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Abstract: The local climate zones (LCZs) system, a standard framework characterizing urban form
and environment, effectively promotes urban remote sensing research, especially urban heat island
(UHI) research. However, whether mapping with objects is more advantageous than with pixels in
LCZ mapping remains uncertain. This study aims to compare object-based and pixel-based LCZ
mapping with multi-source data in detail. By comparing the object-based method with the pixel-
based method in 50 and 100 m, respectively, we found that the object-based method performed better
with overall accuracy (OA) higher at approximately 2% and 5%, respectively. In per-class analysis, the
object-based method showed a clear advantage in the land cover types and competitive performance
in built types while LCZ2, LCZ5, and LCZ6 performed better with the pixel-based method in 50 m.
We further employed correlation-based feature selection (CFS) to evaluate feature importance in the
object-based paradigm, finding that building height (BH), sky view factor (SVF), building surface
fraction (BSF), permeable surface fraction (PSF), and land use exhibited high selection frequency
while image bands were scarcely selected. In summary, we concluded that the object-based method
is capable of LCZ mapping and performs better than the pixel-based method under the same training
condition unless in under-segmentation cases.

Keywords: local climate zones (LCZs); remote sensing (RS) classification; object-based image analysis
(OBIA); feature calculation; comparison analysis

1. Introduction

Urbanization, along with population growth, aging and international migration, is
one of four “demographic mega-trends” described by the United Nations. In 2018, more
than 55 percent of the population around the world lived in urban areas, and this pro-
portion will increase to two thirds by 2050 [1]. The urbanization process has changed the
urban surface structure and environment, resulting in artificial heat elevation, especially in
megacities [2,3]. The phenomenon that urban heat is higher than surrounding areas, urban
heat island (UHI), has caused climate issues such as heat waves and air pollution all over
the world and has aroused people’s attention [4,5]. Traditional studies on UHI only analyze
the difference between “rural” and “urban” areas, lacking a standard urban classification
framework to evaluate temperature differences in urban regions [6–8].

To fill the gap in the urban classification framework, Stewart and Oke proposed the
local climate zones (LCZs) scheme in 2012 [9], which divided the areas of interest into
17 standard LCZ types including 10 built types and 7 land cover types, describing diverse
urban landscapes ranging from hundreds of meters to several kilometers. The detailed
information on each LCZ type is shown in Figure 1. Considering building height, spatial
distribution and covering material of land surface structure, the system provides a standard
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evaluation framework for UHI studies. With the popularity of LCZ research in related
fields, the demands for high-quality LCZ maps are also gradually increasing. However,
until now, a variety of mapping quality assessments indicate that there is still a lot of room
for improvement in LCZ mapping, which can only be improved when considering all built
classes together or using weights defined by the morphological and climatic similarity of
certain classes [10].
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Geographic information system (GIS) based mapping shows high potential in pro-
ducing high-quality LCZ maps [12], but large-scale GIS-based mapping is limited by data
and complexity of operations, making RS-based mapping the mainstream. Most RS-based
mapping products use pixels as mapping units, among which the Level 0 product map-
ping process proposed by the WUDAPT (The World Urban Database and Access Portal
Tools) project is the most popular [13]. The WUDAPT method uses free Landsat image
and SAGA GIS software to resample remote sensing images to 100 m and realize LCZ
mapping through random forest. Until now, LCZ maps for more than 100 cities around
the world have been completed and shared. However, WUDAPT-based LCZ maps clearly
show a disadvantage in accuracy. Overall accuracy (OA) of the 90 LCZs uploaded on the
WUDAPT portal is 74.5%, and the average OA of the built LCZ types of the 90 LCZs is only
59.3%, leaving much room for improvement [14]. To obtain high-quality LCZ maps, many
researchers have made efforts in mapping methods. Verdonck used derived spectral infor-
mation to help classification [15], while Liu and Shi proposed new network architecture for
LCZ classification [16]. However, pixel-based classification still has two problems: (1) it
cannot provide good boundaries for LCZ types; (2) most LCZ products are made with low
resolution, resulting in mixed pixels.

Object-based classification has made great success in the field of high-resolution image
analysis. In recent years, some scholars have begun to explore the application of object-
based LCZ mapping. Collins and Dronova generated an object-based LCZ map for the
urban areas of Salt Lake City, United States of America [17]. They argued that the object-
based LCZ classification paradigm could better describe the boundaries of LCZ types. In
addition, Ma et al. proved the effectiveness of object-based LCZ mapping through land
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surface temperature analysis of three cities in China [18]. Although the exploration of OBIA
in the field of LCZ mapping has been gradually carried out, their research did not show
the advantages of object-based LCZ mapping. If the object-based LCZ mapping is more
advantageous, there is still no definite conclusion in existing research. In addition, many
studies use auxiliary data to help LCZ mapping at present, which can be divided into
two categories: (1) Derivation of related features. This method uses spectral index, mean,
maximum, and minimum to aid classification [14]. (2) Addition of datasets. This approach
uses multiple datasets simultaneously, such as Landsat, Sentinel, Global Urban Footprint,
and Open Street Map [19,20]. Although multi-source data were used in their studies, the
mapping units are all pixels, limiting the effectiveness of multi-source data.

