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Abstract: The weighted mean temperature (Tm) is crucial for converting zenith wet delay to pre-
cipitable water vapor in global navigation satellite system meteorology. Mainstream Tm models
have the shortcomings of poor universality and severe local accuracy loss, and they cannot reflect
the nonlinear relationship between Tm and meteorological/spatiotemporal factors. Artificial neural
network methods can effectively solve these problems. This study combines the advantages of the
models that need in situ meteorological parameters and the empirical models to propose Tm hybrid
models based on artificial neural network methods. The verification results showed that, compared
with the Bevis, GPT3, and HGPT models, the root mean square errors (RMSEs) of the new three
hybrid models were reduced by 35.3%/32.0%/31.6%, 40.8%/37.8%/37.4%, and 39.5%/36.4%/36.0%,
respectively. The consistency of the new three hybrid models was more stable than the Bevis, GPT3,
and HGPT models in terms of space and time. In addition, the three models occupy 99.6% less
computer storage space than the GPT3 model, and the number of parameters was reduced by 99.2%.
To better evaluate the improvement of hybrid models Tm in the precipitable water vapor (PWV)
retrieval, the PWVs calculated using the radiosonde Tm and zenith wet delay (ZWD) were used
as the reference. The RMSE of PWV derived from the best hybrid model’s Tm and the radiosonde
ZWD meets the demand for meteorological research and is improved by 33.9%, 36.4%, and 37.0%
compared with that of Bevis, GPT3, and HGPT models, respectively. The hypothesis testing results
further verified that these improvements are significant. Therefore, these new models can be used
for high-precision Tm estimation in China, especially in Global Navigation Satellite System (GNSS)
receivers without ample storage space.

Keywords: weighted mean temperature; global navigation satellite system meteorology; artificial
neural network; empirical model; hybrid model

1. Introduction

Water vapor is an essential component of the Earth’s atmosphere and is crucial for
global atmospheric radiation, water cycle, and energy balance [1,2]. Study on water vapor’s
spatial and temporal distribution is quite important in weather and climate forecasting.
The GNSS signals propagating through the troposphere are delayed and bent due to the
nonvacuum conditions, known as tropospheric delays [3–5]. The tropospheric delay is
the zenith total delay (ZTD) multiplied by the tropospheric mapping function, and ZTD
consists of zenith hydrostatic delay and zenith wet delay. The GNSS zenith wet delay can
be converted into precipitable water vapor using Weighted Mean Temperature (Tm) [6].
Therefore, obtaining a high-precision Tm is crucial for improving the accuracy of GNSS
retrieving precipitable water vapor [6–12]. Previous studies have shown that GNSS-derived
PWV is accurate and reliable, with RMSE of 1–3 mm [6,13].

An accurate way to obtain high-precision Tm is to integrate the vertical profiles of
temperature and humidity. However, these profiles are often challenging to obtain in prac-
tical work, and thus currently the Tm models are usually used to calculate the Tm. These
models can be divided into two categories. The first category is the model that needs in situ
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meteorological parameters. Bevis et al. [6] analyzed the correlation between the surface
temperature (Ts) and Tm of radiosonde data in North America. They found an excellent
linear correlation between Tm and Ts, thereby proposing a linear regression formula of Tm
(Tm = a + bTs). Since the model coefficients have significant seasonal and local characteris-
tics, to obtain high-precision Tm values in other regions, the coefficients of the Bevis formula
need to be re-estimated from local radiosonde data [14,15]. Therefore, many scholars have
established regional models for different areas [16–18]. These models have high accuracy;
however, they are only applicable to certain areas and cannot reflect the delicate nonlinear
relationship between Tm and meteorological factors. Another model [19,20] is an empirical
model driven by spatiotemporal information, which does without in situ meteorological
parameters and can generate empirical Tm for large area or even global locations. Leandro
et al. [21] used relative humidity to replace the water vapor pressure in the parameter table
of the UNB3 model and established the UNB3m model. The UNB3m model considers the
annual cyclic variation of meteorological parameters, has a resolution of 15 latitudes, and
can be used to calculate Tm. Yao et al. [22] used the GGOS grid Tm with a 6 h resolution
to analyze the daily variation characteristics of Tm, and they constructed a new global Tm
model (GTm-III) that considers the diurnal variation of Tm. Subsequently, Böhm et al. [19]
established the GPT2w model, which can provide vital tropospheric parameters such as
Tm and water vapor pressure with a horizontal resolution of up to 1◦ × 1◦. Landskron
et al. [23] proposed the GPT3 model, which incorporated meteorological parameter data
directly from the GPT2w model; hence, Tm in the GPT3 model is consistent with GPT2w.
Sun et al. [24] used ERA5 data to establish a new model integrating tropospheric delay
correction for GNSS positioning and Tm calculation for GNSS meteorology. The model has
a spatial resolution of 0.5◦ × 0.5◦ and a temporal resolution of 1 h. Mateus et al. [25] devel-
oped an hourly global pressure and temperature (HGPT) model based on the full spatial
and temporal resolution of the new ERA5 reanalysis. The HGPT model can provide hourly
surface pressure, surface air temperature, zenith hydrostatic delay, and weighted average
temperature information with a spatial resolution of 0.25◦ × 0.25◦. As the spatiotemporal
factors considered by the empirical model increase, the models’ overall accuracy gradually
improves, but it also increases the number of model parameters. In addition, scholars
have also developed many similar empirical models [20,26,27]. Although these empirical
models are driven by spatiotemporal information and convenient for use and have strong
universality, their accuracy is inferior to the model that needs in situ meteorological param-
eters mentioned above, especially in areas with relatively sparse weather stations and large
terrain fluctuations. Still, it is difficult to reflect the delicate nonlinear relationship between
Tm and spatiotemporal factors; therefore, the accuracy of the Tm model needs to be further
improved. Artificial neural network methods have been widely used in various industries
due to their nonlinear fitting ability [28–31].

