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Abstract: Optical images are rich in spectral information, but difficult to acquire under all-weather
conditions, while SAR images can overcome adverse meteorological conditions, but geometric distor-
tion and speckle noise will reduce the quality of SAR images and thus make image interpretation
more challenging. Therefore, transforming SAR images to optical images to assist SAR image inter-
pretation will bring opportunities for SAR image application. With the advancement of deep learning
technology, the ability of SAR-to-optical transformation has been greatly improved. However, most
of the current mainstream transformation methods do not consider the imaging characteristics of
SAR images, and there will be failures such as noisy color spots and regional landform deformation
in the generated optical images. Moreover, since the SAR image itself does not contain color infor-
mation, there also exist many color errors in these results. Aiming at the above problems, Sar2color,
an end-to-end general SAR-to-optical transformation model, is proposed based on a conditional
generative adversarial network (CGAN). The model uses DCT residual block to reduce the effect
of coherent speckle noise on the generated optical images, and constructs the Light atrous spatial
pyramid pooling (Light-ASPP) module to mitigate the negative effect of geometric distortion on the
generation of optical images. These two designs ensure the precision of texture details when the
SAR image is transformed into an optical image, and use the correct color memory block (CCMB) to
improve the color accuracy of transformation results. Towards the Sar2color model, we have carried
out evaluations on the homologous heterogeneous SAR image and optical image pairing dataset
SEN1-2. The experimental results show that, compared with other mainstream transformation mod-
els, Sar2color achieves the state-of-the-art effect on all three objective and one subjective evaluation
metrics. Furthermore, we have carried out various ablation experiments, and the results show the
effectiveness of each designed module of Sar2color.

Keywords: SAR image; optical image; SAR-to-optical transformation; conditional generative adversarial
network (CGAN); deep learning

1. Introduction

With the continuous development of space remote sensing detection technology,
remote sensing images have a wide range of application needs in land planning, environ-
mental monitoring, resource prospection, military reconnaissance and other fields [1–4].
In the practical application environment, the optical remote sensing images contain high
spectral resolution, which is more in line with human visual perception. However, the
severe weather conditions such as clouds and fog will cause serious pollution to the visible
light band of the optical images [5], thus reducing the quality of the optical remote sensing
images, and then affecting the earth observation task. At the same time, the light conditions
also restrict the long time observation, resulting in the limited use of optical images. In
contrast, the microwave band of synthetic aperture radar (SAR) [6] can penetrate adverse
meteorological conditions and work under all-day and all-weather conditions [7] to obtain
high-resolution SAR image data. However, because SAR images are limited by the inherent
side-view property of radar during imaging, there will be geometric distortion [8] in some
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areas of the image, which makes SAR images mismatched with the physical structures
in the real environment. At the same time, SAR is a coherent imaging method, and the
complex electromagnetic wave scattering process will make SAR images appear granular
appearance, and the resulting coherent speckle noise [9] will affect the acquisition of valid
information in SAR images. These imaging characteristics of SAR images increase the
difficulty of SAR interpretation. The imaging principles of SAR and optical images are
fundamentally different, in terms of measurement methods, wavelengths, detection instru-
ments and viewing angles [10,11]. SAR images mainly represent the structure and dielectric
properties of the observed target, and the spectral information is insufficient, while optical
images are rich in spectral information easily understood by human eyes, which facilitates
the visual interpretation of the landscape. As shown in Figure 1, horizontal and vertical
roads, as well as residential areas and adjacent green spaces, can be easily distinguished
in the right optical image. However, for the left SAR image, only horizontal roads can
be distinguished, and other geographic targets are difficult to interpret, which makes the
interpretation of SAR images very difficult for those people who are not specialized in
studying the background of SAR images.

Figure 1. The comparison between (a) SAR image and (b) optical image. Best viewed in color.

When both of the above remote sensing images can be acquired, reliable registration
techniques of SAR and optical images [12,13] can be used to combine the image information,
which gives full play to their respective advantages and maximizes the acquisition of terrain
characteristics of the target scene. However, for some specific application scenarios, we
cannot acquire both SAR and optical images, so the above image registration techniques
cannot be effectively applied. In some cases, only SAR images can be obtained, while optical
images are difficult to be obtained [10]. At this time, under the condition of reasonable use of
amplitude information of SAR image, converting SAR image to an image similar to optical
representation is conducive to the interpretation of SAR image and better helps people to
understand different geographical target features and scene information in SAR image. The
process of inputting SAR images to generate optical images is called the transformation
from SAR image to optical image, which is an image generation transformation task.