The comparison between the object-based method and pixel-based method has been
carried out in various fields. Shi and Liu compared two methods for mapping quasi-
circular vegetation patches and recommended the object-based SVM approach to map
the QVPs [21]. Nachappa proved that the object-based geon approach creates meaningful
regional units and performs better than the pixel-based approach in landslide susceptibility
mapping [22]. For land use/land cover (LULC) mapping and change detection, similar
research was conducted, and the object-based method showed greater potential compared
with the pixel-based method [23–25]. However, little research has systematically compared
object-based and pixel-based methods in the field of LCZ mapping, especially with multi-
source data. Since most LCZ products are made through the pixel-based paradigm, it is
important to figure out the advantages and disadvantages of an object-based paradigm
and whether image objects can maximize the benefits of multi-source data.

This study aims to systematically compare the object-based and pixel-based data with
multi-source data. Since few studies have been carried out on object-based LCZ mapping,
we further propose an improved object-based LCZ mapping workflow. The objects of this
research are to: (1) complete the object-based LCZ mapping process with multi-source
data and object-based sampling strategy; (2) compare the LCZ maps generated from two
different types of paradigms; (3) assess multi-source features in the object-based LCZ
mapping; (4) discuss the future direction for improving the object-based LCZ mapping.

2. Study Area and Multi-Source Data for LCZ Mapping
2.1. Study Area

This study is conducted in Changzhou, a city in Jiangsu Province, China, with lon-
gitude 119◦08′–120◦12′ east and latitude 31◦09′–32◦04′ north, which is shown in Figure 2.
Changzhou is located on the southern bank of the lower reaches of the Yangtze River,
the Taihu Lake Basin water network plain, in the southern part of Jiangsu Province. The
terrain of the territory is slightly higher in the southwest and lower in the northeast, with
a height difference of about 2 m. The climate of Changzhou is a subtropical monsoon
climate, characterized by warm winters and cool summers. Changzhou has distinct sea-
sonal characteristics and scarcely suffers from large-area and long-term cloud cover or
snowfall, becoming an appropriate city for LCZ mapping research. The area investigated
in this study covers approximately 800 km2, which comprises the main urban area and
nearby rural area. As the number of LCZ classes varies from city to city because of the
different urban form, 15 classes (nine built types and six land cover types) were taken into
consideration in our study area.
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Figure 2. Study area and reference data sampled from Google Earth.

2.2. Multi-Source Data Acquirement

Three types of data were used for mapping in this study: satellite images in raster
format, building data and land use data in vector format. Sentinel-2 (S2) images of four sea-
sons were used for data composition, which is introduced in Section 3.1. Six multispectral
bands of S2 images were used in this study: B2, B3, B4 and B8 with 10 m Ground Sampling
Distance (GSD) and B11 and B12 with 20 m GSD. The use of multi-season remote-sensing
data has been shown to improve the accuracy of LCZ classification [19]. So seasonal S2
images are used and the related information is displayed in Table 1. Building data and land
use data are used in this study to provide urban morphological information, common in
GIS-based mapping [12]. Land use data include eight categories: water, low vegetation,
woodland, bare soil, road, industrial area, residential area, and other facilities. These
two types of data were obtained from Baidu Map and the local department, respectively,
representing the study area in 2019.

Table 1. Remote sensing image data for data composition.

Satellite Image Season Date

Sentinel-2 L2A

Spring 2020-03-01 to 2020-05-31
Summer 2019-06-01 to 2019-08-31
Autumn 2020-09-01 to 2020-11-30
Winter 2020-12-01 to 2021-02-28

3. Methods

For LCZ mapping, four main steps were conducted in this study (Figure 3):

1. Data preprocessing. To obtain high-quality data for LCZ mapping. Seasonal composite
satellite images were obtained as basic mapping data, while building data and land
use data were converted to raster form. All data are resampled into 10 m GSD.

2. Feature derivation for LCZ mapping. For ricing spectral information and better
depicting the urban form, diverse features were selected and derived, including
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spectral reflectance, spectral indices, zonal information obtained through filtering,
urban morphological parameters (UMPs) that depict urban morphology.

3. Feature extraction based on image objects and patches. After obtaining segmentation
results by multi-resolution segmentation (MRS) and determining the resampling size,
we extracted zonal mean, standard deviation and texture from objects and pixels
based on a 10 m data block respectively.

