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Abstract: Multiple-input multiple-output (MIMO) radar three-dimensional (3D) imaging is widely
applied in military and civil fields. However, MIMO is easily affected by wideband interference
(WBI). To solve this problem, in this study, we propose a sparse recovery imaging method with WBI
prediction based on the predictive recurrent neural network (PredRNN) and the tensor-based smooth
L0 (TSL0) algorithm. Firstly, we extract the time-frequency (TF) feature of the historical measured
WBI via the short-time Fourier transform (STFT) operation. In this way, we can use PredRNN to
exploit the spatiotemporal correlation of the WBI in the TF domain to predict the TF feature of the
WBI in the future. Then, we adaptively design the random sparse stepped frequency waveform
by selecting non-overlapped frequencies with the WBI according to the predicted WBI TF feature.
Finally, we apply the TSL0 algorithm to reconstruct the 3D high-resolution target image from the
sparse signal cube. Simulation results show the high performance and robustness of the proposed
imaging method in the presence of different WBIs.

Keywords: MIMO radar; 3D imaging; sparse recovery; wideband interference; neural network

1. Introduction

During the last decades, high-resolution radar images have been more and more
widely used in both military and civil applications. Rather than two-dimensional (2D)
images, three-dimensional (3D) radar images provide more details of the targets, which
is crucial for target recognition and classification. For 3D target imaging, multiple-input
multiple-output (MIMO) radar has been well developed in recent years [1–5] due to its
single snap-shot imaging capacity. With the introduction of compressed sensing theory [6],
studies have proposed many sparse recovery imaging methods for MIMO radar, bringing
the advantages of lower sampling cost and higher resolution [7–9]. However, the compli-
cated wideband interference (WBI) existing in the environment severely affects the received
signal of MIMO radar, making the target imaging task difficult [10,11].

To improve radar imaging performance in the presence of WBI, WBI mitigation strategies
have been extensively investigated, particularly in synthetic aperture radar (SAR) [10–15].
For example, by transforming the WBI problem into a narrowband interference (NBI)
problem, Tao et al. proposed a WBI mitigation scheme for high-resolution airborne SAR [12].
Liu et al. exploited the sparsity of interference to develop a unified framework to mitigate
WBI and recover the SAR signal at the same time [13]. In the time-frequency (TF) domain,
Zhou et al. proposed the ways to detect and mitigate WBI based on variational Bayesian
inference in [14] and instantaneous frequency estimation and regularized time-frequency
filtering in [15]. These WBI mitigation techniques mainly attempt to eliminate the WBI
signal from the radar received signal, which will inevitably damage the target signal to
some extent, resulting in potential imaging performance loss.

Instead, another strategy is to design the transmitted waveform to minimize the impact
of interference. For example, to increase target detection performance in the presence of
interference, Wang et al. improved the signal-to-interference-ratio (SIR) of the transmitting
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signal by solving an optimization problem with the constraints of spectrum compatibility
and constant modulus in [16]. Tierney and Mulgrew presented a scheme that combines
interference spectrum estimation, adaptive waveform design, and waveform synthesis
technique to minimize the interference in SAR [17]. Shi et al. tried to minimize the inter-
ference by optimizing the transmitting beam pattern by dividing the waveform matrix
according to a power allocation strategy and by designing the sub-pulse waveforms for
MIMO radar [18]. These waveform design strategies can obtain high performance for sim-
ple interferences, but they are less effective for the complicated ones (e.g., the interference
is highly nonlinear or mixed by different interferences), necessitating the proposal of novel
methods to address this issue.

In recent years, the rapid development and widespread application of the deep learn-
ing (DL) approach bring new solutions for interference suppression. For example, Fan et al.
presented an interference mitigation algorithm based on the deep residual network for both
NBI and WBI in [19], which can improve the radar performance with a low computational
complexity. Tao et al. proposed a model-constrained DL approach based on the joint low-
rank and sparse optimization framework, improving the efficiency of interference detection
and mitigation [20]. In terms of waveform design in the presence of signal-dependent
interference, Li et al. made a meaningful attempt by using the DL network to design the
waveform for cognitive radar [21]. These DL based methods show promising prospects for
interference suppression, while more efforts should be made to excavate the potentials of
DL to solve more problems, e.g., MIMO radar target imaging problem in the presence of
complicated WBIs.

To solve the above-mentioned problems of radar imaging in the WBI environment
and inspired by the recent DL based studies, we propose a novel 3D high-resolution
sparse recovery imaging method for MIMO radar with WBI prediction in this study. The
contributions of this paper can be summarized as follows:

(1) The DL based method for WBI prediction in the TF domain is proposed. We explore
the spatiotemporal correlation of WBI in the TF domain and transform the WBI
prediction problem into a spatiotemporal image sequence prediction problem. By
using a sliding short-time Fourier transform (STFT) to process the measured WBI to
generate a sequence of TF images, the TF images of the WBI in the future are predicted
based on a trained DL network.