In recent years, due to the rapid development of deep learning technology, generative
adversarial network (GAN) [14], as an excellent deep generative model, uses the generator
and the discriminator for generative adversarial learning to learn the internal distribution
characteristics of data. In addition, conditional generative adversarial network (CGAN) [15]
uses the condition information corresponding to the image data on the basis of GAN for
training, which can generate images distributed by specific data according to the given con-
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dition information, and has been widely used in the field of image transformation. In 2017,
Isola et al. proposed Pix2pix [16] based on CGAN, which serves as a general image trans-
formation framework and provides a broad reference for subsequent image transformation
work. Meanwhile, Zhu et al. proposed CycleGAN [17], which consists of two generators
and discriminators, and can use unpaired images for image transformation tasks. In 2018,
Wang et al. proposed the high-resolution image transformation method Pix2pix-HD [18],
which uses a multi-level structure in the generator part to continuously improve the reso-
lution and also utilizes a multi-scale discriminator to improve the generation quality. In
recent years, there are also many studies on image transformation using other conditional
information such as input image [16,19], text [20,21], color information [22,23], domain
information [24,25], etc. The above mentioned image transformation works are focused on
natural images and sketch data applications, and the work on SAR-to-optical image trans-
formation using deep learning techniques started late. There are large differences between
SAR images and optical images, CGAN can generate images that match the real data distri-
bution, and can generate optical images based on SAR images by adjusting the network of
the image-to-image transformation task. Merkle et al. [26] used the generated images to
achieve image registration, while they also tried to transform SAR images to optical images,
showing the great potential of deep learning in the field of remote sensing image transfor-
mation. Kento et al. [27] introduced regional information into the image transformation
network based on the CGAN structure. Specifically, feature vectors from the pre-trained
classification network are fed to the generator and discriminator networks, which alleviates
the problem of colorization errors in generated images due to the lack of color information
in SAR images. Yu et al. [28] addressed the problem of speckle noise in SAR images by
introducing attention mechanism into the CGAN structure, which allows the network to
emphasize useful features and ignore unimportant noise features, and thus improves the
quality of optical image generation. Faramarz et al. [29] used two CGAN structures in
SAR-to-optical image transformation and cloud removal tasks, replaced vanilla U-net with
dilated residual inception blocks (DRIBs) in the generator, and further reduced the number
of downsampling and extended the received field of view by expanding the convolution,
which improves the quality of the generated images. Zuo et al. [30] designed a histogram
of orientated phase congruency (HOPC) as a loss function in the SAR image transformation
in order to better preserve the structural information after image transformation. Javier
et al. [31] proposed an Atrous CGAN structure that enhances the fine details in the gen-
erated optical images by using multi-scale spatial context. Guo et al. [11] proposed an
edge-information-preserving CGAN (EPCGAN) for SAR-to-optical image transformation,
which enhances the structural information and sharpness of the generated optical images.
In 2021, Tan et al. [32] proposed a feature-preserving heterogeneous remote sensing image
transformation model called Serial GAN for the SAR-to-optical transformation problem,
which uses two sub-networks, Serial Despeckling GAN and Colorization GAN, to complete
the transformation of SAR image to optical grayscale image and optical grayscale image to
optical color image, reducing the semantic distortion and spectral distortion in the direct
SAR-to-optical transformation process.

For the SAR-to-optical image transformation task, SAR images and optical images
belong to homogeneous and heterogeneous data, and the imaging characteristics of the two
images are different significantly. The above mentioned Merkle et al., Kento et al., Faramarz
et al., Zuo et al., and Javier et al. all improve the transformation quality by improving the
network model and loss function, without considering the imaging characteristics of SAR
images. Yu et al. consider the speckle noise, but the attention mechanism greatly increases
the network parameters, resulting training difficulties. Guo et al. consider the structural
information in SAR images to recover more structural information in the generated optical
images, but the color information in their generated optical images is scarce. Tan et al.
propose an alternative idea of SAR image transformation by decoupling SAR-to-optical
into two subtasks to reduce the transformation difficulty, but its network does not consider
the geometric distortion characteristics in SAR images, and some regional features in the
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generated optical images do not match the real physical features, and the network is not an
end-to-end network.

In order to implement SAR-to-optical image transformation more efficiently, we pro-
pose an end-to-end SAR-to-optical image transformation model called Sar2color in full
consideration of the imaging characteristics of SAR images. Our model is based on the
CGAN structure, and the DCT residual block (DCTRB) is designed in the encoding part
of the generator to reduce the influence of coherent speckle noise in SAR image on the
generated optical images. The Light atrous spatial pyramid pooling (Light-ASPP) module
is designed in the middle part of the generator to improve the utilization of spatial multi-
scale information and alleviate the negative effect of geometric distortion on the generated
optical images. To improve the color quality of generated optical images, a correct color
memory block (CCMB) is designed in the decoding part of the generator. The above design
reduces the difficulty of transforming SAR images into optical images, and also makes the
generated optical images closer to the real optical images.