In this study, we hope to establish several Tm models with higher accuracy than the ap-
proved Tm models, such as Bevis, GPT3, and HGPT, through artificial neural networks, and
these models require fewer parameters. Consequently, the PWV converted by the Tm from
the new models can meet the requirements of meteorological research. To achieve this goal,
we used artificial neural network methods to fit the relationship between high-precision
radiosonde Tm, empirical Tm (provided by the UNB3m model with few parameters), me-
teorological parameters, and spatiotemporal factors, and then built high-precision Tm
models.

2. Study Area and Methods for Calculating Tm

2.1. Study Area

The research area spans 70◦E–135◦E and 15◦N–55◦N, which covers the land of China
and some surrounding countries and regions (see Figure 1). In this study, we accessed
radiosonde data from the Integrated Global Radiosonde Archive (IGRA). Data from 150
radiosonde stations in the study area were obtained for the experiments. The distribution
of the stations is indicated by the red triangles in Figure 1.
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2.2. Method of Calculating Tm

2.2.1. Calculation of Tm Based on Radiosonde Data

Radiosonde data are important meteorological observation data. The IGRA has pro-
vided high-quality sounding observations from more than 1500 radiosondes and sounding
balloons worldwide since the 1960s and launches radiosonde twice daily at 00:00 and
12:00 UTC. This study used data from 150 radiosonde stations (2007–2016) to calculate
Tm according to the following formula [6]. It is worth mentioning that during long-term
continuous observations, the radiosonde data may have discontinuities and outliers. Since
these values will affect the results of the new model establishment, this study used the
interquartile range (IQR) method to remove outliers in the long-term series of radiosonde
data [32].

Tm =

∫
(e/T)dH∫
(e/T2)dH

(1)

where T is the absolute temperature (K). e is the water vapor pressure (hPa), which is
calculated from the relative humidity (RH) using Equations (2) and (3) [6,10]:

es = 6.11× 10
(

7.5×Td
237.3+Td

)
(2)

e = RH·es/100 (3)

where es is the saturated vapor pressure (hPa) and Td is the dew point temperature (◦C).

2.2.2. Calculating Tm Based on the UNB3m Model

The UNB3m model is based on a look-up table with annual mean and amplitude
for temperature, pressure, temperature lapse rate, and water vapor pressure height factor.
These parameters are calculated for a particular latitude and day of year using a cosine
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function for the annual variation and a linear interpolation for latitude. The annual average
value of the meteorological parameters is calculated using the following formula:

AVGϕ =


AVG15, ϕ ≤ 15

◦

AVG75, ϕ ≥ 75
◦

AVGi +
(AVGi+1−AVGi)

15 (ϕ− LATi), 15
◦
< ϕ < 75

◦

(4)

where ϕ is the latitude of the target point (◦), AVGϕ is the annual mean value, i is the
latitude band closest to the target location that has a smaller value, and LATi is the value of
the corresponding latitude band. The formula for calculating the annual cycle amplitude is
as follows:

AMPϕ =


AMP15, ϕ ≤ 15

◦

AMP75, ϕ ≥ 75
◦

AMPi +
(AMPi+1−AMPi)

15 (ϕ− LATi), 15
◦
< ϕ < 75

◦

(5)

where AMPϕ denotes the annual cycle amplitude. The meteorological parameter values at
a specified time at the target point can be calculated by entering the mean yearly value and
annual periodic amplitude value of the target parameter into the trigonometric function:

Xϕ,doy = AVGϕ − AMPϕcos
(
(doy− doy0)

2π

365.25

)
(6)

where Xϕ,doy is the annual periodic amplitude value, doy is the day of the year, and doy0
specifies the initial phase of the regular change, which is 28 in the Northern Hemisphere
and 211 in the Southern Hemisphere.

The UNB3m model can calculate Tm according to the following formula:

Tm = (T0 − βH)

(
1− βR

gm(λ + 1)

)
(7)

where T0, β, and λ are the meteorological parameters calculated according to procedures
(4)–(6), which are temperature (K), temperature lapse rate (K/m), and water vapor pressure
height factor, respectively; H is the orthometric height (m); R is the gas constant for dry air
(287.054 J/kg/K); and gm is the acceleration of gravity at the atmospheric column centroid
(m/s2), which can be expressed as

gm = 9.784
(

1− 2.66× 10−3cos(2ϕ)− 2.8× 10−7H
)

(8)

The above model has few parameters and is convenient and straightforward to use;
however, the UNB3m model only considers the variation of Tm with latitude, and his grid
is too sparse, so the accuracy is limited [33].