(2) According to the predicted WBI, we adaptively design the random sparse stepped
frequency (RSSF) waveform to make it orthogonal to the future WBI in the TF domain.
By doing so, it brings two advantages as follows. Compared to the waveform design
method based on historical WBI, the designed waveform with our method can adap-
tively avoid the WBI in the measurement. Compared to the WBI mitigation method,
we can reserve the total information of target signal, since the designed waveform
avoid the WBI to the maximum extent. Thus, we can improve the target imaging
performance with the proposed method.

(3) Furthermore, we apply the tensor-based smoothed L0 (TSL0) algorithm [22] to re-
construct the 3D high-resolution target image from the sparse received signal cube.
With the WBI prediction and due to the advantages of sparse recovery, the proposed
imaging method can obtain high effectiveness and robustness in different WBI envi-
ronments, which are verified by various simulations.

The rest of this paper is organized as follows. Section 2 presents the signal model for
MIMO radar 3D imaging and introduction of the imaging methods with WBI detection and
removal (WDR) and simple waveform design (SWD), and finally presents the proposed
imaging method with WBI prediction. Section 3 gives some simulation results to show the
effectiveness and robustness of the proposed method. Section 4 discusses how to improve
the performance of the proposed method with a view towards wider application. Finally,
Section 5 concludes this paper.
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2. Materials and Methods
2.1. Signal Model

As shown in Figure 1, we consider a 2D cross MIMO radar consisting of orthogonal
uniform linear transmitting and receiving arrays, formed by M transmitting antennas and N
receiving antennas. The transmitting and receiving antenna spacings are denoted by dt and
dr, respectively. The unitary direction vectors of the transmitting and receiving arrays are
denoted by et and er, respectively. A sparse MIMO array is generated with Mu (0 < Mu < M)
transmitting antennas and Nu (0 < Nu < N) receiving antennas, randomly selected from the
full transceiving arrays. A target viewed as P scattering points is in the imaging area with
Lp denoting the p-th scattering point (p = 1, 2, . . . , P) and O denoting the reference point.
The direction vector from O to Lp is denoted as p = (xp, yp, zp) with xp, yp, and zp as the 3D
positions of the p-th scattering point relative to the reference point.

Figure 1. The geometry of the considered 2D sparse cross MIMO radar system.

We adopt the RSSF waveform that is commonly employed in radar imaging for
wide bandwidth synthesis in this study [23]. For RSSF, the q-th sub-pulse signal can be
expressed as

sq(t) = rect[(t− (q− 1)Tr)/Tr]ej2π fqt (1)

where q = 1, 2, . . . , Qu, Qu < Q is the number of sub-pulses, t ∈ [0, Ts], Ts = QuTr is the
total signal duration, Tr is the duration of each sub-pulse, rect[·] is the rectangle function,
fq ∈ F is the q-th frequency, which is randomly selected from a given frequency sequence
F = [ f1, f2, . . . , fQ]. In F , fi = f1 + (i− 1)∆ f , where i = 1, 2, . . . , Q and ∆ f denotes the
frequency step.

To ensure the orthogonality of different transmitting signals, we modulate the RSSF
signals of different transmitting antennas with the orthogonal phase codes. Thus, the q-th
sub-pulse signal of the m-th (m = 1, 2, . . . , Mu) transmitting antenna can be expressed as

sm,q
T (t) = sq(t)ejϕm(t) (2)

where ϕm(t) is the modulation phase code of the m-th transmitting antenna.
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Backscattering from the target and considering the WBI signal in the environment,
the q-th sub-pulse signal received by the n-th (n = 1, 2, . . . , Nu) receiving antenna can be
expressed as

sn,q
R (t) =

P

∑
p=1

Mu

∑
m=1

ςpsm,q
T (t− τm,n,p) + I(t) (3)

where τm,n,p and ςp denote the delay and scattering coefficient of the p-th scattering point,
respectively, I(t) is the received WBI that is assumed to be independent from the transceiv-
ing channels. According to the geometric relationship shown in Figure 1, τm,n,p can be
derived as τm,n,p= (

∣∣TmLp
∣∣+∣∣LpRn

∣∣)/c, where
∣∣TmLp

∣∣ is the distance from the m-th trans-
mitting antenna to the p-th scattering point,

∣∣LpRn
∣∣ is the distance from the n-th receiving

antenna to the p-th scattering point, and c is the speed of light.
By mixing with a reference signal, we can down-convert the received signal sn,q

R (t) to

sm,n,q
D (t) = sn,q

R (t) · e−j2π fq(t−τm,n,O) (4)

where τm,n,O = (|TmO|+|ORn|)/c is the delay of the reference point corresponding to m-th
transmitting antenna and the n-th receiving antenna.