The main contributions of this paper are as follows:

1. We propose an end-to-end SAR-to-optical image transformation model called Sar2color,
which takes into account the imaging characteristics of SAR images, reduces the ad-
verse effects of SAR images brought to the generated optical images during the
transformation process, improves the color quality of the generated optical images,
and is conducive to assisting the interpretation of SAR images;

2. In this paper, DCTRB and Light-ASPP modules are designed to reduce the negative
effects of coherent speckle noise and geometric distortion characteristics in SAR
images on the generation of optical images, and thus reduce the difficulty of SAR-to-
optical image transformation task;

3. A CCMB module is proposed to alleviate the problem of color deviation that occurs
in generating optical images;

4. This paper evaluates the results of the proposed method on the remote sensing image
and optical image paired dataset SEN1-2 [33], while achieving the state-of-the-art
effect on four different mainstream evaluation metrics, such as peak signal to noise
ratio (PSNR) [34], structural similarity index metric (SSIM) [35], mean square error
(MSE) [36], and learned perceptual image patch similarity (LPIPS) [37].

2. Methods

We propose the Sar2color to solve SAR-to-optical transformation task, which has the
ability to transform SAR images into images that are closer to real optical images, and
the overall model structure is shown in Figure 2. Sar2color model is based on CGAN
structure and consists of generator and discriminator. The generator is composed of
DCTRB, Light-ASPP, CCMB, and other modules (contains convolution and deconvolution
operations, bacth normalization and some activation functions). The discriminator has
the dual-scale patch discriminator structure, which is a multi-layer network composed of
multiple convolutions, batch normalization, activation functions and Light-ASPP blocks.
The generator is responsible for training the input SAR image to obtain the resulting image,
and then the discriminator will discriminate the generated image from the real optical
image, and the generator and discriminator are trained against each other to improve
model performance. The generator attempts to produce a result closer to the real optical
image, while the discriminator tries to distinguish the generated result from the real image
as much as possible.
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Figure 2. The overall architecture of Sar2color. Best viewed in color.

2.1. The Structure of Sar2color Model
2.1.1. Generator

As shown in Figure 2, our generator part here uses a U-net [38] structure with a
downsampled image encoder section and an upsampled image decoder section.

We design DCTRB with different sub-sampling resolutions in the encoder of the
generator, when the encoder extracts the main features of the SAR image, it can reduce the
interference of invalid speckle noise features in the SAR image to the subsequent generation
of optical image. The specific structure of the DCTRB block is shown in Figure 3.

Figure 3. The architecture of DCTRB. DCT coefficient is a 256× 256 size matrix, conv 3 × 3, conv
2 × 2 and conv 1 × 1 are the convolution operations of different convolution kernel sizes. The blue
dotted line represents the concatenation on the feature channel of the DCT coefficient feature map
and the SAR image feature map. BN represents batch normalization, Relu represents an activation
function, and Contact represents addition operation. Best viewed in color.

Here, DCT coefficients are introduced into the residual shrinkage block [39], the
DCT [40] is a real domain transformation. For an M × N image matrix, its DCT is defined
as Formula (1).
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F(m, n) = α(m)α(n)
M−1

∑
x=0

N−1

∑
y=0

f (x, y)× cos
[
(2x + 1)πm

2M

]
cos
[
(2y + 1)πn

2N

]
,

α(m) =


1√
M

, m = 0√
2
M , 1 6 m 6 M− 1

, α(n) =


1√
N

, n = 0√
2
N , 1 6 n 6 N − 1

(1)

where M = N = 256, the coefficients α(m) and α(n) make the DCT transform matrix an
orthogonal matrix. x and y represent the position of the image pixel in the horizontal
and vertical directions, f (x, y) is the pixel value matrix of the image in the spatial domain
(x, y) coordinates. m and n are the frequencies of the image in the horizontal and vertical
directions after calculation, F(m, n) is the transformation matrix in the frequency domain
after calculation.

DCT has the characteristics of low computational complexity and concentrated energy.
It can remove the redundant information of image and retain the information that can best
express the features of the image. After DCT, most of the energy of the image is concentrated
in a small range of the frequency domain, including the main visual information in the
image, which can be selected and extracted according to the practical applications. As
shown in Figure 4, after DCT, most of the SAR image energy is concentrated in the low-
frequency DCT coefficient, so the low-frequency coefficient is more important than the
high part. As the speckle noise in SAR image belongs to the multiplicative noise and
high-frequency noise, it is difficult to deal with the multiplicative relationship between the
multiplicative noise and the image signal. We first do the homomorphic transformation
process on the SAR image to transform the multiplicative noise in the image into additive
noise, and then calculate the DCT coefficients of the transformed SAR image to remove the
high frequency noise information in the image. Nevertheless, discarding high-frequency
information completely will lose more image details.

Figure 4. The characteristic of the DCT. (a) The SAR image, and (b) the corresponding DCT image.
Best viewed in color.