2.2.3. Calculating Tm Based on the GPT3 Model

The global pressure and temperature 3 (GPT3) model proposed by Landskron and
Bohm is the latest version of the GPT series [23]. The meteorological parameters of the
GPT3 model are the same as that of GPT2w with admirable performance. It is one of the
most widely used models [10,31]. GPT3 characterizes Tm seasonal variations based on the
following Equation (9) and takes into account their geographical variations by 1◦ × 1◦ or
5◦ × 5◦ grids.

r(t) = A0 + A1cos
(

2πt
365.25

)
+ B1sin

2πt
365.25

+ A2cos
4πt

365.25
+ B2sin

4πt
365.25

(9)
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where r(t) is the meteorological parameters to be estimated; t denotes the day of year;
A0 represents its mean value; and (A1, B1) and (A2, B2) are their annual and semiannual
amplitudes, respectively.

3. Construction of Hybrid Model

In this study, we use Backpropagation neural network (BPNN), Random Forest (RF),
and Generalized Regression Neural Network (GRNN) in the neural network toolbox of
MATLAB software to optimize UNB3m Tm by using high-precision radiosonde Tm data,
then construct three hybrid models.

3.1. Three Artificial Neural Network Methods
3.1.1. BPNN

The BPNN, first proposed by Rumelhart et al. [34], is one of the most widely used
ANNs. The network adopts the gradient descent method to minimize the differences
between the network output and target output [35].

The BPNN consists of an input layer, a hidden layer, and an output layer. The number
of neurons in the input layer of the BPNN is equal to the number of input variables, and the
number of neurons in the output layer is equal to the number of output variables. Almost
every bounded continuous function can be approximated with an arbitrarily minor error
using a neural network with a single hidden layer [36]. Therefore, in this study, we chose
the number of hidden layers as a single layer and determined the number of neurons in the
hidden layer in Section 3.3.

Because the empirical model optimized in this study is the UNB3m model, UNB3m
Tm must be used as an essential input for the artificial neural network model. UNB3m
Tm is established considering the variations in the latitude, height, and day of year, so
there must be a strong correlation between UNB3m Tm and latitude, height, and day of
year. Simultaneously, some studies [4,19,24] found that there exist long-term interannual
variations and diurnal variations in Tm, so we take year, hour of day (hod), latitude (lat),
height, and day of year (doy) as input variables.

It is well known that the surface temperature (Ts) and water vapor pressure (es)
have strong relationships with the observation Tm [6,11], and the Tm models based on
in situ Ts/es observations can reach higher precision than empirical models. Thus, the
Ts/es were employed as inputs for the new model. Li et al. [5] suggested that UNB3m
often causes great prediction tropospheric delay biases in some areas because it is only
based on latitude–label meteorological parameters that are also needed for calculating Tm.
Moreover, many Tm models [11,19,25], considering the longitude variations, have excellent
performance. Therefore, we also took longitude as an input variable. It should be noted
that the widespread distribution of surface meteorological observation facilities, Ts and
es, can be obtained in real-time in most regions [37]. Therefore, it is not difficult to obtain
the temperature and water vapor pressure to support the operation of the new model, and
establishing the Tm model based on meteorological parameters has a good potential for
real-time application. Table 1 shows all the input parameters and the output parameter. In
addition, when training the model, the radiosonde-derived Tm was loaded into the output
layer, and the output layer outputs the corrected Tm value when used. The structure of the
BPNN Tm model is shown in Figure 2.

Table 1. Main features of the hybrid models.

Input parameters

surface temperature (Ts), water vapor pressure
(es), year, day of year (doy), and hour of day

(hod), latitude, longitude, height, and
UNB3m-Tm

Output parameter Tm
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The process of training the BPNN includes forward and backpropagation. Each neuron
in each layer of the BPNN model is directly connected to the neurons in the next layer and
had an activation function. This study used the hyperbolic tangent function to activate the
input and hidden layer neurons. A linear function was used to activate the neurons of the
hidden and output layers. The equations are represented as:

g(x) =
2

1 + exp(−2x)
− 1 (10)

f (x) = x (11)

Then the final output of BPNN can be expressed as:

Y(X) = f (W3,2·g(W2,1·X + b1) + b2) (12)

where W2,1 and W3,2 represent the weight matrix, b1 and b2 represent the bias matrix. These
four matrices store the coefficients of the BPNN model. X and Y are the input and output
variables, respectively.

