Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data
Abstract
:1. Introduction
2. Principles of the GNSS/Acoustic Seafloor Geodetic Move-Around Calibration Method
2.1. Observation System
2.2. Basic Ray-Tracing Strategy for GNSS/Acoustic Absolute Calibration
3. Inversion Scheme
3.1. Absolute Horizontal Position Estimation
3.2. Surface Sound Velocity Temporal Variation Extraction Method
Algorithm 1 Surface sound velocity variation extraction method |
|
3.3. Absolute Vertical Position and SSVD Estimation
4. Experimental Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Spiess, F.N. Suboceanic geodetic measurements. IEEE Trans Geosci. Remote Sens. 1985, 23, 2–510. [Google Scholar] [CrossRef]
- Gagnon, K.L.; Chadwell, C.D. Relocation of a seafloor transponder—sustaining the GPS-acoustic technique. Earth Planets Space 2007, 59, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Yokota, Y.; Ishikawa, T.; Watanabe, S.; Tashiro, T.; Asada, A. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 2016, 534, 374–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, M.; Fujita, M.; Matsumoto, Y.; Ishikawa, T.; Asakura, T. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship’s track line. J. Geod. 2013, 87, 825–842. [Google Scholar] [CrossRef]
- Kido, M.; Fujimoto, H.; Hino, R.; Ohta, Y.; Osada, Y.; Iinuma, T.; Azuma, R.; Wada, I.; Miura, S.; Suzuki, S.; et al. Progress in the project for development of GPS/acoustic technique over the last 4 years. In International Symposium on Geodesy for Earthquake and natural Hazards (GENAH); Hashimoto, M., Ed.; Springer: Cham, Switzerland, 2015; Volume 145. [Google Scholar]
- Fujimoto, H. Seafloor geodetic approaches to subduction thrust earthquakes. Monogr. Environ. Earth Planets 2014, 2, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Honsho, C.; Kido, M.; Tomita, F.; Uchida, N. Offshore postseismic deformation of the 2011 Tohoku earthquake revisited: Application of an improved GPS-acoustic positioning method considering horizontal gradient of sound velocity structure. J. Geophys. Res. Solid Earth 2019, 124, 5990–6009. [Google Scholar] [CrossRef]
- Sweeney, A.D.; Chadwell, C.D.; Hildebrand, J.A.; Spiess, F.N. Centimeter-Level Positioning of Seafloor Acoustic Transponders from a Deeply-Towed Interrogator. Mar. Geod. 2005, 28, 39–70. [Google Scholar] [CrossRef]
- Chadwell, C.D.; Spiess, F.N. Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data. J. Geophys. Res. Solid Earth 2008, 113, B04415. [Google Scholar] [CrossRef] [Green Version]
- Ikuta, R.; Tadokoro, K.; Ando, M.; Okuda, T.; Sugimoto, S.; Takatani, K.; Yada, K.; Besana, G.M. A new GPS-acoustic method for measuring ocean floor crustal deformation: Application to the Nankai Trough. J. Geophys. Res. 2008, 113, B02401. [Google Scholar] [CrossRef] [Green Version]
- Spiess, F.N.; Chadwell, C.D.; Hildebrand, J.A.; Young, L.E.; Purcell, G.H.; Dragert, H. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Phys. Earth Planet. Inter. 1998, 108, 101–112. [Google Scholar] [CrossRef]
- Asada, A.; Yabuki, T. Centimeter-level positioning on the seafloor. Proc. Jpn. Acad. Ser. B Phys. Biol. 2017, 77, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Ando, M.; Tadokoro, K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth Planets Space 2005, 57, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Ishikawa, T.; Mochizuki, M.; Sato, M.; Toyama, S.; Katayama, M. GPS/Acoustic seafloor geodetic observation: Method of data analysis and its application. Earth Planets Space 2006, 58, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Chadwell, C.D.; Sweeney, A.D. Acoustic ray-trace equations for seafloor geodesy. Mar. Geod. 2010, 33, 164–186. [Google Scholar] [CrossRef]
- Yang, F.; Lu, X.; Li, J.; Han, L.; Zheng, Z. Precise positioning of underwater static objects without sound velocity profile. Mar. Geod. 2011, 34, 138–151. [Google Scholar] [CrossRef]
- Yokota, Y.; Ishikawa, T.; Watanabe, S. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography. Mar. Geophys. Res. 2019, 40, 493–504. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, T.; Xue, S. Progresses and prospects in developing marine geodetic datum and marine navigation of China. Acta Geod. Et Cartogr. Sin. 2017, 46, 1–8. [Google Scholar]