Via digital sampling, we can get sm,n,q(ks) from sm,n,q
D (t), where ks = fst = 1, 2, . . . , Ks

is the ks-th sampling index and fs is the sampling rate. Then, we can use the matched
filtering (MF) based method to realize the waveform separation, giving

sm,n,q
M (k′s) =

Ks

∑
ks=1

sm,n,q(ks) · e−jϕm(ks−k′s)/Ks (5)

As the bandwidth of each sub-pulse is small, all the scattering points of the target will
locate at the same range cell in (5). Hence, by selecting the peak of (5), we can get a 3D
signal cube S ∈ CMu×Nu×Qu for target imaging, whose m-n-q-th element is given by

S(m, n, q) =
{

S0(m, n, q) + I(m, n, q), q = qC
I

S0(m, n, q), q 6= qC
I

(6)

where S0 is the target signal cube and I is the WBI component. As the WBI frequency is
varying along with time, the target signal cube corresponding to the sub-pulse indexed
by q 6= qC

I ∈ ΓC
I will not be interfered by the WBI, while ΓC

I denotes the index set of the
interfered sub-pulses.

According to [4,5], the m-n-q-th element of the target signal cube S0 can be approxi-
mated as

S0(m, n, q) =
P

∑
p=1

ςpe−j2παpxm/dt e−j2πβpyn/dr e−j2πχp fq/∆ f (7)

where xm and yn denote the positions of the m-th transmitting antenna and the n-th
receiving antenna, αp, βp, and χp denote the parameters of the p-th scattering point, which
have the following relationships with the 3D positions of the p-th scattering point{

αp = −eT
t pdt/(λcrT), βp = −eT

r pdr/(λcrR)

χp = (nt + nr)
Tp + [1/(2rT) + 1/(2rR)]pTp∆ f /c

(8)

where λc = c/ fc is the wavelength, fc is the carrier frequency, rT =|T1O| is the distance
from the reference point to the first transmitting antenna, rR =|OR1| is the distance from
the reference point to the first receiving antenna, while nt and nr are the unitary direction

vectors of
→

T1O and
→

R1O, as shown in Figure 1.
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If there is no WBI or the WBI component I in the signal cube S can be eliminated,
according to (7), we can express the signal cube S as

S = X ×1 F1
un ×2 F2

un ×3 F3
un (9)

whereX ∈ RM0×N0×Q0 denotes the 3D image of the target, M0, N0, and Q0 are the imaging
grid numbers in the directions discretized to estimate the target parameters αp, βp, and
χp for p = 1, 2, . . . , P. ×κ denotes the mode-κ tensor by matrix product. In (9), F1

un, F2
un,

and F3
un are the Fourier matrices corresponding to the selected antennas and sub-pulses,

given by
F1

un = e−j2π[x1,x2,...,xMu ]
Tα0/dt ∈ CMu×M0 , α0 = [−1/2,−1/2 + 1/M0, . . . , 1/2− 1/M0]

F2
un = e−j2π[y1,y2,...,yNu ]

T β0/dr ∈ CNu×N0 , β0 = [−1/2,−1/2 + 1/N0, . . . , 1/2− 1/N0]

F3
un = e−j2π[ f1, f2,..., fQu ]

Tχ0/∆ f ∈ CQu×Q0 , χ0 = [−1/2,−1/2 + 1/Q0, . . . , 1/2− 1/Q0]

(10)

By exploiting the sparsity of the target in the imaging area, we can solve the following
problem for 3D high-resolution target imaging

min ‖ X ‖0s.t.‖ S −X ×1 F1
un ×2 F2

un ×3 F3
un ‖F ≤ ε (11)

where ‖·‖0 and ‖·‖F denote the number of nonzero elements and the Frobenius norm of a

tensor, ε denotes the noise level.
Directly solving (11) is difficult. Hence, we transform it to the following problem

minlim
∂→0

G∂(X ) s.t.
∥∥∥S −X ×1 F1

un ×2 F2
un ×3 F3

un

∥∥∥F ≤ ε (12)

where ∂ is an auxiliary variable that is close to zero and

G∂(X ) = M0N0Q0 −
M0

∑
m0=1

N0

∑
n0=1

Q0

∑
q0=1

exp(−
∣∣Xm0,n0,q0

∣∣2/2∂2) (13)

with Xm0,n0,q0 as the m0-n0-q0-th element of X .
Equation (12) can be solved effectively by the TSL0 algorithm [22]. After obtaining

X , the target parameters {α, β, χ} = {[α1,α2, . . . ,αP], [β1,β2, . . . ,βP], [χ1,χ2, . . . ,χP]} can be
extracted. Then, we can get the target positions {x, y, z} = {[x1,x2, . . . ,xP], [y1,y2, . . . ,yP],
[z1,z2, . . . ,zP]} based on (8).