3.1.2. RF

Breiman and Cutler first proposed a random forest in 2001 [38]. RF is an ensemble
learning method used for classification and regression. RF works by constructing many
decision trees during training and then outputting the mode of the classes or the average
prediction of the individual trees [38]. RF has the advantages of fast training speed and
handling complex nonlinear relationships between the input and output variables. The
structure of the RF Tm model is shown in Figure 3. The input data included time (year, day
of year, and hour of day), location (latitude, longitude, and height), es, Ts, and UNB3m-Tm.
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In addition, the output data were radiosonde-derived Tm or the corrected Tm. Because
overfitting can occur with a single decision tree, RF overcomes this problem by introducing
randomness into each decision tree and averaging the results. The result of the model
was the mean of the consequences of all constructed decisions, as shown in the following
formula:

Y(X) =
1
B

B

∑
b=1

Tb(X) (13)

where X represents the input variable, Y is the final RF output value, Tb denotes the output
value of each decision tree, and B represents the number of decision trees. The number
of decision trees directly affected the accuracy of the RF model. Because the number of
decision trees must be optimally selected, the enumeration method is generally used. The
specific number value is determined in Section 3.3.
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3.1.3. GRNN

Specht first proposed GRNN in 1991 [39]. The GRNN neural network is a radial basis
function network based on mathematical statistics. The GRNN has a strong nonlinear
mapping ability and learning speed, and the network can also handle unstable data.
The GRNN consists of four layers: the input, pattern, summation, and output layers.
The number of neurons in the input layer corresponds to the number of input variables;
nine neurons correspond to the time information (year, day of year, and hour of day),
location information (latitude, longitude, and height), es, Ts and UNB3m-Tm. The number
of neurons in the output layer corresponds to the number of output variables. In this
experiment, the output layer had only one neuron corresponding to the radiosonde Tm or
the model-corrected Tm. The summation layer includes two types of summation neurons,
which perform arithmetic summation and weighted summation of the output values of the
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pattern layer. The number of neurons in the pattern layer corresponds to the number of
training samples, and the transmission of neurons can be expressed as:

pi = exp

{
− (X− Xi)

T(X− Xi)

2σ2

}
, i = 1, 2, . . . , n (14)

where pi is the output of the i neuron in the pattern layer, represented by the exponential
function of the square of the Euclidean distance between the input variable Xi (the i-th
learning sample) and its corresponding test sample. σ represents the spread parameter,
the only unknown parameter in the network, and needs to be set first. It is necessary to
determine the optimal spread parameter as a σ, which, when too large, may make the
estimation very smooth or, when too small, may result in a value too close to the sample
value [39]. The specific value is defined in Section 3.3. The structure of the GRNN Tm
model is shown in Figure 4.
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3.2. Evaluation Indicators Adopted by the Model

This experiment adopted a 10-fold cross-validation method to evaluate the different
artificial neural network models [40]. The basic principle of the 10-fold cross-validation
technique is to randomly split the dataset into 10 groups and then select 9 groups as
the training set and 1 group as the test set. This process was repeated 10 times, so each
part of the dataset was tested once, trained 9 times, and all residuals were computed
and saved. Note that it can ensure that more data is involved in the training so that the
results are closer to the accuracy of the final model and can also prevent overfitting. We
calculated five statistical indicators based on these residuals to evaluate model performance.
These indicators are the bias, mean absolute error (MAE), standard deviation (STD), root
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mean square error (RMSE), and Pearson correlation coefficient (R). The formulas of these
indicators are as follows:

Bias =
1
N

N

∑
i=1

(
Thm

k,i − Trs
k,i

)
(15)

MAE =
1
N

N

∑
i=1

∣∣∣Thm
k,i − Trs

k,i

∣∣∣ (16)

STD =

√√√√ 1
N

N

∑
i=1

(
Thm

k,i − Trs
k,i − Bias

)2
(17)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Thm

k,i − Trs
k,i

)2
(18)

R =
∑N

i=1

(
Thm

k,i − Thm
k,i

)(
Trs

k,i − Trs
k,i

)
√

∑N
i=1

(
Thm

k,i − Thm
k,i

)2
∑N

i=1

(
Trs

k,i − Trs
k,i

)2
(19)

where N is the number of samples, Thm
k,i is the Tm value output by the hybrid models, Trs

k,i is

the Tm values derived from the radiosonde data, and Thm
k,i , Trs

k,i are the mean values of Thm
k,i

and Trs
k,i, respectively.

After verifying the accuracy and reliability of the hybrid models using 10-fold cross-
validation, we fitted all samples to generate the final model for subsequent Tm prediction.
When users want to use the hybrid models to calculate Tm, they only need to collect Ts and
es and then input them with the time and location information into the models’ code.

3.3. Parameter Determination

In this experiment, the number of neurons in the BPNN hidden layer, the number of RF
decision trees, and the GRNN spread value are the parameters that need to be set first. We
followed Sun et al. [41] to set up the crucial parameters. For the BPNN, the optimal number
of neurons in the hidden layer can be selected in the range of 2

√
n + µ to 2n + 1 (n is the

number of neurons in the input layer, µ is the number of neurons in the output layer) [42,43];
therefore, the experiment used a 10-fold cross-validation technique to test the BPNN models
with 7 to 19 hidden layer neurons. For RF, we set the number of decision trees between 5
and 95 with a step size of 10 and then used 10-fold cross-validation to test the performance
of RF models with different numbers of decision trees. For GRNN, the spread value used is
usually in the range of 0.01 to 1 [28]. After many tests, we found that the optimal spread
value was between 0 and 0.1; therefore, this experiment narrowed the selection range from
0.01 to 0.1, with a step size of 0.01. Similarly, we used a 10-fold cross-validation technique
to test the performance of GRNN models with different spread values. Finally, the root
mean square errors (RMSE) calculated from the cross-validation residuals were used to
evaluate the performance of the other models with different parameter settings. The results
are shown in Figure 5.
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Figure 5. Statistical diagram of RMSE of different models with different parameter settings based on
a 10-fold cross-validation technique.

