean
(m)

STD
(m)

RMSE
(m)

Mean
(m)

STD
(m)

RMSE
(m)

Tree Trunks 406 ~196,000 0.094 0.128 0.159 0.061 0.063 0.088
Terrain Patches 3095 ~19,847,000 0.076 0.089 0.117 0.039 0.042 0.057

4.2. Comparative Evaluation of Different Tree Detection and Localization Approaches

In this study, three datasets collected by two UAV LiDAR systems (datasets UAV-
2021 and UAV-2022) and one Geiger Mode LiDAR system (dataset Geiger-2021) were
used to evaluate the tree detection, localization, and segmentation results. As introduced
in Section 4.1, LiDAR mounting parameters from the UAV-2 system were refined. The
LiDAR point clouds from the UAV-2022 dataset were reconstructed using both the out-
of-date and refined mounting parameters (hereafter denoted as UAV-2022-Low-Acc and
UAV-2022-High-Acc). The common framework with the three different tree detection
and localization approaches was applied to the four LiDAR point clouds. The utilized
parameters/thresholds for each approach, as well as the height range thresholds hmin and
hmax for partitioning the tree trunk areas relative to each dataset, are listed in Table 3. For
UAV-2021 and Geiger-2021 datasets, the height range was set to 1.0–3.0 m for DBSCAN-
based and height/density-based approaches and 1.5–5.0 m for the height-difference-based
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approach. As the height-difference-based approach determines tree location purely based
on the height information, a larger height range was selected to improve robustness. Due
to the existing debris in the UAV-2022 dataset, the range thresholds were set to be higher
compared to those for the 2021 datasets to remove LiDAR points corresponding to such
debris. As described in the Section 3, the minPts and pmin for the DBSCAN-based and
height/density-based approaches are highly dependent on the point density; thus, they
were fine-tuned to reach the optimal results for each dataset. On the other hand, parameters
for the height-difference-based approach were determined intuitively.

Table 3. Utilized parameters/thresholds for the DBSCAN-based, height/density-based, and height-
difference-based approaches for the four LiDAR point clouds.

Parameters/Thresholds UAV-2021 Geiger-2021 UAV-2022-
Low/High-Acc

D
BS

C
A

N
-

Ba
se

d

hmin (m) 1.0 1.0 2.0
hmax (m) 3.0 3.0 3.5

ε (m) 0.5 0.5 0.5
minPts 100 7 80

H
ei

gh
t/

D
en

si
ty

-
ba

se
d

hmin (m) 1.0 1.0 2.0
hmax (m) 3.0 3.0 3.5

sc (m) 0.1 0.1 0.1
sl (m) 2.0 2.0 2.0

pmin (m) 11.5 2.0 10.0

H
ei

gh
t-

D
iff

er
en

ce
-

ba
se

d

hmin (m) 1.5 1.5 2.5
hmax (m) 5.0 5.0 5.0
dseed (m) 0.1 0.1 0.1
rcyl (m) 0.2 0.2 0.2

h_di fmin (m) 2.0 2.0 1.5
d_trunkmin (m) 1.0 1.0 1.0

The performance of the tree detection and localization approaches was evaluated
using manually identified reference data. These data were acquired by examining the
LiDAR point clouds to identify individual trees and estimate the tree locations. Point cloud
from the UAV-2021 was used to derive these data, and 1504 trees were identified. A total of
383 trees were cut down in this area in late February 2022. Therefore, the reference data are
only valid for the UAV-2021 and Geiger-2021 datasets. Then, the UAV-2022-High-Acc point
cloud was used to identify removed trees to derive the reference data (1121 trees) for the
UAV-2022 dataset. The manually measured tree locations were expected to have centimeter-
level accuracy. The detected tree locations from the different approaches were compared
to those from the reference data. According to prior knowledge related to the geometric
accuracy of the utilized point clouds, the accuracy of correctly detected tree locations is
expected to be better than 1 m. Given this, if the planimetric distance between two locations
is smaller than 1 m, we consider them to be a valid pair. The performance of tree detection
using different datasets/approaches was evaluated through the number of true positives
(TP), false positives (FP), and false negatives (FN), as well as the corresponding precision,
recall, and F1 score (as presented in Equations (4)–(6)). In terms of the tree location accuracy,
the mean, standard deviation (STD), and root–mean–square error (RMSE) values of the X
and Y coordinate differences between the true positives from the proposed strategies and
manually established reference data are also reported.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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F1 score = 2× Precision× Recall
Precision + Recall