Although the sparse recovery imaging method based on (12) has high performance,
the WBI component I in the signal cube S has a highly negative impact on the imaging
result. The key to solve this problem is to get the signal cube for target imaging without
the WBI influence. Many meaningful attempts are made, which are mainly from two
perspectives. Most studies focus on mitigating the WBI component from the signal cube by
some post-processing methods [12–15] while others are interested in minimizing the WBI
component by some preprocessing methods [16–18].

2.2. Conventional Imaging Methods
2.2.1. Imaging Method with WDR

To mitigate the WBI component from the signal cube for target imaging, many methods
can be used, e.g., those in [12–15]. In this study, we consider a simple way (i.e., WDR) to do
so, i.e., detecting and removing the interfered signal components including target signal
and WBI directly from the signal cube, expressed as

S(m, n, q) =
{

0, q = qC
I

S0(m, n, q), q 6= qC
I

(14)



Remote Sens. 2022, 14, 3774 6 of 18

Since the WBI is always much stronger than the target signal, the interfered sub-pulses
can be easily detected via some existing approaches, such as the constant false alarm rate
(CFAR) detection technique. Then, the set ΓC

I can be obtained and the interfered signal
components can be set to 0. Finally, by neglecting the zero elements, the signal cube shown
in (14) can be used for target imaging via the TSL0 algorithm.

It should be noted that, for existing methods used to mitigate the WBI component, the
target signal in the interfered sub-pulses will be damaged to some extent, i.e., some of the
target information will be removed, as the WBI component and the target signal cannot
be exactly estimated without any error. Compared to these methods, the WDR method
may have worse performance as it removes all the target information in the interfered
sub-pulses. However, the WDR method can be easily realized and can perform well under
the situations where the WBI does not occupy a large space in the TF domain, i.e., fewer
sub-pulses are interfered by the WBI.

2.2.2. Imaging Method with SWD

To minimize the WBI component in the signal cube for target imaging, many prepro-
cessing methods pay attention to design waveform to reduce the WBI by increasing the SIR
or to directly avoid receiving the WBI. In this study, we also consider a simple way (i.e.,
SWD) to do so, i.e., designing a transmitting waveform that is orthogonal to the WBI in the
TF domain according to the historical measured WBI.

For the measured WBI, we employ the STFT to extract its TF feature, expressed as

X(t, f ) = |
∫ +∞

−∞
x(τ)h(τ − t)e−j2π f τdτ| (15)

where h(t) denotes the windowing function.
For SWD, given T > Ts as the total duration of the measured WBI, the WBI TF feature in

the duration of t ∈ [T− Ts, T] is used for the transmitting waveform design in the duration
of t ∈ [T, T + Ts]. Specific to the RSSF waveform, the frequency of the q-th sub-pulse is
designed as

fq = F (iq ∈ L\UHMW
q ) (16)

where iq denotes the index of the q-th selected frequency and L = [1, 2, . . . , Q]. The
superscript HMW in (16) denotes the first letters of historical measured WBI and UHMW

q
denotes the non-selectable frequency index set for the q-th sub-pulse, expressed as

UH
q ←

{
IHMW
1 , q = 1{
i1, . . . , iq−1

}
∪ IHMW

q , q ≥ 2 (17)

where IHMW
q denotes the frequency index set for the q-th sub-pulse of the measured WBI in

the duration of t ∈ [T − Ts + (q− 1)Tr, T − Ts + qTr], which is obtained from X(t, f ).
By transceiving the designed RSSF waveform, the WBI component in the signal cube

can be reduced or avoided. Hence, without WBI mitigation, we can directly apply the TSL0
algorithm to process the signal cube given in (6) to obtain the 3D high-resolution target
image. It should be noted that, with some additional processing steps, e.g., WBI parameter
estimation, many existing methods also use the historical measured WBI as the reference
for waveform design. Compared to these methods, the performance of the SWD method
may degrade when the future WBI TF feature is quite different from its historical one.
However, the SWD method has the advantage of simplicity, and it can obtain reasonable
results when the WBI is relatively stationary.

2.3. Proposed Imaging Method

As mentioned above, the WBI mitigation methods have the problem of damaging the
target signal. In general, if the transmitting waveform can be designed to be completely
orthogonal to the WBI in the TF domain, there is no need to do WBI mitigation and then the
target signal will not be damaged. However, because of either the high computational cost
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or the need of prior WBI model for parameter estimation, existing waveform design meth-
ods are less effective for complicated WBIs. To solve these problems, we propose a novel
imaging method with WBI prediction to improve the MIMO radar imaging performance in
the environment with complicated WBIs.