In the BPNN model, the RMSE gradually decreased as the number of neurons in the
hidden layer increased. This decline stopped when the number of neurons reaches 18.
Therefore, we can set 18 or 19 as the number of hidden layer neurons. When the neuron
number changed from 18 to 19, we found that the RMSE was equal, but a very long training
time was required. Therefore, we set the number of neurons in the hidden layer to 18. In the
RF model, when the number of decision trees increased from 5 to 55, the RMSE decreased
significantly. But this decrease closed out after the number of decision trees exceeded 55.
Thus, we set the number of decision trees to 55 to reduce the complexity of the model. In
the GRNN model, when the spread value increased from 0 to 0.06, the RMSE gradually
decreased; however, after the spread value exceeded 0.06, the RMSE gradually increased.
Therefore, we finally chose 0.06 as the spread value.

4. Performance Analyses of Hybrid Models

In this study, the three hybrid models constructed using the three artificial neural
network methods of BPNN, RF, and GRNN are named hybrid model 1, hybrid model 2,
and hybrid model 3 (referred to as hm1, hm2, and hm3, respectively). The Bevis model
(Tm = 70.2 + 0.72Ts) needs in situ meteorological parameters as input and is commonly
used internationally. The GPT3 model is an empirical model that is widely used, and it is
a grid model that also can reflect the characteristics of Tm in a certain area. Its accuracy
performance in China can be used to represent mainstream empirical models. The HGPT
model [25] is a recently released Tm model with open source code. Therefore, the Bevis,
GPT3 (1◦ × 1◦), and HGPT models were chosen to compare with the new models.

4.1. Overall Performance

After determining the parameters of the three artificial neural network methods,
the experiment selected 936,034 samples from 2007 to 2016 for training and obtained the
corresponding models and results. The cross-validation and model fitting accuracy results
are listed in Table 2. Note that since the 10-fold validation uses all the data to verify
the model’s accuracy, the validation results here span from 2007 to 2016. Scatter plots
between the Tm values obtained from different models and the Tm values derived from the
radiosonde data are shown in Figures 6 and 7. In Figures 6 and 7, the color indicates data
density.
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Table 2. Relative radiosonde data, the accuracy evaluation results of different models.

Model Hyperparameter Bias (K) MAE (K) STD (K) RMSE (K) R

UNB3m - - −1.97 8.41 10.78 10.955 0.540

Hm1
Cross-V 18 0.00 2.28 2.95 2.954 0.969
Fitting 18 0.00 2.28 2.95 2.953 0.969

Hm2
Cross-V 55 0.00 2.07 2.70 2.703 0.974
Fitting 55 0.00 1.62 2.10 2.096 0.984

Hm3
Cross-V 0.06 0.02 2.09 2.76 2.763 0.973
Fitting 0.06 0.01 1.59 2.10 2.101 0.984

Bevis - - 0.80 3.53 4.49 4.563 0.931
GPT3 - - −0.48 3.35 4.31 4.340 0.932
HGPT - - 0.00 3.33 4.32 4.317 0.932
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due to there being no data in that range.).

Table 2 shows that the biases of the UNB3m model, the Bevis model, and the GPT3
model are −1.97 K, 0.80 K, and −0.48 K, respectively. The results indicate that there are
systematic biases in the three models. However, the biases of the three hybrid models are all
close to zero, which suggests that the artificial neural network method successfully corrects
systematic biases. Because the artificial neural network methods successfully removed
systematic biases, the STDs and RMSEs were nearly equal. After being corrected by the
three hybrid models, the RMSEs are reduced to 2.954 K, 2.703 K, and 2.763 K, which are
73.1%, 75.3%, and 74.8% lower than the UNB3m model, respectively. By using the analysis
of variance (ANOVA), it is further demonstrated that the Tm of the three hybrid models
is not significantly different from the radiosonde Tm (p > 0.05). Meanwhile, relative to
the Bevis model, the RMSEs were reduced by 35.3%, 40.8%, and 39.5%; for the GPT3
model, the RMSEs were reduced by 32.0%, 37.8%, and 36.4%; for the HGPT model, the
RMSEs were reduced by 31.6%, 37.4%, and 36.0% respectively. After improving the three
artificial neural network methods, the correlation coefficient R increased from 0.540 to
0.969, 0.974, and 0.973. The above analysis shows that all three artificial neural network
methods significantly improved the accuracy of the UNB3m model in calculating Tm. These
improvements may be accounted for by the strong ability of artificial neural network
methods to fit complex nonlinear relationships. (The discussion will be described in the
following paragraph.) In addition, when comparing the three hybrid models, we can see
that the accuracy validation result of hm2 is smaller than those of hm1 and hm3. Therefore,
hm2 exhibited a more stable performance.