(6)

The impact of different characteristics of the LiDAR point clouds on the performance
of the tree detection and localization approaches were evaluated as follows: (i) impact
of point density was analyzed by comparing results from UAV-2021 and Geiger-2021; (ii)
impact of geometric accuracy was analyzed by comparing results from UAV-2022-Low-
Acc and UAV-2022-High-Acc; and (iii) impact of environmental complexity (in this study,
the debris from the cut trees) was analyzed by comparing results from UAV-2021 and
UAV-2022-High-Acc. The remaining subsections start by presenting the tree detection and
localization results of these dataset/point cloud pairs. Next, the processing time for the
three approaches to each dataset/point cloud is listed to evaluate their computational
efficiency.

4.2.1. Impact of Point Density on Tree Detection and Localization

To evaluate the impact of point density, UAV-2021 and Geiger-2021 datasets were used
for comparison. Table 4 lists the number of trees in the reference data NRD, number of
detected trees NDT , number of TP, FN, and FP, as well as the precision, recall, and F1
score metrics for these datasets when using the different approaches. For the UAV-2021
dataset with high point density, all three approaches successfully detected the majority
of trees, as indicated by the low FN and high recall values. However, the two density-
based approaches outperformed the height-difference-based approach that falsely detected
13 trees. Considering that the height-difference-based approach does not heavily rely on
point density information, like the other approaches, it is more sensitive to noise and/or
points from other objects, such as debris, understory vegetation, and low branches. In the
case of low point density, the performance of all approaches dramatically deteriorates. The
height-difference-based approach resulted in the greatest number of true positives and
the highest F1 score. This is expected, as the other two approaches are more sensitive to
density information.

Table 4. Performance of the tree detection and localization approaches on UAV-2021 and Geiger-2021
datasets.

UAV-2021

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1504

1502 1499 5 3 0.998 0.997 0.997
Height/Density 1505 1502 2 3 0.998 0.999 0.998

Height-Difference 1514 1501 3 13 0.991 0.998 0.995

Geiger-2021

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1504

1255 1114 390 141 0.888 0.741 0.808
Height/Density 1816 1238 266 578 0.682 0.823 0.746

Height-Difference 1617 1408 96 209 0.871 0.936 0.902

Based on the detected true positives, an accuracy assessment of the tree localization
results was conducted using the reference data. Table 5 reports the mean, STD, and RMSE
values of the X, Y coordinate differences. The results for UAV-2021 suggest that the tree
locations derived from the DBSCAN-based and height/density-based approaches achieve
an accuracy of 0.1 m when the LiDAR point cloud is accurate and dense. However, due
to the nature of deriving trunk location from the height-difference-based approach, errors
were introduced. As a result, STD values from the height-difference-based approach are
larger (around 0.2 m). By looking at the results from the Geiger-2021 dataset, a constant
shift can be observed, of around −0.2 m in the X direction and 0.05 m in the Y direction.
This can be attributed to the misalignment between the datasets from UAV and Geiger
mode LiDAR, as the reference data were established using the former. Due to the low point
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density and incomplete definition for the trunks in the Geiger-2021 dataset, all approaches
exhibited larger STD values in the tree localization results. Overall, similar tree localization
results were achieved in the Geiger-2021 dataset for all approaches.

Table 5. Tree localization accuracy assessment on UAV-2021 and Geiger-2021 datasets.

UAV-2021 Geiger-2021

Mean (m) STD (m) RMSE (m) Mean (m) STD (m) RMSE (m)

dX dY dX dY dX dY dX dY dX dY dX dY

DBSCAN 0.007 −0.004 0.086 0.075 0.086 0.075 −0.220 0.035 0.261 0.274 0.341 0.276
Height/Density 0.011 0.002 0.090 0.077 0.091 0.077 −0.175 0.035 0.291 0.253 0.339 0.256

Height-Difference 0.004 0.000 0.177 0.212 0.177 0.212 −0.226 0.063 0.249 0.254 0.336 0.262