In order to remove the high-frequency noise as much as possible and also retain the
coefficients that can best express the image features, we utilize the coefficient discriminant
method to select and retain the low-frequency coefficients and the medium and high-
frequency coefficients with higher energy. The specific execution process is as follows:

• Firstly, the SAR image is processed by homomorphic transformation, and the trans-
formed SAR image is obtained by the following formula: f (x, y) = ln(g(x, y)), f (x, y)
and g(x, y) represent the transformed SAR image and SAR image under the spatial
coordinates (x, y), respectively;
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• Then, the transformed SAR image is divided into 8 blocks, DCT is applied in each sub-
block, and then ZigZag [41] scanning is used to retain 10 low-frequency coefficients in
the upper left corner of the coefficient matrix after DCT;

• For other medium and high-frequency coefficients, the average coefficient of each sub-
block is set as the screening threshold, and the remaining 54 coefficients are compared
with this threshold of each sub-block. If the coefficient is larger than the threshold, it
is retained, and if less than 0, set it to 0. In this way, the medium and high-frequency
coefficients with higher energy can be retained. Finally, the filtered coefficients of each
sub-block are integrated.

We calculate the two-dimensional pixel matrix of the input transformed SAR image to
get the corresponding DCT coefficient. After distinguishing the coefficient, we retain the
DCT coefficient of the effective image information, and get a coefficient matrix of 256× 256
size. After the matrix is operated by conv 3 × 3 and conv 1 × 1, we get a 64× 64 size DCT
coefficient characteristic graph. The input 256× 256 size SAR image is convoluted by the
first layer in the encoder to get the 64× 64 size feature image, which is spliced with the
DCT coefficient feature map on the feature channel, and then continues to be trained in
the network for DCTRB with different downsampling resolutions in the encoder. The DCT
coefficient matrix performs a number of conv 3 × 3 and conv 1 × 1 operations to obtain the
DCT coefficient feature map that matches the size of the SAR image feature map.

To reduce the negative impact of geometric distortion characteristics in SAR image
on the generated optical image, we design the Light-ASPP structure to improve the uti-
lization of spatial multi-scale information. The Light-ASPP structure originates from the
DeepLabv3+ paper [42]. ASPP uses the spatial pyramid pooling module to further extract
multi-scale information. To reduce the computational complexity without compromising
accuracy, we use more conv 1 × 1 operations and a lower rate of Atrous conv with a lower
rate of (1,6,12) on the original ASPP structure to preserve the extraction of multi-scale
features, while adding a global pooling layer to retain global context information. Con-
sequently, we get a lightweight structure called Light-ASPP, we insert the Light-ASPP
after DCTRB of the encoder. Multi-scale feature extraction of the encoded SAR image
can reduce the adverse effects of local geometric distortion and provide better conditions
for subsequent decoding and restoration of optical image. The output of Light-ASPP is
connected to the back convolution module through a conv 1 × 1 operation, which ensures
the matching of feature sizes.

In the decoder of the generator, we use deconv operation to upsample and restore the
image resolution. As SAR does not contain color information, if directly upsampling, there
will be a larger coloring error in the resulting image. To improve the color accuracy of the
generated optical image, inspired by the paper [23,42,43], we design CCMB to implement
color enhancement processing on the upsampled image.

The structure of CCMB is shown in Figure 5. For the optical remote sensing images
in the training set, we take the pooling layer information of the corresponding grayscale
images after conv 3_2 through the pre-trained ResNet18 network [39,44] as spatial infor-
mation s and then use colorthief [45] to extract the Top-5 color values of different optical
remote sensing images in the training set. After normalization, we get the color information
c, so the image matching information MInfo can be described as:

MInfo = (s1, c1), (s2, c2), . . . , (sm, cm) (2)

where m represents the number of the training image. During the training step, the KNN
method [46] is used to match the pooling layer information of the input SAR image after the
conv 3_2 of the pre-trained ResNet18 network with the spatial information of the training
set, and the color information corresponding to the most similar spatial information is
obtained. The color information is then output at different characteristic scales through
a full convolutional encoder network. The feature map of the corresponding scale of the
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decoder is connected with Concat [38] to enhance the color information of the restored
optical image.

Figure 5. The architecture of CCMB. The spatial information of the input SAR image is calculated
by the ResNet18 network, and the color information corresponding to the most similar spatial
information in the optical training set image is returned by the KNN algorithm. The color information
is input into the full convolutional encoder network, and the color features of different feature scales
are cascaded with the decoder. Best viewed in color.

2.1.2. Discriminator

The goal of the discriminator is to distinguish between the generated image and the
real image obtained by the generator. In the network training, the generator continues to
improve the effect of the generated image to be closer to the real image. The discriminator
continues to improve the discriminant ability to distinguish the generated image from the
real image as much as possible, and the two carry out confrontation training to get a higher
quality generated image.