To illustrate whether the improvement in accuracy of the three hybrid models comes
from the data source or the method, we developed a linear model named LS model, which
has the same input parameters as the three hybrid models using the least-squares method.
The LS model is based on the same modeling data set as the hybrid model, and the specific
formula is as follows:

Tm = a1 + a2·Ts + a3·ea4
s + a5·h + a6·lon + a7·lat + a8·cos

(
DOY−a9

365.25 2π
)
+ a10·cos

(
DOY−a11

365.25 4π
)

+a12·cos
(

HOD−a13
24 2π

)
+ a14·cos

(
HOD−a15

24 4π
) (20)
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Then, the accuracy of the hybrid models, LS model, Bevis model, GPT3 model, and
HGPT model are compared. The results are shown in Table 3.

Table 3. The overall accuracy of different models.

Model RMSE (K)

Hm1 2.954
Hm2 2.703
Hm3 2.763

LS model 3.340
Bevis 4.563
GPT3 4.340
HGPT 4.317

Table 3 shows that the RMSE of the LS model has been improved to different degrees
when compared with that of the Bevis, GPT3, and HGPT models, which should be due
to the use of the Ts, es, and Tm data in the study area to fit the relationship between them.
Using the same data source, the RMSE of the three hybrid models increased by 13.2%,
23.7%, and 21.0% compared with the LS model. This improvement should be due to the
method that can fit the nonlinear relationship between different parameters.

4.2. Spatiotemporal Performance of the Hybrid Models

In this section, we calculate the RMSEs of 150 radiosonde stations to analyze the spatial
performance of the hybrid models. Figure 8 shows the specific values and distributions.
Figure 9 shows the frequencies of the RMSEs for each interval. The numbers over the bars
represent the number of stations within the corresponding RMSE range. Figures 8 and 9
also include the RMSEs of the UNB3m, Bevis, GPT3, and HGPT models at each radiosonde
station.
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As shown in Figure 8, regardless of the model used, low latitudes show a smaller
RMSE and high latitudes show a larger RMSE, which is consistent with the results of Sun
et al. [24]. This phenomenon occurs because the seasonal variation at high latitudes is more
substantial than that at low latitudes, which increases the difficulty of Tm modeling and
eventually leads to larger RMSEs at high latitudes. At the same time, it can be seen in
the figure that the RMSEs of the UNB3m model exhibit apparent differences in different
latitude ranges. In contrast, the three hybrid models are uniformly distributed and stable.
The RMSEs of the Bevis, GPT3, and HGPT models are much larger than those of the three
hybrid models. Therefore, the method proposed in this study improves the accuracy of the
model. Further, it makes the model accuracy more evenly distributed in space, owing to
the introduction of geographic information into the model input layer.

Figure 9 shows that the RMSEs of the three hybrid models are much smaller than the
UNB3m model. Simultaneously, compared with the RMSEs of the Bevis model, the GPT3
model, and the HGPT model, the hybrid models also have a significant improvement. The
number of sites with an RMSE value smaller than 3.0 K is 0 for the UNB3m model, 74 for
the hybrid model 1, 101 for the hybrid model 2, 89 for the hybrid model 3, 22 for the Bevis
model, 20 for the GPT3 model, and 21 for the HGPT model. The above results show that
the method proposed in this study significantly improves the model’s accuracy, and hm2
performs best in all models.

Because latitude is an essential factor affecting Tm [6], we divided the study area into
eight latitude bands with intervals of 5◦ to compare and analyze the performance of each
model in different latitude bands. The results are shown in Figure 10.
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The biases of the three hybrid models at different latitudes are all close to zero, which
indicates that the artificial neural network method has a noticeable effect on correcting the
systematic error of the UNB3m model (Figure 10). The stability of the hybrid models at
different latitudes is better than that of the Bevis, GPT3, and HGPT models (Figure 10).
The RMSEs of all models are generally smaller at low latitudes and larger at high latitudes
and show an increasing trend with increasing latitude, which is consistent with the results
presented in Figure 8. Regardless of the latitude band, the RMSEs of the hybrid models
were much lower than those of the Bevis, GPT3, and HGPT models, indicating that the
three hybrid models significantly improved the accuracy of Tm. Furthermore, compared
with the Bevis, GPT3, and HGPT models, the RMSEs of the three hybrid models are all
within 2 to 3.6 K in different latitude bands, and the variation between various bands
is slight and uniform, showing more notable advantages. Comparing the three hybrid
models, the RMSEs of hm2 at different latitudes are slightly lower than those of the other
two models. This result means that hm2 outperforms other models.