To provide a closer view of the tree detection, localization, and segmentation results
using the three approaches, Figure 16 shows the top and side views of the segmented
normalized point clouds and detected tree locations for row 16 in plot 115 for the UAV-2021
and Geiger-2021 datasets. In this figure, the correct detections (true positives) are shown
in red, false negatives are shown in blue, and false positives are shown in green. The
results suggest that these approaches’ performance in the UAV-2021 dataset is good and
the detections align well with the tree trunks. By looking into results from the Geiger-2021
dataset, false negatives and false positives tend to occur with small and undeveloped trees
that are close to the neighboring trees, or in areas where very few points are related to the
trunks. Among all strategies, height-difference-based approaches resulted in the lowest
number of false negatives (i.e., two in this row).

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 33 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
DBSCAN-based 

 
Height/Density-based 

 

 
Height-Difference-based 

(a) 

Figure 16. Cont.



Remote Sens. 2022, 14, 3738 21 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 23 of 33 
 

 

 

 
DBSCAN-based 

 

 
Height/Density-based 

 

 
Height-Difference-based 

(b) 
Figure 16. Tree detection and segmentation results from the three approaches for (a) UAV-2021 and 
(b) Geiger-2021 datasets. The normalized height point clouds are colored by tree ID from the 
segmentation: correct detections (true positive) are shown in red, false negatives are shown in blue, 
and false positives are shown in green. 

4.2.2. Impact of Geometric Accuracy on Tree Detection and Localization 
In this subsection, LiDAR point clouds are reconstructed from the same dataset using 

the inaccurate and accurate LiDAR mounting parameters to evaluate the impact of 
geometric accuracy. The tree detection results of the three approaches are presented in 
Table 6. For the height/density-based approach, tree detection results from the point cloud 
with worse geometric accuracy introduced more false negatives (the number increases 
from 5 to 17). For the point cloud, LiDAR points corresponding to an individual tree tend 
to be dispersed due to the misalignment, thus leading to peaks with lower prominence 
values compared to the point cloud with high accuracy. The DBSCAN-based approach is 
less sensitive to inaccurate point clouds (the number of false negatives from inaccurate 
point clouds is only two more than that those from the accurate point cloud). A possible 
reason for this different sensitivity to inaccurate point clouds could be the neighborhood 
distance threshold (ߝ = 0.5 ݉) used for the DBSCAN-based approach and cell size (ݏ =
0.1 ݉) for the height/density-based approach. More specifically, for a point cloud with a 
misalignment of around 0.5 m, its effect on the point density within a local neighborhood 
with a radius of 0.5 m is relatively smaller than that on the metrics derived from a cell 
with 0.1 m. In addition, in terms of the remaining metrics listed in Table 6, similar results 

Figure 16. Tree detection and segmentation results from the three approaches for (a) UAV-2021
and (b) Geiger-2021 datasets. The normalized height point clouds are colored by tree ID from the
segmentation: correct detections (true positive) are shown in red, false negatives are shown in blue,
and false positives are shown in green.

4.2.2. Impact of Geometric Accuracy on Tree Detection and Localization

In this subsection, LiDAR point clouds are reconstructed from the same dataset using
the inaccurate and accurate LiDAR mounting parameters to evaluate the impact of geomet-
ric accuracy. The tree detection results of the three approaches are presented in Table 6. For
the height/density-based approach, tree detection results from the point cloud with worse
geometric accuracy introduced more false negatives (the number increases from 5 to 17).
For the point cloud, LiDAR points corresponding to an individual tree tend to be dispersed
due to the misalignment, thus leading to peaks with lower prominence values compared
to the point cloud with high accuracy. The DBSCAN-based approach is less sensitive to
inaccurate point clouds (the number of false negatives from inaccurate point clouds is
only two more than that those from the accurate point cloud). A possible reason for this
different sensitivity to inaccurate point clouds could be the neighborhood distance thresh-
old (ε = 0.5 m) used for the DBSCAN-based approach and cell size (sc = 0.1 m) for the
height/density-based approach. More specifically, for a point cloud with a misalignment
of around 0.5 m, its effect on the point density within a local neighborhood with a radius
of 0.5 m is relatively smaller than that on the metrics derived from a cell with 0.1 m. In
addition, in terms of the remaining metrics listed in Table 6, similar results can be observed
from the UAV-2022-Low-Acc and UAV-2022-High-Acc point clouds for each strategy. This
suggests that the level of misalignment from the UAV-2022-Low-Acc point cloud does not
significantly affect the tree detection results. Moreover, by comparing the results from the
three approaches, one could note that the height-difference-based approach successfully
detected the largest number of correct trees (true positive), resulting in the most commission
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errors (false positive) in the meantime. This finding is compatible with the observation
in Section 4.2.1. Table 7 lists the accuracy of the estimated tree locations based on the two
point clouds. It can be observed from this table that STD values for X differences from the
UAV-2022-Low-Acc point cloud are larger than those from the UAV-2022-High-Acc point
cloud, while the values for Y differences are close. This is because the misalignment in
the UAV-2022-Low-Acc mainly occurs along the X direction, as shown in Figures 6 and 15.
Given that the results from these two point clouds are relatively similar, the qualitative
result for the UAV-2022 dataset will be presented in the next subsection, and compared to
the UAV-2021 dataset.