4. LCZ classification. LCZ samples based on objects or pixels were input to the random
forest classifier for training and testing. Finally, each object or pixel was predicted by
the random forest classifier for producing the LCZ map.
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3.1. Data Preprocessing

Synthetic seasonal cloudless S2 images, rasterized building data and land use data
were obtained to integrate RS and GIS information. For S2 images, after geometric correc-
tion and atmospheric correction from Google Earth Engine, a series of image preprocessing
operations were carried out to make sure to obtain images without cloud. The QA60 band,
which is a bitmask band with cloud mask information, was used to remove the pixels with
cloud. Subsequently, image sets of each season were created by a date filter for the study
areas and were then used to generate synthetic images based on the median of individual
pixels. Finally, synthetic multi-season S2 images including B2, B3, B4, B8, B11 and B12
with 10 m were created for LCZ mapping with bilinear resampling method. GIS data were
converted and resampled into 10 m. Building layer was assigned based on height while
land use layer was assigned based on categories with values 0–7.
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3.2. Derived Raster Features for LCZ Mapping

In this study, diverse features were extracted and stacked as a multi-channel data
block with a resolution of 10 m. This data block includes spectral reflectance layers, spectral
indices layers, zonal information layers in four seasons and UMPs including BH, SVF, BSF,
PSF and land use layers. More information is shown in Table 2. The whole data block serves
as the input for object-based and pixel-based methods to ensure that they are completely
consistent for comparison. The input features in this data block are:

Table 2. Overview of features in the data block.

Feature Content Seasonal Number

Spectral reflectance Blue, Green, Red, Nir
√

16

Spectral index NDVI, MNDWI, NDBI,
NBAI, BSI, BRBA

√
16

Zonal information Convolutional layers
√

24

UMP BH, SVF, BSF, PSF, Land Use 5

Spectral reflectance: blue (B2), green (B3), red (B4) and near-infrared (B8) were selected
to provide spectral information. Considering that seasonal images were used in our study,
16 layers were finally obtained.

Spectral index: NDVI (Normalized Difference Vegetation Index), NDBI (Normalized
Difference Built Index), NBAI (Normalized built-in Area Index), BRBA (Band Ratio for
built-up Area), BSI (bare-soil Index) and MNDWI (Modified Normalized Difference Water
Index) were used for rich spectral information. These spectral indices were demonstrated
to be able to characterize vegetation, buildings, water and bare soil [26,27], aiding the
classifier to mine underlying spectral differences and connections among diverse LCZ
types. Notably, as the classification for built LCZ types is harder, three building-related
spectral indices were selected for improving the performance of the classifier. Considering
four seasons, a total of 24 spectral index layers were obtained.

Zonal information: Verdonck proved that using zonal information can effectively
improve LCZ mapping quality on a fine scale [15]. In this study, we used a mean filter to
obtain zonal information based on seasonal images. In detail, the filter is defined with size
11*11 and moving with step = 1. When the filter is at the edge of the image, the extent of
the processing is outside the image; thus, zero-padding was applied. Finally, we obtained
16 layers containing zonal information.

Urban morphological parameter: Stewart and Oke defined LCZs with measurable
and stable physical properties including SVF, Aspect Ratio (AR), BSF, Impervious Surface
Fraction (ISF), PSF, Height of Roughness Elements and Terrain Roughness Class [9]. In this
study, BH, SVF, BSF, and PSF were calculated, while the land use layer was obtained by
assigning the value of every pixel according to the category, because they are available from
our data and are widely used for LCZ mapping [12,28,29]. SVF is defined as the visible
proportion of the sky hemisphere from a ground point [30]. Figure 4 displays the visible sky
(S_sky) and the invisible sky (S_obstacle), which are determined by search radius (R) and
building distribution. In this study, the SVF value for each pixel was obtained by SAGA
GIS [31]. Building height data with 10 m GSD were input, and R was determined as 100 m.
The relevant calculation formulas are displayed in Table 3.
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Table 3. Urban morphological parameters. In this study, the final UMPs for mapping were extracted
from mapping units.

UMP Definition Formula

Building Height

n is the number of buildings in a
classification unit (a resampled

pixel or an object); BSi is the area
of one building; BHi is the height
of one building; Ssite is the area of

a classification unit.

BH = ∑n
i=1 BSi×BHi

S_site

Sky View Factor

n is the number of pixels in a
classification unit; SVFi is the

SVF in pixel i; S_skyi and
S_obstaclei are the area of visible
sky and invisible sky for pixel i,

respectively;

SVFi =
S_skyi

S_skyi+S_obstaclei

SVF = ∑n
i=1 SVFi

n

Building Surface Fraction n is the number of buildings in a
classification unit. BSF = ∑n

i=1 BSi
S_site

Permeable Surface Fraction

∑ S_per is the area of the
permeable surface in a

classification unit (average NDVI
for four seasons > 0.2)

PSF = ∑ S_per
S_site

3.3. Classification Schemes for LCZ Mapping
3.3.1. Object-Based Classification

MRS in Trimble eCognition software was used in this study, which adopts a bottom-up
method to gradually merge homogeneous pixels into one object and determines the thresh-
old of an object by parameters such as scale, color/shape, smoothness/tightness [32,33].
In addition to traditional LULC classification tasks, MRS has been successfully adopted
in the field of urban functional zones mapping [34,35], which demonstrated that MRS
has the potential for classifying diverse landscapes. Thus, MRS was selected for image
segmentation in this study.

Regarding parameter settings, segmentation weights of spectral layers (16 layers)
were set as 1 while others were set as 0. Segmentation parameters of color/shape and
smoothness/compactness were considered as 0.9/0.1 and 0.5/0.5. A total of nine scales
ranging from 30 to 150 were selected to evaluate mapping results in different scale scenarios.