Tm is greatly affected by station altitude, and altitude differences may lead to uncer-
tainties of Tm model accuracy [6]. Therefore, we divided the height into eight layers with
an interval of 0.5 km and calculated RMSEs for each height layer. The results of the analysis
are presented in Figure 11.
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Figure 11 shows that the biases of the three hybrid models tend to be stable and remain
near 0, indicating that the accuracies of the hybrid models at different heights are much
better than the UNB3m model, Bevis model, GPT3 model, and HGPT model. The RMSEs of
the hybrid models obtained after optimization by the artificial neural network methods are
30% lower, relative to the UNB3m model. The RMSEs of the three hybrid models decrease
with the increase in altitude and are lower than that of the Bevis, GPT3, and HGPT models.
Furthermore, most of the RMSEs of the three hybrid models were below 3 K and were
much smaller than those of the UNB3m, Bevis, GPT3, and HGPT models. This result shows
that the accuracies of the hybrid models are higher than those of the Bevis, GPT3, and
HGPT models and have a more stable accuracy in the vertical direction.

Because Tm has prominent seasonal characteristics [6], we calculated the biases and
RMSEs for the four seasons to analyze the temporal variation of the performance of each
model, as shown in Figure 12.

Figure 12 shows that the UNB3m model shows poor accuracy in all seasons, especially
in summer. However, after the correction by the artificial neural network methods, the
accuracy in each season has been greatly improved. The RMSE in spring, autumn, and
winter dropped to more than 50% of the UNB3m model, and the RMSE in summer directly
decreased to more than 80%. In addition, the RMSEs of the hybrid models in each period
are smaller than that of the Bevis, GPT3, and HGPT models, indicating the superiority of
the hybrid model. The hybrid models have higher and more uniform accuracy in time.
When comparing the three hybrid models, we can see that the RMSEs of hm2 are smaller
than those of hm1 and hm3. Therefore, hm2 performs best in each season.
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4.3. Occupancy of Hybrid Models

We also compared the computer storage space and the number of parameters for each
model, and the results are presented in Table 4.

Table 4. The computer storage space and the number of parameters for each model.

Model Computer Storage Space Number of Parameters

UNB3m 104 KB 103
Hm1 104 KB 104
Hm2 104 KB 104
Hm3 104 KB 104
GPT3 29,081.6 KB 324,003

Table 4 indicates that the computer storage space occupied by the three hybrid models
is small and is reduced by 99.6% compared to that occupied by the GPT3 model. Compared
with GPT3 model, the number of parameters was reduced by 99.2%. Therefore, the new
model has a tremendous advantage in storage.

5. Applications of Hybrid Models in Retrieving PWV

From the performance discussions of the three hybrid models, we recommend hybrid
model 2 (Hm2). The formula for calculating PWV by combining ZWD and Tm is as follows:

PWV = Π× ZWD (21)

Π =
106

ρwRv
[
k3/Tm + k′2

] (22)

where ρw is the density of water and Rv is the specific gas constant.
To evaluate the effect of error in Tm on its synthesized PWV, a commonly used quantity

is the relative error in PWVs calculated using the following formula:
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σpwv

PWV
=

Π(Tm + σTm)−Π(Tm)

Π(Tm)
=

1 + k
′
2

k3
Tm

1 + k′2
k3
(Tm + σTm)

·Tm + σTm

Tm
− 1 (23)

where σpwv is the error in PWV caused by the error in Tm and σTm .
Since k

′
2/k3 ≈ 5.9 × 10−5 K−1 and Tm is in the range from 220 K to 310 K in our

experiment, Equation (23) can be simplified to [22,44]

σpwv

PWV
≈ Tm + σTm

Tm
− 1 =

σTm

Tm
(24)

Assuming that there is no error in the value of ZWD, if the error of Tm is small, this
will improve the converting accuracy of ZWD to PWV. Therefore, our established hybrid
model will indirectly enhance the accuracy of PWV.

To further illustrate the improved accuracy of the hybrid model for PWV inversion,
we selected four stations for analysis, and the station information is shown in Table 5. The
PWVs calculated from the ZWD and the Tm provided by the four radiosonde stations in
2016 were employed as a reference to validate the PWV mapped from radiosonde ZWD
using the hybrid model 2/Bevis/GPT3/HGPT model. The results are shown in Figure 13,
Tables 6 and 7.

Table 5. The information of the four stations.

Station Number Latitude/◦ Longitude/◦ Altitude/m

58,457 30.23 120.16 43.1
50,557 49.16 125.23 242.6
51,463 43.78 89.61 921.4
45,004 22.33 114.17 66.17
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Table 6. The MAE of the differences between the computed and the reference PWV.

Station
Number

Hm1 Bevis Change in GPT3 Change in HGPT Change in

MAE/mm MAE/mm % MAE/mm % MAE/mm %

58,457 0.150 0.224 49.3 0.332 121.2 0.332 121.2
50,557 0.067 0.134 99.8 0.137 104.2 0.157 133.5
51,463 0.080 0.169 112.0 0.166 108.2 0.154 92.5
45,004 0.169 0.381 124.7 0.307 81.3 0.308 82.0

Table 7. The RMSE of the differences between the computed and the reference PWV.