Table 6. Performance of the tree detection and localization approaches on UAV-2022-Low-Acc and
UAV-2022-High-Acc point clouds.

UAV-2022-Low-Acc

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1121

1121 1111 10 10 0.991 0.991 0.991
Height/Density 1109 1104 17 5 0.996 0.985 0.990

Height-Difference 1143 1116 5 27 0.976 0.996 0.986

UAV-2022-High-Acc

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1121

1123 1113 8 10 0.991 0.993 0.992
Height/Density 1123 1116 5 7 0.994 0.996 0.995

Height-Difference 1140 1117 4 23 0.980 0.996 0.988

Table 7. Tree localization accuracy assessment on UAV-2022-Low-Acc and UAV-2022-High-Acc
point clouds.

UAV-2022-Low-Acc UAV-2022-High-Acc

Mean (m) STD (m) RMSE (m) Mean (m) STD (m) RMSE (m)

dX dY dX dY dX dY dX dY dX dY dX dY

DBSCAN 0.004 −0.001 0.186 0.084 0.186 0.084 0.008 −0.006 0.098 0.089 0.098 0.089
Height/Density 0.034 −0.010 0.190 0.093 0.193 0.094 0.031 −0.010 0.094 0.087 0.099 0.088

Height-Difference 0.002 −0.006 0.292 0.212 0.292 0.212 0.005 −0.002 0.175 0.197 0.175 0.197

4.2.3. Impact of Environmental Complexity on Tree Detection and Localization

Although UAV-2021 and UAV-2022-High-Acc point clouds have a similar point density
and geometric accuracy, large amounts of tree debris were present in the latter as the
tree-thinning activity created a complex and challenging environment for tree detection
and localization. These two point clouds are used to analyze the effect of environmental
complexity on tree detection and localization results. Table 8 presents the tree detection
results of the three approaches. Although height range thresholds (hmin and hmax) for the
UAV-2022-High-Acc were adjusted to avoid including the majority of LiDAR points from
the debris in the tree detection process, the numbers of false negatives and false positives
in all approaches are still higher than those from the UAV-2021 point cloud. Among these
values, the number of false positives for the height-difference-based approach increases the
most. Although similar numbers of true positives were achieved by all approaches, the
height-difference-based approach resulted in the most false positives for both point clouds.
This indicates that the height-difference-based approach is prone to being affected by points
from other objects (debris) in the dataset. The positional/localization accuracy of correctly
detected tree locations is shown in Table 9. By comparing the mean, STD, and RMSE values
from the two point clouds using the same approach, the differences are within 3 cm, which
is smaller than the expected accuracy of the point clouds. Therefore, we can conclude that
the debris does not affect the tree localization results.
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Table 8. Performance of the tree detection and localization approaches on UAV-2021 and UAV-2022-
High-Acc point clouds.

UAV-2021

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1504

1502 1499 5 3 0.998 0.997 0.997
Height/Density 1505 1502 2 3 0.998 0.999 0.998

Height-Difference 1514 1501 3 13 0.991 0.998 0.995

UAV-2022-High-Acc

NRD NDT TP FN FP Precision Recall F1 score

DBSCAN
1121

1123 1113 8 10 0.991 0.993 0.992
Height/Density 1123 1116 5 7 0.994 0.996 0.995

Height-Difference 1140 1117 4 23 0.980 0.996 0.988

Table 9. Tree localization accuracy assessment on UAV-2021 and UAV-2022-High-Acc point clouds.