2.3.1. Framework of Our Method

The core of the proposed imaging method is WBI prediction and its other processing
steps are similar with the SWD method. It is known that, if the future TF feature of the
WBI can be obtained beforehand, the radar transmitting waveform can be adaptively
designed to reduce or even avoid the influences of WBI on the received signal. Recently,
for spatiotemporal image sequence prediction problems, e.g., automatic driving, robot
motion planning, and precipitation forecasting, the deep predictive networks, such as
ConvLSTM (Convolutional Long Short-Term Memory) [24] and PredRNN [25], have been
well developed. For WBI prediction, whose TF feature can also be exploited with a high
spatiotemporal correlation, it is suitable to apply the deep predictive network.

Based on the idea of WBI prediction, Figure 2 shows the framework of the proposed
sparse recovery imaging method for MIMO radar.

Figure 2. The framework of the proposed sparse recovery imaging method with WBI prediction.

The first and most important step of the proposed imaging method, which is circled by
the red dotted rectangle in Figure 2, is to predict the future WBI according to the historical
measured WBI. We will introduce this step in detail in the following subsection. The
second step of the proposed imaging method is to design the waveform based on (16)
with UPW

q instead of UHMW
q , which is obtained according to the predicted TF feature of

the WBI, where the superscript PW denotes the first letters of predicted WBI. It should
be noted that, in such a case, IHMW

q in (17) should be replaced with IPW
q , which is the

frequency index set of the q-th sub-pulse interfered by the predicted WBI in the duration
of t ∈ [T + (q− 1)Tr, T + qTr]. As the designed waveform is orthogonal to WBI in the TF
domain, the sparse signal cube in (6) is simply S(m, n, q) = S0(m, n, q) with ΓC

I = ∅. Thus,
the last step of the proposed method is to directly apply the TSL0 algorithm to solve (12) to
get the 3D high-resolution target image.

2.3.2. WBI Prediction via PredRNN
Introduction of PredRNN

Considering its high performance in spatiotemporal image sequence prediction, we
use PredRNN in this study to predict the WBI. Figure 3 shows the structure of an L-layer
PredRNN, whose basic module is the spatiotemporal LSTM (ST-LSTM), which combines
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the long-time information with the short-time information and takes the continuity of the
same layer in time and the hierarchy of different layers in space into account.

Figure 3. The network structure of a L-layer PredRNN.

As shown in Figure 3, the input of PredRNN is XI = 〈X1, X2, X3, . . . , XV〉 and the

output of PredRNN is X̂O =
〈
X̂2, X̂3, . . . , X̂V , X̂V+1, X̂V+2, . . . , X̂V+U

〉
, where V denotes the

number of input images and U denotes the number of output images. Hence, the task of
PredRNN can be expressed as XI 7→ X̂O . We note that, as indicated by the blue dotted

curves in Figure 3, the outputs
〈
X̂V+1, X̂V+2, . . . , X̂V+U−1

〉
are also used as the inputs of

PredRNN to predict the sequences
〈
X̂V+2, X̂V+3, . . . , X̂V+U

〉
.

According to [25], the overall process of PredRNN used to predict the image
X̂v+1 (v = 1, 2, . . . , V + U − 1) can be expressed as

{
H1

v, C1
v ,M1

v
}
= ST-LSTM1

(
Xv,ML

v−1,H1
v−1, C1

v−1
){

Hl
v, C l

v,Ml
v

}
= ST-LSTMl

(
Hl−1

v ,Ml−1
v ,Hl

v−1, C l
v−1

)
X̂v+1 =Wv ∗ HL

v l = 2, . . . , L
(18)

where ∗ denotes convolution operation, Hl
v, C l

v, and Ml
v denote the hidden state, the

temporal memory, and the spatiotemporal memory for the v-th input image in the l-th
ST-LSTM layer (l = 1, 2, . . . , L).

For the l-th ST-LSTM, assuming its input is generalized as
(

Al
v, Bl

v, El
v, Fl

v

)
, its output(

Hl
v, C l

v,Ml
v

)
can be obtained by

gl
v = tanh(W l

ag ∗ Al
v +W l

eg ∗ El
v + bl

g)

il
v = σ(W l

ai ∗ Al
v +W l

ei ∗ El
v + bl

i)
f l
v = σ(W l

a f ∗ Al
v +W l

e f ∗ El
v + bl

f )

C l
v = f l

v � Fl
v + il

v � gl
v

(19)


g′ l v = tanh(W ′ l ag ∗ Al

v +W l
bg ∗ Bl

v + b′lb)
i′ l v = σ(W ′ l ai ∗ Al

v +W l
bi ∗ Bl

v + b′li)
f ′ l v = σ(W ′ l a f ∗ Al

v +W l
b f ∗ Bl

v + b′lf )
Ml

v = f ′ l v � Bl
v + i′ l v � g′ l v

(20)

and {
ol

v = σ(W l
ao ∗ Al

v +W l
eo ∗ El

v +W l
co ∗ C l

v +W l
vo ∗Ml

v + bl
o)