Station
Number

Hm2 Bevis Change in GPT3 Change in HGPT Change in

RMSE/mm RMSE/mm % RMSE/mm % RMSE/mm %

58,457 0.199 0.293 46.9 0.430 115.4 0.428 114.4
50,557 0.101 0.182 80.6 0.204 102.5 0.240 137.8
51,463 0.111 0.248 124.5 0.217 96.5 0.206 86.1
45,004 0.219 0.454 107.1 0.380 73.3 0.379 72.6

As shown in Figure 13, the PWV calculated by the hybrid model agrees better with
the reference value, which shows that the hybrid model outperforms the Bevis, GPT3, and
HGPT models in retrieving the PWV. The RMSEs of PWV derived from the Hm2 model
are all less than 1 mm; the accuracy is very appreciable in weather research because the
required RMS is 3 mm [45]. Tables 6 and 7 show that compared with the Bevis model, the
retrieving PWV accuracy of the hybrid model is greatly improved, and its MAE is 96.5%
lower on average than the Bevis model. The RMSE is 89.8% lower on average. The accuracy
of the hybrid model in retrieving PWV has been dramatically improved in comparison
with the GPT3 model and the HGPT model. Simultaneously, the MAE of the hybrid model
decreased by 103.7% and 107.3% on average, and RMSE decreased by 96.9% and 102.7%,
respectively. These proved that the hybrid model is superior to the Bevis, GPT3, and HGPT
models in retrieving PWV.

To demonstrate the outperformance of the Hm2 for retrieving PWV more intuitively,
Figure 14 gives RMSEs reduction at all radiosonde stations. Figure 14 illustrates that the
Hm2 model shows smaller RMSE than other models at most stations. The mean RMSE
reduction of the Hm2 model reaches up to 33.9% in comparison with Bevis, 36.4% in
comparison with GPT3, and 37.0% in comparison with HGPT. It is interesting to note that
the RMSE of the Hm2 PWV is reduced at all stations in China Mainland. Overall, the Hm2
model performs the best in mapping ZWD onto PWV.

To further verify the Hm2 has a significant improvement in accuracy compared to
the comparison model, the RMSE of each model at each site was used as a sample for
hypothesis testing. Set the null hypothesis H0: there is no significant difference between
the RMSE of the comparison model at each site (sample X1) and the RMSE of the Hm2
model at each site (sample X2). Alternative hypothesis H1: there is a significant difference
between X1 and X2. Due to the large sample size, the z-test [46] was used. Set the left-side
confidence level to a = 0.05. Calculating the statistic z and looking up the table to get the
corresponding p value, the result is shown in Table 8. By comparing the statistic z and the p
value (p (|Z| > 1.64) = 0.05), we can see that the absolute value of the z of the three pairs of
samples is larger than 1.64 in all cases, with the corresponding p less than 0.05. Therefore,
the null hypothesis is finally rejected, indicating significant differences among the Hm2
RMSEs and other model’s RMSEs. This result suggests that the Hm2 RMSE is improved
significantly compared to that of other models at the 95% confidence level.
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Table 8. The statistic z and corresponding p value.

z (P) Bevis GPT3 HGPT

Hm2 −2.2463 (0.0122) −2.7058 (0.003) −2.6693 (0.004)

6. Conclusions

To overcome the drawbacks of existing Tm models with poor universality, profound
local accuracy loss, and difficulty in reflecting the nonlinear relationship between Tm
and meteorological parameters, this study used artificial neural network methods for
constructing Tm hybrid models in China. Validated with radiosonde Tm, the accuracies of
the three hybrid models were 2.954 K, 2.703 K, and 2.763 K in terms of RMSE. In view of
RMSE, compared with the UNB3m model, the accuracies were improved by 73.1%, 75.3%,
and 74.8%; for the Bevis model, accuracies were optimized by 35.3%, 40.8%, and 39.5%; and
for the GPT3 model, accuracies were improved by 32.0%, 37.8%, and 36.4%, respectively.
Moreover, the hybrid models effectively weakened the spatiotemporal variation in the
accuracy of the UNB3m model and achieved higher and more uniform accuracy in space
and time. Among the three hybrid models, hm2 exhibited the best performance, followed by
hm3. The models constructed in this study had better accuracy than the three international
models. Moreover, the computer storage space occupied by the new models is significantly
lower than that of the GPT3 model, and the number of parameters is substantially reduced.
The accuracy improvement in the best hybrid model’s Tm on its resultant PWV at four
exemplary radiosonde stations and the whole study area were investigated using the PWVs
through the radiosonde ZWD and Tm. The RMSEs of PWV derived from the Hm2 model
are all less than 1 mm at exemplary radiosonde stations; the accuracy meets the needs of
weather research. The overall error of the best hybrid model’s Tm in the resultant PWV is
smaller than that of Bevis, GPT3, and HGPT models by 33.9%, 36.4%, and 37.0% in terms of
RMSE. The results of hypothesis testing further proved that this accuracy improvement
of the best hybrid Tm relative to the compared models is significant. The new models can
be widely used to calculate high-precision Tm and are more suitable for GNSS receivers
without large storage space.

However, the study area was mainly conducted in China, and the global regions need
to be further examined to validate the new models. In addition, meteorological parameters
(surface temperature and water vapor pressure) were considered when constructing the
model in this study. In future research, we hope to develop a globally hybrid model that
can calculate the Tm only based on geographical information (latitude, longitude, height)
and temporal information (year, day of year (doy), hour of day (hod)).
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