For LCZ mapping, it has become well known that values extracted from an adjacent
region (mean, standard deviation, maximum, minimum, et.) help classification [20]. How-
ever, most researchers used a moving window to calculate statistical values as a new feature
map. In the object-based method, we extracted features from image objects. Three types
of features were obtained through Trimble eCongnition for our classifier: mean, standard
deviation and texture. The total number of features is 87. The number of features for each
type is shown in Table 4.
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Table 4. Summary of feature types for object/pixel-based classification.

Feature Number

Mean 63
Standard deviation 16

Texture 8

The total number of mean features is 63. Sixty-one of them were calculated one by
one from the layers we input. The remaining two features were MAX.DIFF and brightness.
The total number of standard deviation features is 16, which were calculated from the
composite S2 images. Gray Level Co-occurrence Matrix (GLGM) was used to extract texture
features from the composite S2 images, which describes the distribution of co-occurring
values of an image in a given area and provides a statistical view of the texture based on the
image histogram. We selected eight features, including contrast, dissimilarity, homogeneity,
angular second moment, entropy, mean, standard deviation and correlation with all angles.

3.3.2. Pixel-Based Classification

In pixel-based classification, two schemes with 50 and 100 m were designed for LCZ
mapping. Although the most appropriate mapping scale for LCZ classification has not
reached a consensus yet, Bechtel et al. argued that a “valid” LCZ may vary depending on
the resolution, and mapping with 100–150 m is a good compromise while 10–30 m is too
high [13]. Furthermore, the WUDAPT project, which strongly promotes the development
of LCZ research, produced LCZ maps in a resolution of 100 m, leading most scholars to
achieve LCZ classification in a resolution of 100 m [10,14,16,36]. Thus, 100 m was selected
in this study as the first choice. In addition, since multi-source data can provide detailed
urban information, making LCZ mapping possible at a fine scale. We selected 50 m as the
second choice, which is almost the highest resolution in the LCZ mapping research [37].
Thus, after the optimal scale was selected for the object-based method, we compared the
object-based method with the pixel-based method in 50 and 100 m.

In order to make the pixel-based method and the object-based method comparable,
zonal mean, standard deviation and texture were extracted from image patches for LCZ
classification instead of traditional resampled values. Similar to the object-based method,
a total of 87 features were finally adopted: 63 of them were zonal mean calculated from
the data block, 16 were standard deviation features, and 8 were texture features calculated
from the composite S2 images.

3.4. Random Forest Classifier

Random forest has been widely adopted in the remote sensing field, showing great
performance in classification and regression tasks [38–40]. By producing independent
trees with randomly selected subsets through bootstrapping from training samples and
input variables, the classifier obtains the final result through votes of majority trees. In
addition, due to the popularity of the WUDAPT project, which achieves LCZ classification
through random forest, most of the current LCZ maps were produced by random forest.
We selected the same classifier to better exhibit the difference between object-based and
pixel-based methods.

Since random forest is composed of independent decision trees, it is a machine learning
algorithm that is sensitive to the different input features, which is convenient for us to
analyze feature importance in the LCZ mapping field. Finally, the classifier we used in
this study consists of 476 trees. In addition, 60% of the total sample data was selected for
training the classifier, and all samples were used for testing, as we performed an area-based
accuracy assessment for the object-based method.
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3.5. Sampling Strategy

Three steps were conducted for sampling in our study. First, the sample polygons were
digitalized on Google Earth software. Second, we stacked the samples with the segmenta-
tion/resampled layer and finally extracted reference objects/pixels. Considering the actual
condition of Changzhou, we adopted 15 LCZ types including nine built types (excluding
LCZ7) and six land cover types (excluding LCZC). Figure 5 displays the difference between
object-based workflow and pixel-based workflow in sampling. Notably, when digitalizing
on Google Earth, sampling criteria from Zhu et al. were conducted to identify diverse LCZ
types [41]. In particular, for built LCZ types, after determining the target area uniform, a
large area was distinguished as LCZ8 or LCZ10 while others were distinguished by height,
compactness and material according to Figure 1.
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Figure 5. The process of sampling and labeling. In step 1, different LCZ types were digitalized on
Google Earth and the red block is an example of the original sample. In step 2, pixels overlaid by the
original sample were labeled in a pixel-based process while image objects were labeled according to
the overlay ratio we set. Step 3 displays the final samples for a pixel-based method and object method.
The blue line and orange line represent the process of labeling objects and pixels respectively.

Since the polygon samples obtained at the digitalization stage cannot completely
coincide with the segmented image objects, it is hard to label objects correctly. Radoux
set different overlay ratio thresholds for labeling different land cover categories, fully
considering the differences among ground objects [42]. In addition, LCZ classification is
gradually regarded as a scene classification task, and many scholars attempted to utilize
surrounding information of samples to improve the robustness of the classifier [14,16,35].
For a similar purpose, diverse overlay ratios were set for each LCZ type. Taking 0.5 as a
basic threshold (too high is meaningless while too low may introduce wrong samples), we
adjusted the overlay ratio according to the complexity of an LCZ. Namely, simple scenarios
require a higher threshold while complex ones need a lower threshold. Table 5 displays
the settings we used. Finally, the stratified random sampling strategy was used to select
training and test samples.
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Table 5. Overlay ratio settings for LCZs.