Hl
v = ol

v � tanh(W l ∗ [C l
v,Ml

v])
(21)

where� denotes Hadamard product, σ(·) denotes the sigmoid function, and tanh(·) denotes
the hyperbolic tangent function.
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The optimal parameters of PredRNN can be learned from the training dataset and
then be applied for practical prediction applications. Specifically, given the network layer

number L and the training dataset
{

Xz
I , Xz

O

}Z

z=1
, all the parameters of PredRNN, i.e.,



Θ =
{

Θ1, Θ2, Θ3,W ph,Wpg,Wsh,Wsg

}
Θ1 =

{
W l

ag,W l
eg, bl

g,W l
ai,W l

ei, bl
i ,W l

a f ,W l
e f , bl

f

}L

l=1

Θ2 =
{
W ′ l ag,W l

bg, b′bl,W ′ l ai,W l
bi, b′i l,W ′

l
a f ,W l

b f , b′f l
}L

l=1

Θ3 =
{
W l

ao,W l
eo,W l

co,W l
vo, bl

o,W l
}L

l=1

(22)

can be learned by solving the following problem based on the back-propagation technique

Θ∗ ← argmin
Θ

Z

∑
z=1

∥∥∥PRL(Xz
I , Θ)−Xz

O

∥∥∥2

F
/DX/Z (23)

where Z is the size of training dataset, PRL(Xz
I , Θ) = X̂z

O denotes the output of the L-layer
PredRNN with Xz

I as its input and Θ as its parameters, and Xz
O =

〈
Xz

2, Xz
3, . . . , Xz

V+U
〉

denotes the z-th output ground truth, DX is the number of all the elements of Xz
O.

Application to WBI Prediction

To predict the TF future of WBI via PredRNN, we clarify the definition of spatiotem-
poral image sequence prediction and its application to WBI prediction in this subsection.

Assume that a dynamic system generates G1 measurements at given intervals, each
measurement is a matrix of data with spatiotemporal correlation, whose size is G2 × G3.
Then, all the measurements can be represented as G1 images with the same size. Let t be
the current measurement moment, Xt−V+1:t be the measurements in the past V moments,
and Xt+1:t+U be the measurements in the future U moments, the spatiotemporal image
sequence prediction problem can be defined as

X̂t+1, . . . , X̂t+U = argmax
Xt+1,...,Xt+U

p(Xt+1, . . . , Xt+U |Xt−V+1, Xt) (24)

To ensure the spatiotemporal correlation, the WBI TF image sequences can be gener-
ated by using a sliding window with a size of Ts and a step of ∆T (∆T < Ts) to slice the
TF image of the measured WBI obtained by STFT as shown in (15). By doing so, the w-th
(w = 1, 2, . . . , V + U) WBI TF image can be expressed as

Xw = X(t, f |t ∈ [(w− 1)∆T, (w− 1)∆T + Ts]) (25)

Given that Ts and ∆T, totally V + U overlapped WBI TF figures can be formed accord-
ing to (25), where the first V TF images can be set as the input of PredRNN and the last
V + U − 1 TF images can be set as the output ground truth of PredRNN.

Finally, after training PredRNN, to adaptively design the transmitting waveform, the
historical WBI TF image sequences can be input to PredRNN to obtain the prediction of the
WBI TF image sequences in the duration of t ∈ [T, T + (Qu − 1)Tr], hence obtaining the
frequency index set IPW

q of the q-th sub-pulse for q = 1, 2, . . . , Qu.

3. Results

In this section, various simulations are conducted to evaluate the proposed imaging
method for MIMO radar. Firstly, we show the performance of WBI prediction. Secondly, we
show the imaging performance of the proposed method. Finally, we show the robustness
of the proposed method under different conditions.
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3.1. Prediction Results of Different WBIs

In this sub-section, we verify the performance of PredRNN for WBI prediction. To
simulate the actual complicated WBI in practice, we model the WBI as the mixing of the
chirp-modulated WBI (CM-WBI) and the sinusoidal-modulated WBI (SM-WBI) [26,27],
expressed as

I(t) = BCM(t) · exp[j2π fCMt + jπµ(t− (bt/TCMc+ 0.5)TCM)2]

+BSM(t) · exp[j2π fSMt + j∑K
k=1 βk sin(2π fkt + ϕk)]

(26)

where TCM denotes the period of the CM-WBI, fCM and fSM denote the carrier frequencies, µ
denotes the chirp rate, βk, fk, and ϕk denote the amplitude, frequency, and phase of the k-th
(k = 1, 2, . . . , K) sinusoidal signal of the SM-WBI, and with K as the number of sinusoids,
BCM(t) and BSM(t) denote the modulation amplitudes, modeled as band-passed Gaussian
noise signals with the standard deviations as ICM and ISM, which are determined by the
interference-to-signal ratio (ISR).