UAV-2021 UAV-2022-High-Acc

Mean (m) STD (m) RMSE (m) Mean (m) STD (m) RMSE (m)

dX dY dX dY dX dY dX dY dX dY dX dY

DBSCAN 0.007 −0.004 0.086 0.075 0.086 0.075 0.008 −0.006 0.098 0.089 0.098 0.089
Height/Density 0.011 0.002 0.090 0.077 0.091 0.077 0.031 −0.010 0.094 0.087 0.099 0.088

Height-Difference 0.004 0.000 0.177 0.212 0.177 0.212 0.005 −0.002 0.175 0.197 0.175 0.197

Figure 17 shows top and side views of the segmented normalized height point clouds
and detected tree locations for row 16 in plot 115 for the UAV-2021 and UAV-2022-High-Acc
datasets. By comparing the normalized height point clouds from the two datasets, the trees
removed from the thinning activity can easily be observed. Without the debris, the terrain
in the UAV-2021 dataset is cleaner compared to that in the UAV-2022 dataset. Although
the tree density in the UAV-2021 dataset is higher than the UAV-2022 dataset, the three
detection and localization approaches show promising performance. When dealing with
the UAV-2022-High-Acc point cloud after the thinning activity, the debris on the site leads
to more false positives in the height-difference-based results (i.e., three in this row).

4.2.4. Processing Time for Tree Detection and Localization Approaches

In this subsection, the processing time for each approach is compared. All experiments
were conducted on a computer with Intel® Core™ i7-6700 Processor and 16GB memory.
Table 10 lists the processing times for the three tree detection and localization approaches.
As the UAV-2022-Low/High-Acc point clouds have the same number of points and a close
processing time, only the results for UAV-2021, UAV-2022-High-Acc, and Geiger-2021 are
presented. For the UAV datasets with a high point density, the height/density-based
approach had the best performance in terms of processing time. For the dataset with
low density (e.g., Geiger-2021 dataset), both DBSCAN-based and height/density-based
approaches have a similar performance. Moreover, it can be observed from the table that
the processing time for the DBSCAN-based approach dramatically increases as the number
of points increases, while the other two slightly increase.
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Table 10. Processing time for the tree detection and localization approaches on the three datasets.

Dataset Approach Number of Points
(Million)

Processing Time
(s)

UAV-2021
DBSCAN 1.7 439.0

Height/Density 1.7 21.6
Height-Difference 3.7 69.1

UAV-2022-High-Acc
DBSCAN 1.1 41.1

Height/Density 1.1 15.0
Height-Difference 2.0 51.9

Geiger-2021
DBSCAN 0.3 3.9

Height/Density 0.3 5.8
Height-Difference 0.8 39.1

Remote Sens. 2022, 14, x FOR PEER REVIEW 26 of 33 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

DBSCAN-based 

 

Height/Density-based 

 

 

Height-Difference-based 

(a) 

Figure 17. Cont.



Remote Sens. 2022, 14, 3738 25 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 27 of 33 
 

 

 

 

DBSCAN-based 

 

 

Height/Density-based 

 

 

Height-Difference-based 

(b)  

Figure 17. Tree detection and segmentation results from the three approaches for (a) UAV-2021 and 
(b) UAV-2022-High-Acc datasets. The normalized height point clouds are colored by tree ID from 
the segmentation, correct detections (true positive) are shown in red, false negatives are shown in 
blue, and false positives are shown in green. 

4.2.4. Processing Time for Tree Detection and Localization Approaches 
In this subsection, the processing time for each approach is compared. All 

experiments were conducted on a computer with Intel® Core™ i7-6700 Processor and 
16GB memory. Table 10 lists the processing times for the three tree detection and 
localization approaches. As the UAV-2022-Low/High-Acc point clouds have the same 
number of points and a close processing time, only the results for UAV-2021, UAV-2022-
High-Acc, and Geiger-2021 are presented. For the UAV datasets with a high point density, 
the height/density-based approach had the best performance in terms of processing time. 
For the dataset with low density (e.g., Geiger-2021 dataset), both DBSCAN-based and 
height/density-based approaches have a similar performance. Moreover, it can be 
observed from the table that the processing time for the DBSCAN-based approach 
dramatically increases as the number of points increases, while the other two slightly 
increase. 