LCZ Type Overlay Ratio Explanation

LCZ1 0.55 The composition of LCZ1 is complex, and the threshold
should not be too high.

LCZ2 0.65 The distribution of LCZ2 is relatively concentrated, and a
higher threshold can be set.

LCZ3 0.60 Same as LCZ2.

LCZ4 0.55
LCZ4 is easier to distinguish, but because it contains a

certain degree of vegetation, the threshold should not be
too high.

LCZ5 0.55 Same as LCZ4.

LCZ6 0.45 LCZ6 is similar to LCZ5, but constructions are usually
sparser, making a low threshold necessary.

LCZ8 0.60 Most of them belong to industrial areas with concentrated
distribution; thus, a higher threshold can be set.

LCZ9 0.45 The natural coverage is greater than that of artificial
buildings; thus, a low threshold is set.

LCZ10 0.65 Same as LCZ8.

LCZA 0.75 LCZA is widely distributed and easy to identify, setting a
high threshold.

LCZB 0.50 LCZB includes low vegetation and a few trees; thus, a low
threshold is needed for labeling.

LCZD 0.60
Mostly cultivated land and grassland, covering a large

area, including diverse vegetation, the threshold should
not be too high or too low.

LCZE 0.65 LCZE is easy to identify but is small in area. A higher
threshold is necessary.

LCZF 0.60 Same as LCZE.

LCZG 0.75 LCZG is widely distributed and easy to identify, setting a
high threshold.

3.6. Accuracy Assessment

Overall accuracy (OA), kappa coefficient (Kappa), user’s accuracy, producer’s accuracy
and F1-Score (F1) were used for accuracy assessment. Several accuracy metrics proposed
for LCZ mapping including OABU , OAN and WA were also taken into consideration [43].
The related formulas are shown in Table 6. For the object-based method, an area-based
accuracy assessment was performed counting for the correct proportions of classified
areas in segmented objects [44]. For the pixel-based method, all metrics were calculated
by counting the correct number of pixels. In the accuracy metrics we designed, user’s
accuracy and producer’s accuracy, which reflect commission error and omission error, were
performed with a normalized confusion matrix. F1-score can be regarded as a harmonic
average of model accuracy for better assessing per-class performance. OABU is the OA on
only the built types, and OAN is the OA of the built versus natural LCZ classes only. WA is
a metric that accounts for similarity and dissimilarity between classes.
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Table 6. Description of accuracy metrics. Nc
i is the area/number of class i correctly classified, w is

weight matrix introduced by Betchel [31].

Metric Formula

Overall Accuracy (OA) 1
N

n
∑

i=1
Nc

i

Built-up OA (OABU) 1
NBuilt

n
∑

i=1
Nc

Built,i

Natural OA (OAN) 1
NNatural

nBuilit

∑
i=1

Nc
Natural,i

Weighted Accuracy (WA) 1
N

nNature

∑
i=1

w× Nc
i

F1-Score (F1) 2
(

Precision × Recall
Precision + Recall

)
4. Results
4.1. Classifications of Object-Based Method in Multi-Scale Scenarios
4.1.1. Visual Interpretation Analysis of LCZ maps at Various Scales

To the best of our knowledge, no detailed assessment for object-based LCZ mapping
has been made in state-of-the-art research. To assess the optimal scale of the object-based
method, first, we conducted a visual interpretation analysis to evaluate LCZ maps in
multi-scale scenarios.

Figure 6 shows LCZ mapping results as scale range from 30 to 150. In general, all maps
show no obvious misclassifications because segmentation merges discrete pixels before
classification. Analyzing each map individually, the maps at scales 30 and 45 were finer, and
major roads were successfully classified into LCZEs. At scales 60–105, the fragmentation of
the classification was reduced but still maintained a high agreement with the LCZ maps
at scales 30 and 45. When the scale was greater than 105, the classification of urban areas
changed greatly. From observation, the maps with scales 30–105 performed better, as they
were relatively stable. At scales 120–150, the area of LCZ1-LCZ6 types increased, and the
area of LCZ8 decreased. Although Bechtel et al. pointed out that LCZ types may vary
with scale [13], our maps should not show much difference because they were trained with
the same samples. In order to further analyze the results of each scale, we carried out
precision analysis.

4.1.2. Accuracy Analysis in Multi-Scale Scenarios

Table 7 presents accuracy metrics for the object-based method with a scale ranging
from 30 to 150. All results in Table 7 represent the average value of 50 runs. In general, all
object-based classifications achieved over 85% accuracy for all accuracy metrics, especially
WA and OAN , which surpassed 98% at all scales. This could be explained that in the
object-based method, the classifier benefits from segmentation and avoids huge mistakes
while the resampling process leads to mixed pixels (e.g., The classifier cannot distinguish
objects between nature type and built type). As the segmentation scale became larger, all
metrics decreased except for WA and OAN , which both peaked at scale 90, indicating the
optimal scale required for natural and built types differs. The phenomenon of accuracy
decrease was mainly in OA, Kappa and OABU . As the scale surpassed 105, accuracy loss
was accelerated in OA, Kappa and OABU , which indicates that large scale is not suitable
for built-type classification.
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Table 7. Accuracy statistics from scale 30 to 150 with the average values from 50 runs.