As shown in Figure 2, we use a dual-scale patch discriminator, which consists of two
sub-discriminators [18,47] with different output scales. To better distinguish the resulting
image and the real image, the Light-ASPP is connected after the convolution layer of
the sub-discriminator to improve the discrimination effect of the context information.
The output discriminant matrix of the last layer of the two sub-discriminators is 16× 16
and 4× 4, respectively, from top to bottom, indicating that the discriminant results are
applied on different scales of the image. Using the sigmoid function as the last layer
output for the conventional discriminator may lead to the extreme discrimination in a
single case. Therefore the sub-discriminators here are all patch discriminators, while the
patch discriminator discriminates on different image blocks, and the final discriminant
matrix is the mean value of the discriminant result of each block. Because there may be
great differences in the size of different objects in the remote sensing image, the dual-scale
discriminator can be utilized to get different receptive field sizes on the image to better
constrain the targets of different sizes. In the training stage, the loss of the discriminator is
obtained by the weighted sum of two sub-discriminators.

2.2. Loss Functions

There is a great difference between SAR image and optical image, and the design of
loss function has a significant influence on the quality of the generated optical image. In the
training of the Sar2color model, we use adversarial loss [15], smooth L1 distance loss [18]
and style loss.
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Adversarial Loss: Sar2color is based on the CGAN structure, so we use the adversarial
loss for the entire generator and discriminator, defined as follows:

Lc = Ex,y∼pdata (x,y)[log(D(x, y))] + Ex,z∼pdata (x,z)[log(1− D(x, G(x, z)))] (3)

where G and D denote generator and discriminator, x is the SAR image, y is the real optical
image, and z is the noise. The generator aims at minimizing the target loss, while on the
contrary, the discriminator works to maximize the target loss, and the two play games with
each other to continuously improve the generation effect.

Smooth L1 Loss: To reduce the pixel difference between the real optical image and the
generated image obtained by the generator, we use smooth L1 loss, defined as follows:

LsL1(y, ŷ) =
{ 1

2 (y− ŷ)2 for |y− ŷ| ≤ δ

δ|y− ŷ| − 1
2 δ2 otherwise.

(4)

where y represents the generated image, and ŷ represents the real optical image.
Style Loss: For the generated image, we also want to include more texture details. As

the above loss only pays attention to the overall structure of the image content, and does
not take into account the slight texture difference between the two images, so we use style
loss here to enhance the performance of texture details. In this paper, we only experiment
on the SAR image and the L channel from generated image. We adopt the idea of Gram
matrix matching (representing feature correlation) [48] extracted from some layers of the
pre-trained classification network VGG19 [44]. The Gram matrix is defined as follows:

Gl
ij = ∑

k
Cl

ikCl
jk (5)

where Gl
ij ∈ RNl×Nl , the Nl represents the number of feature maps in the lth layer of the

network, and the Cl
ik represents the output of the ith filter at the kth channel of the lth

layer. The Cl
jk represents the transpose vector matrix of Cl

ik. We use the third layer (relu2_2,
relu3_2, and relu4_2) of the VGG19 network to form the loss Ls.

The final completed total loss function of the generator is defined as:

LG = λ1 ∗ Lc + λ2 ∗ LsL1 + λ3 ∗ Ls (6)

In our experiments, the weight is set as: λ1 = 1, λ2 = 10, λ3 = 0.1.

3. Results

In this section, we first describe the details of the experiment, then introduce the used
dataset and evaluation metrics, and then carry on the qualitative analysis and quantitative
comparison of the experimental results. Finally, we carry out the ablation experiment of
each part of our proposed Sar2color model.

3.1. Implementation Details

In the experiments, we use the PyTorch1.7 framework and an NVIDIA RTX2080TI
GPU for development. In the training stage, the epoch is set to 500 and the initial learning
rate is set to 10−3, which attenuates to 0.5 of the original learning rate every 10 epochs at the
beginning of 400 epoch. The generator is developed with an Adam optimizer of β1 = 0.9
and β2 = 0.999, and the discriminator is developed with the SGD optimizer. Here, we train
so that the size of all images is 256 × 256.

3.2. Dataset Setting

In this paper, the SEN1-2 dataset [33] proposed by Schmitt et al. is used for SAR-to-
optical transformation. At present, this dataset is the unique large remote sensing dataset
used for SAR-optical data fusion, which is obtained from the Sentinel-1 and Sentinel-2
satellites all over the world and in various seasons. Sentinel-1 consists of two polarorbiting
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satellites, equipped with C-band SAR sensors, which enables them to acquire imagery
regardless of the weather. For the Sentinel-1 images in this dataset, so-called ground-range-
detected (GRD) products acquired in the most frequently available interferometric wide
swath (IW) mode were used. These images contain the σ0 backscatter coefficient in dB scale
for every pixel at a pixel spacing of 5 m in azimuth and 20 m in range. For sake of simplicity,
the dataset pays more attention to vertically polarized (VV) data, ignoring other potentially
available polarizations. Sentinel-2 comprises twin polarorbiting satellites in the same orbit,
phased at 180◦ to each other. The mission is meant to provide continuity for multi-spectral
image data of the SPOT and LANDSAT kind, which have provided information about
the land surfaces of our Earth for many decades. For the Sentinel-2 part of the dataset, it
only used the red, green, and blue channels (i.e., bands 4, 3, and 2) in order to generate
realistically looking optical RGB images.