With the parameters randomly selected from Table 1, we generated 5000 WBIs based
on (26) for PredRNN training. The duration of each WBI is set as 216.5 µs and the data
sampling frequency is set as 256 MHz. We apply the STFT with a sliding Hamming window
to generate the WBI TF image sequence, where the window size is 256 and the overlap
length is 128. For each WBI, 20 overlapped TF images are obtained with ∆T = 8 µs, Ts = 64 µs,
and thus V = U = 10. In Pytorch, the ADAM optimizer is used for PredRNN training with
the learning rate as 5× 10−4 and the batch size as 8. With 100,000 iterations, Figure 4 shows
the training loss curve of PredRNN. It can be seen that the training loss of PredRNN is
graduated reduced and becomes almost unchanged after 60,000 iterations, indicating the
convergence of the training process. In the following, we take some testing experiments by
the trained PredRNN.

Table 1. Value range of the simulated WBI parameters.

Parameter Value Range Parameter Value Range

BCM ISR = [40, 70] dB BSM ISR = [40, 70] dB
fCM ±[0, 50] MHz K {1, 2, 3}
TCM [15, 20] µs βk [200, 500]

µ ±[4, 6] MHz/µs fk [0.02, 0.05] MHz
fSM ±[0, 40] MHz ϕk [−π, π]

Figure 4. The training loss of PredRNN versus the training iterations.

With the input as XI = 〈X1, X2, . . . , X10〉, Figures 5–7 show the prediction results
X̂O =

〈
X̂12, X̂14, . . . , X̂20

〉
obtained by the trained PredRNN for three different testing WBIs,

i.e., CM-WBI only, SM-WBI only, and the mixed WBI. It can be observed that, for all three
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different testing WBIs, PredRNN can predict the future WBI well. The predictions are
consistent with the ground truth.

Figure 5. The prediction results for CM-WBI. The first row shows the ground truth and the second
shows the predicted results.

Figure 6. The prediction results for SM-WBI. The first row shows the ground truth and the second
row shows the predicted results.

Figure 7. The prediction results for the mixed WBI. The first row shows the ground truth and the
second row shows the predicted results.
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To quantitively assess the prediction performance of the trained PredRNN in different
prediction lengths for different WBIs (i.e., CM-WBI only, SM-WBI only, and the mixed WBI),
we calculate the mean squared error (MSE) of the u-th (u = 1, 2, . . . , 10) predicted TF image,
expressed as

MSE(u) =
1
It∑

It
it=1

∥∥∥X̂it
V+u −Xit

V+u

∥∥∥2

F
/DX (27)

where It = 1000 is the testing number, DX is the number of all the elements of Xit
V+u.

The obtained MSEs are shown in Figure 8. It can be seen that the performance of WBI
prediction improves with the decrease of the prediction length u, which is consistent with
the fact that the shorter-time TF feature of the WBI can be more easily estimated from its
historical ones. For different testing WBIs, the prediction performance decrease with the
increase of the complexity of WBI. The prediction performance for CM-WBI is the highest
and that for mixed WBI is the lowest.

Figure 8. The WBI prediction performance of PredRNN against the prediction length for the chirp-
modulated WBI (CM-WBI), the sinusoidal-modulated WBI (SM-WBI) and the mixed WBI.

3.2. Imaging Results under Different WBIs

In this sub-section, we verify the performance of the proposed imaging method
under different WBIs. The parameters of the 2D cross MIMO radar system are shown
in Table 2, based on which Mu = Nu = 24 transceiving antennas and Qu = 72 sub-pulses
are selected to construct the sparse MIMO radar system. Given a target that has P = 47
scattering points located at 10 km from the radar system, Figure 9a shows its 3D positions
{x, y, z} = {[x1,x2, . . . ,xP], [y1,y2, . . . ,yP], [z1,z2, . . . ,zP]} relative to the reference point. Based on (8),
Figure 9b shows the target parameters {α, β, χ} = {[α1,α2, . . . ,αP], [β1,β2, . . . ,βP], [χ1,χ2, . . . ,χP]}.
In the following, {α, β, χ} is used as the ground truth of target imaging for simplicity.

Table 2. 2D cross MIMO radar system parameters.

Parameter Value

Tx/Rx antenna number M = N = 36
Tx/Rx antenna spacing dt = dr = 8 m

Center frequency fc = 10 GHz
Frequency step ∆f = 2 MHz

Sub-pulse number Q = 128
Sub-pulse duration Ts = 0.5 us
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Figure 9. (a) The 3D position of the target and (b) the ground truth of target imaging.