Scale OA % Kappa % OABU % OAN % WA %

30 96.59 96.05 94.81 99.57 99.22
45 96.38 95.78 94.34 99.64 99.22
60 96.05 95.35 93.83 99.61 99.19
75 95.67 94.84 92.80 99.71 99.18
90 95.72 94.88 92.43 99.76 99.24

105 95.29 94.38 91.34 99.57 99.09
120 93.84 92.66 89.52 99.09 98.68
135 93.45 92.18 88.46 99.10 98.63
150 91.64 90.15 86.10 98.93 98.13
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In particular, Figure 7 shows the variation of OA and OABU to scale. OA was relatively
stable at scale 30–90, and the mean curve formed a platform. When the scale is greater
than 105, OA declines significantly, mainly at scales 105–120 and 135–150, where the slope
of the curve is much higher, indicating that a large scale is not suitable for LCZ mapping.
Considering that the object size increases as the scale increases, the decrease in accuracy
may be caused by the fact that important classification features, such as BH and SVF, are
blurred by the excessively large object. Although the variation curve of OABU is similar to
OA, the decline is more obvious than OA, indicating that the accuracy decrease is mainly
in the built types. Both figures show a trend of variance increasing with the increasing
scale, which can be attributed to two reasons: one is the feature uncertainty caused by
large objects, and the other is the insufficient generalization ability due to the reduction of
samples. In general, the mapping results are relatively stable at the scale of 30–90, indicating
that the object-based method can be capable of LCZ mapping despite under-segmentation
cases. In order to minimize the computational demands of mapping, we chose scale 90 as
the optimal scale.
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4.2. Comparison of Object-Based and Pixel-Based Methods
4.2.1. Overall Accuracy and Statistical Analysis Comparison

According to the results above, we chose scale 90 as our optimal parameter for the
object-based method and compared the object-based method with the pixel-based method
of 50 and 100 m. Table 8 displays related information of the three classification schemes,
showing huge computational costs in the pixel-based methods.

Table 8. Training and test samples of each scheme. The values in the table are the number of
objects/pixels.

Units to Be Classified Training Samples Test Samples

Object-based 28,071 560 949
Pixel-based 50 m 316,522 11,529 19,224

Pixel-based 100 m 79,476 3754 6267

Figure 8 displays the LCZ maps in three schemes. We can see that the object-based
method provides better boundaries for LCZs, improving the visualization of the LCZ
map. Table 9 displays the accuracy metrics of three classification schemes. All results were
obtained from 50 classification repeats. In general, all metrics revealed that the object-
based method performed better than the two pixel-based methods. In three classification
schemes, all WA and OAN surpassed 97%, much higher than other accuracy metrics. With
multi-source data, the pixel-based method performed better in 50 m instead of 100 m,
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which indicates that features in this study are able to characterize LCZs well at a fine scale.
OA and kappa of the object-based method were both about 2% higher than those in the
50 m pixel-based method, while OABU was only about 1% higher. Variances are displayed
in Table 9. Two pixel-based methods exhibit smaller accuracy variances compared with
the object-based method. We think that it can be attributed to more samples in the pixel-
based methods.
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Table 9. Accuracy assessment results for three schemes with the average values from 50 runs for
each scheme.

OA (σ2) % Kappa (σ2) % OABU (σ2) % OAN (σ2) % WA (σ2) %

Object-based 95.72 (5.04 × 10−5) 94.88 (7.2 × 10−5) 92.43 (1.7 × 10−4) 99.76 (2.31 × 10−5) 99.24 (1.86 × 10−6)

Pixel-based 50 m 93.71 (2.78 × 10−6) 92.95 (3.5 × 10−6) 91.60 (5.17 × 10−6) 98.60 (6.57 × 10−7) 98.23 (3.34 × 10−7)

Pixel-based 100 m 90.28 (7.57 × 10−6) 89.25 (9.28 × 10−6) 88.11 (1.68 × 10−5) 97.47 (3.49 × 10−6) 97.01 (1.39 × 10−6)

To prove that there is a significant difference in accuracies between the object-based
method and the pixel-based method, Student’s t-test was conducted to compare the means
of OA of three schemes. In our study, independent samples t-test was conducted. Further-
more, to ensure that our test was statistically effective, Shapiro–Wilk test was conducted to
test whether our data obey a normal distribution and all three sets of data passed the test
with p value > 0.05. Levene’s test is conducted to test the equality of variances. All tests are
finished with α = 0.05. Every set of data has 50 samples.

Table 10 displays the results of statistical tests. Levene’s tests both rejected null
hypotheses, which means the data from the object-based method have different variances
with two pairs of data from the pixel-based method under the condition α = 0.05. Under
the premise of uneven variances, t-tests were conducted, and the results showed significant
differences. Through statistical tests, we proved that the object-based method performed
better than two pixel-based methods.
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Table 10. Results of statistical tests. The test results are the comparison results with the object-
based method.