The image block is cut to 256 × 256. As shown in Figure 6, SEN-1 and SEN-2 represent
SAR images and optical color images, respectively, which contain 282384 pairs of SAR and
optical color images with four seasons. Due to the detection limitations of the sensor, the
SEN1-2 dataset has a large amount of overlapping data. Then, the same data processing
method as Serial GAN is used to sample the original SEN1-2 dataset. Five typical geograph-
ical features are selected for this model: river valley, mountains and hills, urban residential
area, coastal city and desert. Because the same geographical features are different in the
four seasons, we extract image pairs evenly in different seasons to ensure that the number
of images in different seasons is the same as possible, and the ratio of the train to test is set
as 4:1. The selected dataset in our experiment is shown in Table 1.

In the training step, we aggregate the data of all the different terrains of the four
seasons together to obtain an overall dataset, and use this dataset to train from scratch
to obtain a single model. Then, we use this model to make predictions and obtain the
resulting images.

Table 1. The number of different season types in our selected dataset.

Season Train Test

Spring 2000 500
Summer 1600 400

Fall 2000 500
Winter 1600 400

Total 7200 1800

Figure 6. The examples of the SEN1-2 dataset. The first row is SEN-1 data, representing SAR images,
and the second row is SEN-2 data, representing optical RGB images. Best viewed in color.

3.3. Metrics

For the evaluation metric of image results in the field of remote sensing image transfor-
mation, we select four different mainstream evaluation metrics to measure the actual test



Remote Sens. 2022, 14, 3740 11 of 18

results, which are peak signal to noise ratio (PSNR) [34], structural similarity index metric
(SSIM) [35], mean square error (MSE) [36], and learned perceptual image patch similarity
(LPIPS) [37].

PSNR and MSE here objectively reflect the pixel distance between the generated image
and the real image, and SSIM reflects the image structure similarity between the generated
image and the real image. Here, x is used to represent the generated image, y represents the
real image, xc,h,w and yc,h,w correspond to their pixel values, respectively. PSNR is defined
as follows:

PSNR(x, y) = 20 log10 Max(yc,h,w)/
∥∥xc,h,w − yc,h,w

∥∥
2 (7)

SSIM is defined as follows:

SSIM(x, y) =
(2xc,h,wyc,h,w + c1)

(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (8)

where µx and µy represent the mean image pixel of x and y. σx and σy denote the standard
deviation of image x and y, respectively, σxy represents the covariance of image x and y, c1
and c2 are constants.

MSE is defined as follows:

MSE =
1

C · H ·W
C·H·W
∑

c=h=w=1
(xc,h,w − yc,h,w)

2 (9)

where dimension C = 3, H = W = 256.
At the same time, to avoid the limitation of objective evaluation metrics, we also

use the LPIPS metric, which is a subjective evaluation metric. By calculating the distance
between two images after extracting the network through perceptual features, we can
better measure the subjective perception distance between the generated image and the
real image.

3.4. Qualitative Evaluation

To verify the performance of Sar2color in the SAR-to-optical transformation task, we
compare this model with Pix2pix-HD, Faramarz, and Serial GAN models. As shown in
Figures 7 and 8, the first column and the second column represent the SAR image and
the corresponding optical color image, respectively, the third to the fifth column show the
experimental results of Pix2pix-HD, Faramarz, and Serial GAN, and the last column shows
the experimental results of our model.

From the overall visual effect, Sar2color is closer to the real optical color image in
color accuracy, color saturation, and texture details, indicating that the DCTRB and Light-
ASPP modules in Sar2color can reduce the negative impact of coherent speckle noise and
geometric distortion characteristics in SAR images as much as possible and thus restore the
texture details of the real optical color image. CCMB module enhances the color accuracy
of the resulting image. The added style loss in the loss function further improves the color
saturation of the resulting image. In contrast, the retention effect of Serial GAN on texture
details is similar to that of Sar2color, but there is a certain gap with Sar2color in terms of
color accuracy and saturation for the urban residential area and coastal city scenes. In
particular, there is a color loss in the middle part and the upper left corner of the resulting
images in the above two scenes. Visually, there are some color mottling phenomena and
regional color errors in the transformation results of Pix2pix-HD and Faramarz algorithms
in each scene. For example, in the river valley scene, these two algorithms mistakenly
regard the water area as a plain, resulting in incorrect green areas in the image, and noisy
color spots in scenes such as mountains and hills, coastal city, and desert. The information
interpretation of the resulting images is seriously affected.
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Figure 7. The results of different SAR-to-optical transformation models. The columns from left to
right show SAR images, optical images, results of Pix2pix-HD, results of Faramarz et al. model,
results of Serial GAN, and our results, respectively. The topography shown in the figure from top to
bottom is: river valley, mountains and hills, and urban residential area. Best viewed in color.