- Yang, Y.; Liu, Y.; Sun, D.; Xu, T.; Xue, S.; Han, Y.; Zeng, A. Seafloor geodetic network establishment and key technologies. Sci. China Earth Sci. 2020, 63, 1188–1198. [Google Scholar] [CrossRef]
- Chen, H.H.; Wang, C.C. Optimal localization of a seafloor transponder in shallow water using acoustic ranging and GPS observations. Ocean. Eng. 2007, 34, 2385–2399. [Google Scholar] [CrossRef]
- Ballu, V.; Bouin, M.N.; Calmant, S.; Folcher, E.; Bore, J.M.; Ammann, J.; Pot, O.; Diament, M.; Pelletier, B. Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J. Geod. 2010, 84, 65–77. [Google Scholar] [CrossRef]
- Osada, Y.; Fujimoto, H.; Miura, S.; Sweeney, A.; Kanazawa, T.; Nakao, S.; Chadwell, C.D. Estimation and correction for the effect of sound velocity variation on GPS/Acoustic seafloor positioning: An experiment off Hawaii Island. Earth Planets Space 2003, 55, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Kido, M.; Osada, Y.; Fujimoto, H. Temporal variation of sound velocity in ocean: A comparison between GPS/acoustic and in situ measurements. Earth Planets Space 2008, 60, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Honsho, C.; Kido, M. Comprehensive analysis of traveltime data collected through GPS-acoustic observation of seafloor crustal movements. J. Geophys. Res. Solid Earth 2017, 122, 8583–8599. [Google Scholar] [CrossRef]
- Watanabe, S.; Ishikawa, T.; Yokota, Y.; Nakamura, Y. GARPOS: Analysis Software for the GNSS-A Seafloor Positioning with Simultaneous Estimation of Sound Velocity Structure. Front. Earth Sci. 2020, 8, 597532. [Google Scholar] [CrossRef]
- Chen, H.H.; Wang, C.C. Accuracy assessment of GPS/Acoustic positioning using a Seafloor Acoustic Transponder System. Ocean. Eng. 2011, 38, 1472–1479. [Google Scholar] [CrossRef]
- Yamada, T.; Ando, M.; Tadokoro, K.; Sato, K.; Okuda, T.; Oike, K. Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements. Earth Planets Space 2002, 54, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhou, Y.; Zhang, H.; Wu, Y.; Fang, S. A new method for absolute datum transfer in seafloor control network measurement. J. Mar. Sci. Technol. 2016, 21, 216–226. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Liu, Y.; Liu, J. Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations. J. Geod. 2020, 94, 61. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Nie, Z.; He, K.; Ding, N. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/Acoustic precise underwater point positioning. Ocean. Eng. 2021, 221, 108533. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yokota, Y.; Ishikawa, T.; Watanabe, S. Optimal Transponder Array and Survey Line Configurations for GNSS-A Observation Evaluated by Numerical Simulation. Front. Earth Sci. 2021, 9, 600993. [Google Scholar] [CrossRef]
- Leonard, J.J.; Bahr, A. Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering, 1st ed.; Dhanak, M.R., Xiros, N.I., Eds.; Springer: New York, NY, USA, 2016; pp. 341–357. [Google Scholar]
- Tomita, F.; Kido, M.; Honsho, C.; Matsui, R. Development of a kinematic GNSS-Acoustic positioning method based on a state-space model. Earth Planets Space 2019, 71, 102. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef] [Green Version]
Trajectory | Time First Sample | Time Last Sample | Number of Samples |
---|---|---|---|
A circle, R = 2000 | 3 April 2021 04:11 | 3 April 2021 06:25 | 2006 |
A circle, R = 1000 | 3 April 2021 06:43 | 3 April 2021 08:19 | 1148 |
A eight, R = 1000 | 3 April 2021 08:31 | 3 April 2021 10:27 | 2004 |
Method | RMS (cm) | Max (cm) | |
---|---|---|---|
LS | 32.6 | 104.1 | 25.9 |
LS + C | 26.5 | 82.2 | 18.6. |
SD | 18.6 | 72.8 | 14.7 |
New method | 7.3 | 26.7 | 5.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, R.; Liu, H.; Zhao, S.; Li, H. Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data. Remote Sens. 2022, 14, 3739. https://doi.org/10.3390/rs14153739
Shan R, Liu H, Zhao S, Li H. Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data. Remote Sensing. 2022; 14(15):3739. https://doi.org/10.3390/rs14153739
Chicago/Turabian StyleShan, Rui, Huimin Liu, Shuang Zhao, and Haojun Li. 2022. "Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data" Remote Sensing 14, no. 15: 3739. https://doi.org/10.3390/rs14153739
APA StyleShan, R., Liu, H., Zhao, S., & Li, H. (2022). Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data. Remote Sensing, 14(15), 3739. https://doi.org/10.3390/rs14153739