Levene’s Test Independent Samples t-Test

p Value Significant Difference p Value Significant Difference

OBIA vs. 100 m pixel <0.001 Yes <7 × 10−50 Yes

OBIA vs. 50 m pixel <0.001 Yes <4 × 10−26 Yes

4.2.2. Per-Class Accuracy Comparison between Schemes

User’s accuracy and producer’s accuracy were used to assess errors of commission and
omission. Each confusion matrix in Figure 9 was an accumulation of normalized confusion
matrices (50-runs classification) where the original elements have been divided by the row
total, ensuring that we can evaluate the object-based and the pixel-based method equally.

In two pixel-based methods, there was a significant similarity between the two matri-
ces, but the results from 50 m performed better. By adding various features, the classifier can
reach high accuracy in the high-resolution scenario. By comparing the object-based method
with the pixel-based method in 50 m, the results indicated some differences between the
two methods. The distribution of errors of commission and omission in the object-based
method was more concentrated, while more non-zero values were scattered in the matrix
in the 50 m scenario. In addition, the object-based method performed better in typical LCZ
types such as LCZ4, LCZF, which always appear with distinct visual features. However,
in some types such as LCZ2, LCZ5 and LCZ6, the object-based method performed worse.
This failure indicates that complex scenes are still challenging for the object-based method.
However, object-based results were trained with fewer samples, which limited the potential
of the method.

It is not objective to evaluate the performance of a certain LCZ type with user’s
accuracy or producer’s accuracy only. For instance, in Figure 8, all methods achieved a
high producer’s accuracy with LCZD but with a lower user’s accuracy. Thus, for F1-Score,
a comprehensive metric was selected to describe the performance of each LCZ type.

Figure 10 displays the performance of each LCZ type in the three schemes. Comparing
two pixel-based schemes, the accuracy of each LCZ type increases, which indicates that
adding multi-source features can help the classifier learn better in high-resolution cases.
The results in the object-based method performed quite differently. Compared with the
pixel-based method in 50 m, the variances of most LCZ types of the object-based method are
larger. This is because the object-based method was trained with fewer samples. However,
the object-based method performed much better on nature types and competitive results
in built types despite LCZ2, LCZ5 and LCZ6. Considering that there is a much smaller
number of samples in the object-based method, the object-based method showed great
potential in LCZ mapping. In addition, according to our analysis above, the accuracy of
built types can be improved at a fine scale.
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Figure 10. F1-score boxplots of the three classification schemes. (a–c) are the F1-scores of object-
based, pixel-based in 50 m, pixel-based in 100 m respectively. The diamonds represent outliers. The
horizontal line and the square in the box represent the median and mean of F1-scores for a set of data
respectively. The number next to the box is the mean of F1-scores.
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4.3. Feature Importance Analysis Based on the Object-Based LCZ Classification

Random forest has been proven to be a classifier less affected by sample imbalance [45]
and has more obvious advantages in improving mapping results with input features
compared with deep learning methods [46]. Therefore, feature analysis based on random
forest is meaningful. CFS is a relatively stable method in feature selection and it can
maintain the effect of a classifier to a large extent [44]. In this study, CFS was used for
feature selection, and the frequency of feature selection was used as a metric to assess
feature importance.

Figure 11 shows the results of feature selection from scales 30 to 150 with 50 clas-
sification repeats at each scale. It can be seen from Figure 10 that the features selected
by the object-based method mainly focus on four aspects: first, the urban morphological
parameters related to LCZ definition: SVF, BSF, PSF, land Use, BH; second, the spectral
indices that can represent characteristics of buildings, vegetation or water: NDBI, NBAI,
MNDWI, BRBA; third, the spectral reflectance (including variation) standard deviation
layers and convolution layers; finally, texture features.
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Figure 11. Results of feature selection from scales 30 to 150 with 50 runs at each scale. All results were
obtained through CFS. “1”, “2”, “3”, “4” represent blue, green, red, nir, respectively. “Con” represents
the convolutional layer, “Std” represents the standard deviation layer, and the abbreviations for the
four seasons are “Spr”, “Sum”, “Aut”, “Win”. Features with a total frequency of fewer than 20 times
were not considered.

Urban morphological parameters have high selectivity at each scale, which proves
the importance of urban morphological parameters for LCZ classification. The spectral
indices selected by CFS were mainly the bands containing short-wave infrared information,
such as NDBI, NBAI and BRBA, indicating that short-wave infrared information is also
important for LCZ mapping. NDVI did not stand out from many features, which is
inconsistent with the conclusion of Qiu [19]. The reason is that PSF is similar to NDVI
while PSF can better depict regional permeable surface information. From the selection of
spectral features, we can see the uniqueness of LCZ classification. Feature selection focused
on convolutional features (including zonal information) and standard deviation features,
indicating that LCZ classification pays more attention to the spectral information of a local
area rather than to a single pixel. As the scale increases, the selection of convolutional
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features gradually disperses, indicating that with the increase in mixed objects, the spectral
features of objects become more chaotic and meaningless. Meanwhile, the selection of
texture features gradually highlights as the scale increases, indicating that as the object
grows, the texture features inside the object become more obvious and no longer appear
redundant. In addition, features of each season were selected, indicating that time series
features help classification.