Figure 8. The results of different SAR-to-optical transformation models. The topography shown in
the figure from top to bottom is: coastal city, and desert. Best viewed in color.

To further verify the performance differences between Sar2color and other models
in the local details of the transformation results, as shown in Figure 9, the first column
represents the optical color image corresponding to the SAR image, and the second to fifth
columns show the experimental results of Pix2pix-HD, Faramarz, Serial GAN, and our
Sar2color, respectively. Here, some noteworthy local areas in three different scenarios are
circled in red boxes.

In the red box area of the first River valley scene, Sar2color and Serial GAN accurately
translated the water area and the land boundary. The results of Pix2pix-HD and Faramarz
overlap at the boundary, and Pix2pix-HD is more serious. In the red box area of the second
line urban residential area scene, both Sar2color and Serial GAN show the road shape, but
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Serial GAN has a color transformation error on the blue residential area of the roadside,
while Sar2color gives the accurate transformation. Furthermore, Pix2pix-HD and Faramarz
have the wrong transformation of the road shape and living area. In the red box area of the
third line mountains and hills scene, both Sar2color and Serial GAN accurately translate
the complex road shapes, while Pix2pix-HD and Faramarz mistranslate them into similar
surrounding mountain landforms.

Based on the above overall visual effect and local detail comparison performance, our
Sar2color model shows the best effect, and has certain performance advantages compared
with other models.

Figure 9. The local detail comparison of different SAR-to-optical transformation models, some
noteworthy local areas in three different scenarios are circled in red boxes. The columns from left to
right show Optical images, results of Pix2pix-HD, results of Faramarz et al. model, results of Serial
GAN, and our results, respectively. Best viewed in color.

3.5. Quantitative Evaluation

To quantitatively compare the performance of different evaluation metrics of Sar2color
and other models, we carried out experiments on four different metrics such as PSNR, SSIM,
MSE, and LPIPS. From Table 2, we can see that Sar2color is much better than other models
in terms of PSNR and MSE metrics, indicating that the transformation result of our model
is closer to the real optical color image in pixel distance, and Sar2color is also better than
other models in SSIM metric, indicating that the overall structure of the generated image
obtained by our model is more similar to that of the real optical image. On the perceptual
distance metric of LPIPS, the result of Sar2color is higher than that of other models, which
reflects that our model has the best effect on human subjective visual perception, and
provides convenience for subsequent image information interpretation.
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Table 2. Comparison of results with quantitative evaluation of PSNR, SSIM, MSE, LPIPS by different
methods on SEN1-2 dataset. The up-arrow ↑means larger is better, while the down-arrow ↓means
smaller is better.

PSNR↑ SSIM↑ MSE↓ LPIPS↓
Pix2pix-HD [18] 13.4253 0.2782 0.0487 0.3734

Faramarz [29] 15.5617 0.3451 0.0374 0.2511
Serial GAN [32] 16.3529 0.3876 0.0328 0.2649

Ours 18.8145 0.4162 0.0315 0.1769

3.6. Ablation Study

To prove the effectiveness of each part of Sar2color, we carried out the ablation exper-
iments of each part of Sar2color on the PSNR, SSIM, and LPIPS metrics. In Table 3, the
base model indicates that normal residual block is used in the DCTRB part of the original
encoder, and the CCMB module of Light-ASPP and decoder is removed at the same time,
and the others add different components based on the base model. Compared with the base
model, it can be seen that after adding each module separately, the added DCTRB module
has the greatest effect on the improvement of each metric, which shows that in SAR-to-
optical transformation, the speckle noise in the SAR image has the greatest influence on the
transformation ability of the model. At the same time, we can also see that the addition
of the other two modules can also improve the base model, and the transformation effect
of the model is the best after adding all the modules, which gives the best performance in
all metrics.

Table 3. Ablation study of our Sar2color structure with three evaluation metrics on SEN1-2 dataset.
The up-arrow ↑means larger is better, while the down-arrow ↓means smaller is better.