Table 10. Processing time for the tree detection and localization approaches on the three datasets. 

Dataset Approach Number of Points Processing Time 

Figure 17. Tree detection and segmentation results from the three approaches for (a) UAV-2021 and
(b) UAV-2022-High-Acc datasets. The normalized height point clouds are colored by tree ID from the
segmentation, correct detections (true positive) are shown in red, false negatives are shown in blue,
and false positives are shown in green.

5. Discussion

This study investigated the performance of three different tree detection and lo-
calization strategies—DBSCAN-based, height/density-based, and the proposed height-
difference-based approaches—when dealing with point clouds with different characteristics.
The first two approaches rely on point density information to detect tree locations using
point clouds representing the trunk areas. Therefore, the thresholds for these two ap-
proaches (i.e., minPts and pmin, respectively) need to be fine-tuned to derive the optimal
results. On the other hand, the proposed height-difference-based approach detects individ-
ual trees based on the maximum height differences between points in a local neighborhood.
Although more thresholds are required for this approach, their values are selected intu-
itively based on general prior knowledge related to the datasets and ROI (e.g., species/age
of trees and nominal average tree spacing) without the requirements for trial-and-error/fine-
tuning. Nevertheless, using only height information will lead to misdetection when LiDAR
points from other objects exist in the point cloud—i.e., low branches (~4–5 m height), and
debris (~1–3 m height) within the same planimetric locations will easily lead to a falsely
detected tree. The performance of these three approaches in terms of tree detection can be
summarized as follows:
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• After fine-tuning the parameters related to DBSCAN-based and height/density-based
approaches, comparative tree detection results were achieved from the UAV point
clouds with adequate point density—the F1 scores for UAV-2021 and UAV-2022-
Low/High-Acc point clouds are higher than 0.99 regardless of the geometric accuracy
and environmental complexity. The height-difference-based approach produced simi-
lar results to other two approaches when applied on high-density UAV point clouds
with slightly more false positives. This is expected since the height-difference-based
approach is prone to noise and/or points from other objects such as debris, understory
vegetations, and low branches. One sample of detected false positives from UAV-
2022-High-Acc is shown in Figure 18a, where points from the debris and low branches
resulted in a falsely detected tree.

• In terms of the Geiger-2021 dataset with low point density, the performance of all
approaches dramatically deteriorated. Among them, the height-difference-based ap-
proach correctly detected the greatest number of trees, followed by the height/density-
based and DBSCAN-based approaches. This is expected as the height-difference-based
approach does not rely on density information for tree detection. Figure 18b shows a
commission error from the Geiger-2021 dataset. It can be observed that points from
the branches and noise points between two trees lead to a false positive. By looking
into false positive detections as shown in Figure 18, an additional post-processing
step (i.e., a quality control process) can be proposed to remove them based on den-
sity information and/or by analyzing the vertical spatial distribution of the points
within the local neighborhood. Therefore, false positive detections are preferable to
false negatives, as the former can be removed relatively easily while finding omission
errors is challenging. Overall, although the commission errors are higher than the
DBSCAN-based approach, the height-difference-based approach is more suitable for
performing tree detection for point clouds with a low point density.

Figure 18. Sample false-positives from the height-difference-based approach for (a) UAV-2022-High-
Acc and (b) Geiger-2021 datasets, the points within the range threshold are colored by height while
the others are shown in grey—the black line represents the falsely detected tree location.