5. Discussion

Currently, LCZ mapping is mostly divided into two streams: RS based and GIS based.
LCZ mapping based on the integration of the two methods is considered to have great
potential, and a few studies have begun to focus on the integration of the two [35]. The
methods used in this study can be regarded as an integration of the two mapping methods,
which further proves the great potential of the integrated framework.

From the perspective of the mapping accuracy, mapping results of small-scale/high-
resolution were still higher than all other cases, which is inconsistent with some studies
showing that mapping with moderate scale/resolution is better [13,16]. This is mainly
because all features adopted in this study have regional information to help mapping
reflect the mean or standard deviation value of image objects. Verdonck obtained a similar
conclusion to ours and obtained the optimal mapping result by utilizing neighborhood
information features [15]. However, an LCZ represents a region spanning at least hundreds
of meters, which means that mapping at a too small scale will cause the result to deviate
from the application purpose. Thus, it is not encouraged to map at a too small scale. In
addition, the amount of computation brought by the small scale is huge, which is more
obvious in the pixel-based method.

According to accuracy results and statistical analysis, object-based methods show
advantages and are stable at multiple scales, which is because the boundaries offered the
by object-based method reduce confusion among LCZs. In the pixel-based method, it is
difficult for regular grids to correctly divide LCZ boundaries, making classification difficult.
Object-based methods are not beneficial to all LCZ types. For example, segmentation
makes labeling and classification of LCZ5 types more difficult. Segmentation makes various
features separated, which is an urgent problem to be solved when applying the object-based
method to LCZ mapping. Lehner and Blaschke proposed the use of object-based methods
for urban structure type mapping [47]. If it is applied to LCZ mapping, the potential of
object-based LCZ mapping may be further explored.

In feature analysis, the maximum difference, convolution features, NDBI, BRBA,
BH, BSF, PSF, and land use were frequently selected, indicating that the above features
are extremely important in LCZ mapping. Among the features of remote sensing data,
convolution features that contain neighborhood information and the two spectral indices
that contain short-wave infrared information performed well. These features have also
been adopted in previous studies and are proven to be effective [20]. Mapping based on
GIS data has always been considered as a method of high-precision LCZ mapping [12]; we
also demonstrate the validity of GIS data.

The performance of the machine learning classifier is closely related to the number
of training samples [44]. Considering that the number of training samples will decrease
as the scale parameter increases, the mapping accuracies of multiple scales were similar
to the object-based methods. In the case of similar mapping accuracy, the choice of scale
should be determined by the application conditions. Misclassification is acceptable in some
cases because similar LCZ types represent similar temperature conditions. However, if
the 17 LCZ types cannot meet application requirements and if the mapping scale is small,
an LCZ subclass can be considered to be added. Kotharkar solved the confusing LCZ
types problem by employing 21 LCZ types [48]. Perera also pointed out that using LCZ
subclasses is necessary for further analysis of urban development status [49].
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6. Conclusions

This study describes an attempt to compare the object-based method and the pixel-
based method for LCZ mapping with multi-source data, aiming to determine a more
advantageous mapping paradigm. In addition, four types of features were derived for
ensuring mapping quality: (1) composite seasonal satellite images; (2) diverse spectral
indices; (3) zonal information; (4) urban morphological information.

In multiple scale cases, the object-based method performed stable unless in under-
segmentation cases. When the scale was less than 90, the OA and OABU of all maps
exceeded 95.5% and 92%, respectively, and no significant difference behaved in visual
performance. When the scale was larger than 105, the object-based method showed an
obvious performance decline, especially in built types, which indicated that multi-source
data cannot provide sufficient urban information with under-segmentation.

Comparing the object-based method with a pixel-based method in 50 and 100 m, the
object-based method showed the best performance and statistical difference from pixel-
based methods (p < 0.05). OA, OABU , OAN and WA of the object-based method increased
by about 2%, 1%, 1% and 1%, respectively, compared with the 50 m case (the better one)
while 10 times the amount of data was processed in the pixel-based method. In per-class
analysis, the object-based method showed a significant advantage in the natural types and
competitive performance in built types, while partial LCZ types such as LCZ2, LCZ5, and
LCZ6 performed worse than the pixel-based method in 50 m. However, we found that
built type accuracy can be improved with finer segmentation.

In feature analysis, CFS was selected to evaluate the importance of features, and
frequency characterized feature importance. For urban morphological information, BH,
SVF, BSF, PSF and land use exhibited an extremely high frequency of selection at all
scales. Among other features, convolutional layers, BRBA, NBDI, NBAI, MNDWI of certain
seasons performed well, while original image bands were hardly selected, indicating that
derived spectral features can better characterize differences among LCZs.

In our study, the object-based method can achieve equivalent mapping results with less
computation cost compared with the pixel-based method, making it more suitable for large-
scale mapping. In the future, the object-based method will become more advantageous
when the segmentation results of urban regions can be improved.
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