PSNR↑ SSIM↑ LPIPS↓
Base 12.1417 0.2544 0.3659

Base + DCTRB 16.1325 0.3715 0.2434
Base + Light-ASPP 13.4263 0.2963 0.3187

Base + CCMB 12.8766 0.2731 0.3428
Base + All of Above 18.8145 0.4162 0.1769

For the effectiveness of the style loss Ls, we carried out the ablation experiment on the
loss functions. In Table 4, Oral means that we only use adversarial loss Lc and smooth L1
loss LsL1, the second line indicates that we have increased the perceptual loss Lp_HD used
in Pix2pix-HD [18] based on Oral loss, the loss is to improve the natural vividness of the
generated image, and the third line is to add the style loss based on Oral loss. From the
experimental results of the three metrics in the table, adding style loss Ls to the Oral loss
achieves the best results, which proves that the style loss can better eliminate the difference
in texture details between the generated image and the real image.

Table 4. Ablation study of the loss functions with three evaluation metrics on SEN1-2 dataset. The
up-arrow ↑means larger is better, while the down-arrow ↓means smaller is better.

PSNR↑ SSIM↑ LPIPS↓
Oral 18.3427 0.4017 0.1936

Oral + Lp_HD 18.5641 0.4058 0.1842
Oral + Ls 18.8145 0.4162 0.1769

4. Discussion

The Sar2color model is proposed in this paper for the SAR-to-optical transformation
task. Sar2color is based on the CGAN structure and consists of a generator and a dis-
criminator. In the generator, we design the DCTRB, Light-ASPP and CCMB modules to



Remote Sens. 2022, 14, 3740 15 of 18

generate more realistic optical images, where the DCTRB and Light-ASPP modules can
reduce the negative impact of coherent speckle noise and geometric distortion character-
istics in SAR images to generate optical images, while the CCMB module has the ability
to alleviate the impact of the lack of color information on the transformation effect of the
SAR image. It makes the resulting image more consistent with visual cognition in terms
of color accuracy and saturation. At present, the research on speckle noise and geometric
distortion suppression in SAR images is almost carried out independently. Most of the
research uses spatial filtering, non-local mean, and variational methods to suppress speckle
noise directly, and uses feature fusion methods for reducing geometric distortion in image
registration. As the network components of Sar2color, DCTRB and Light-ASPP designed
by us can simultaneously handle speckle noise and geometric distortion of SAR images,
which is the first time to regard SAR as a priori information, and start with these two
imaging characteristics of the SAR image in the deep learning network structure design in
SAR-to-optical task.

Furthermore, we analyze the influence of the DCTRB, Light-ASPP and CCMB modules,
and also the loss function in our Sar2color model on the quality of the generated optical
images. It can be seen from the results in Table 3 that the DCTRB module has the greatest
improvement in the quality of the generated optical images. DCTRB module directly
selects and retains the low-frequency coefficients and the medium and high-frequency
coefficients with higher energy by a simple and straightforward strategy named coefficient
discriminant, which shows a significant effect in reducing the influence of coherent speckle
noise on the generated optical images. Comparing the improvement of Light-ASPP and
CCMB modules for the quality of transformed images, it can be seen that the adding
Light-ASPP improves the evaluation metrics more. This is because Light-ASPP is designed
to alleviate the influence of geometric distortion of SAR image on the generated optical
images, and the impact of geometric distortion processing is higher than that of CCMB on
color enhancement. When designing CCMB, the main color values of Top5 in the training
image are selected, because there are fewer color types in optical remote sensing image, and
the Top5 color values in the image can represent its main color. This strategy also reduces
the amount of calculation parameters. Compared with other methods, this paper uses style
loss in the design of the loss function, which can reduce the texture difference between
the generated optical image and the real optical image. From the local details of different
methods marked by the red box in Figure 9, the restoration effect of local details in our
model results is the best, while other methods have obvious texture differences compared
with real optical images.

5. Conclusions

In this paper, an end-to-end SAR-to-optical transformation model called Sar2color is
proposed. According to the imaging characteristics of SAR images, DCTRB and Light-ASPP
module are designed in the generator to reduce the negative impact of coherent speckle
noise and geometric distortion characteristics in SAR images to generate optical images.
CCMB module is then introduced in the decoder to enhance the color accuracy of the
transformed images. At the same time, we also add the style loss in the training stage,
which improves the color saturation of the generated optical images. Through qualitative
and quantitative comparison, compared with other mainstream models, Sar2color shows
obvious metric advantages and visual effects on the SEN1-2 dataset. This model can
provide a new general solution framework for the SAR-to-optical transformation task.

However, our method still has some shortcomings. The geometric distortion of SAR
images varies greatly under different meteorological conditions, so it is difficult for a single
Light-ASPP module to alleviate images with complex geometric distortions. In future
research, we will consider the problem of SAR images transformation under complex
geometry distortion by designing local spatial attention mechanism to extract effective
information. Furthermore, we found that the current SAR-to-optical advanced methods
use paired datasets, the transformation performance of SAR images in other fields will
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be degraded. Cross-domain learning under multiple types of unpaired datasets will be a
promising solution to get rid of the dependence of our Sar2color on paired data and further
improve the application universality of the model.
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