In terms of tree localization, the three approaches derive the locations differently.
The DBSCAN-based approach extracts a cluster that represents an individual tree and
computes the centroid of the cluster as the tree location. This approach is believed to
provide accurate tree locations, except for the case when points related to the tree are not
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uniformly distributed. On the other hand, the height/density-based approach detects
the peak in the 2D cells using the sum of elevation metrics as a single tree. The center
of the detected cell is then regarded as the tree location. Therefore, the accuracy of the
tree location depends on the cell size (sc). As the cell size was set to 0.1 cm in this study,
the tree localization results from the height/density-based approach are expected to be
accurate. In terms of the height-difference-based approach, the established seed point
with the largest maximum height difference in the neighborhood is directly used as the
tree location. The detected location does not correspond to the centroid, but to a random
location on the surface of the tree trunk. As a result, the accuracy of the location is affected
by (i) the size used to define the cylindrical local neighborhood (rcyl = 0.2 m) and (ii) the
diameter of the tree trunk. The above analysis is verified through the localization results
for the point cloud with high point density and geometric accuracy—i.e., the accuracy for
the DBSCAN-based and height/density-based methods is around 0.1 m and that of the
height-difference-based method is around 0.2 m. When dealing with point clouds with low
density, the performance of these different approaches is comparable for tree locations. In
this case, the accuracy is mainly controlled by captured details in the point cloud. Moreover,
from the comparison between UAV-2022-Low-Acc and UAV-2022-High-Acc point clouds,
geometric accuracy will affect the STD values of the tree locations that were derived for all
approaches to a similar extent.

In terms of processing time, the height/density-based approach shows the best perfor-
mance, as the steps are simple and relatively efficient. The DBSCAN-based approach has
a computational complexity of O

(
n3). As the number of points increases, the processing

time of the DBSCAN-based approach dramatically increases. Therefore, this approach is
not suitable for point clouds with a high level of fine detail and a high number of points.
The proposed height-difference-based approach includes the step of finding points within
a given local neighborhood. Although a KD-tree data structure is used to improve the effi-
ciency, this step is still time-consuming. As a result, the height-difference-based approach
requires a longer processing time than the height/density-based approach. The above
findings are summarized in Table 11, where the processing time and impact of different
dataset characteristics are listed for each tree detection and localization approach.

Table 11. A summary of the processing time and impact of different dataset characteristics for each
tree detection and localization approach.

Strategies Processing
Time

Point Density Geometric Accuracy Debris

Det. Loc. Det. Loc. Det. Loc.

DBSCAN Medium–Slow XX XX X XX X
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6. Conclusions

In this paper, a new trunk-based tree detection and localization approach based on the
maximum height difference among point clouds in a local neighborhood was proposed.
This approach was compared to two state-of-the-art trunk-based approaches—DBSCAN-
based and height/density-based approaches. To evaluate their performance on point clouds
with different characteristics, two UAV LiDAR datasets and one Geiger-mode LiDAR
dataset over a plantation under leaf-off conditions were used. For UAV-2022 dataset, the
LiDAR system calibration parameters were out-of-date, resulting in point clouds with low
geometric accuracy. To resolve this issue, a novel system calibration process using tree
trunks and ground patches was proposed. After refining the LiDAR mounting parameters,
the point cloud from the UAV-2022 dataset achieved the same level of geometric accuracy as
the one from the UAV-2021 dataset. Overall, four LiDAR point clouds with different point
densities, geometric accuracies, and environmental complexities were used to conduct a
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comparative analysis of these approaches according to the tree detection and localization
accuracy, as well as the execution time. Experimental results from the UAV datasets
suggested that DBSCAN-based and height/density-based approaches perform well in
terms of tree detection (F1 score > 0.99) and localization (with an accuracy of 0.1 m for
point clouds with high geometric accuracy) after fine-tuning the thresholds. However, the
processing time of the latter is much quicker than that of the former. In general, the height-
difference-based approach can extract the majority of trees from UAV datasets without
fine-tuning the thresholds. However, due to the limitation of the algorithm, the tree location
accuracy is worse than that of the other two approaches. On the other hand, results from the
Geiger mode dataset with low point density showed that the performance of all approaches
dramatically deteriorated. Among them, the proposed height-difference-based approach
resulted in the greatest number of true positives and highest F1 score, making it most
suitable for point clouds with low density without the need for fine-tuning parameters.

The main limitation of the proposed height-difference-based approach is the direct
use of a seed point with a large maximum height difference as the tree location. This
significantly affects the accuracy of the derived locations. To overcome this issue, future
work will focus on proposing a more robust localization algorithm based on detected trees.
Future work will also focus on augmenting the tree detection results by incorporating a
quality control procedure. More specifically, by analyzing the distribution of point clouds
close to the detected trees, false positives can be removed. Furthermore, the performance of
these trunk-based approaches on natural forests will be investigated. Lastly, the derivation
of other forest inventory metrics—e.g., stem map and wood volume—will be explored.
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