Given the ISRs of CM-WBI and SM-WBI as 70 dB and other parameters randomly
selected from Table 1, Figure 10 shows the TF images of different WBIs in the duration of
measurement and different transmitting RSSF waveforms. The first column of Figure 10 is
the TF images of CM-WBI only, SM-WBI only, and the mixed WBI. The last three columns of
Figure 10 are the TF images of the transmitting waveforms designed via random selection,
the SWD method, and the proposed WBI prediction method. The red crosses in the TF
images mark the frequencies that are overlapped with the WBI in the TF domain. In other
words, the red crosses represent the interfered sub-pulses in the received signal.

Figure 10. The TF images of different WBIs (CM-WBI only, SM-WBI only, and the mixed WBI from
top to bottom) in the duration of measurement and the transmitting waveforms designed via different
methods (random selection, the SWD method, and the proposed method from second to last column).
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It can be seen from Figure 10 that, as different sub-pulses will be interfered, the wave-
forms designed via random selection and the SWD method may work in the environment
with simple and stationary WBI (e.g., CM-WBI only), but may be seriously affected when
the WBI becomes more complicated (e.g., SM-WBI only and the mixed WBI). In real sit-
uations, the WBI is usually complicated. In such a case, the waveform designed via the
proposed WBI prediction method is more effective to avoid the WBI influence.

Corresponding to Figure 10, Figure 11 shows the target imaging results obtained by
different methods. For each row in Figure 11, the imaging results are obtained via random
selection, WDR, SWD, and WBI prediction from left to right. For each column in Figure 11,
the imaging results are obtained under CM-WBI only, SM-WBI only, and the mixed WBI
from top to bottom. As indicated in Figure 11, with the increase of the WBI complexity,
the imaging results obtained via random selection and SWD both degrade a lot. The SWD
method can help to improve the performance of random selection, while the imaging
results also degrade. Regardless of the increasing complexity of the WBI, the proposed
method can always achieve a high image quality.

Figure 11. The imaging results obtained by different imaging methods under different WBIs.

To assess the imaging results quantitatively, we calculate the normalized mean squared
errors (NMSEs) and image contrasts (ICs) of different results in Figure 11 based on

NMSE = ‖X −X 0‖F/‖X 0‖F (28)

and

IC =

√
Ave

{
[|X |2 −Ave{|X |2}] 2

}
Ave{|X |2}

(29)

where X denotes the target image obtained by different methods, X 0 denotes the ground-
truth image corresponding to the target parameters {α, β, χ} shown in Figure 9b, Ave{·}
denotes the averaging operation for all the elements in an image.
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Table 3 shows the NMSEs and ICs of different methods, where the bolded values are
the highest/lowest. The lower/higher the value of NMSE/IC, the better the image quality.
It can be seen from Table 3 that, compared to other methods, the proposed method can
always obtain high imaging performance.

Table 3. MSEs and ICs of the imaging results obtained via random selection (RND Sel.), WBI detection
and removal (WDR), simple waveform design (SWD), and the proposed method.

WBI RND Sel. WDR SWD Proposed

MSE (dB)
CM-WBI −5.0816 −7.8354 −8.2236 −8.3893
SM-WBI 4.8549 −6.8587 4.9389 −7.6529

Mixed WBI 13.7198 −2.2180 3.1501 −7.0912

IC
CM-WBI 132.0076 156.2876 159.9774 159.1816
SM-WBI 38.0723 156.6958 38.9409 159.3246

Mixed WBI 23.5171 99.5433 47.5641 155.4871

3.3. Robustness of the Proposed Method

To further compare the proposed method with others and show its robustness under
different ISRs, 50 Monte Carlo trials were carried out for different methods under the same
mixed WBI conditions, where the ISRs of CM-WBI and SM-WBI are both varying from
40 dB to 70 dB. For every trial, the WBI parameters are randomly from Table 1. The
averaged NMSEs of different methods over 50 trials are calculated, giving the results
shown in Figure 12. It can be learned from Figure 12 that: (1) the NMSEs of all the four
methods increase with the ISR increases, (2) the NMSEs of all the four methods are nearly
the same when the ISR is lower than 55 dB, (3) the NMSEs of random selection, the WDR
method, and the SWD method increase quickly when the ISR increases from 55 dB to 70 dB,
(4) the NMSEs of the proposed method are always the lowest compared to others and its
NMSE increase is relatively small. These results indicate that, compared to other methods
that degrade a lot when the ISR becomes high, the proposed method can always achieve a
stable imaging performance under different ISRs.

Figure 12. NMSEs of different imaging methods against ISRs. The imaging methods are random
selection (RND Sel.), WBI detection and removal (WDR), simple waveform design (SWD), and the
proposed method.

At last, under the condition of the mixed WBI with the ISR fixed as 70 dB, two
additional simulations are carried out to assess the robustness of the proposed method
under different antenna/sub-pulse numbers and different signal-to-noise-ratios (SNRs).
Firstly, keeping SNR = 0 dB and the relationship Mu = Nu = Qu/3, we calculate the
NMSEs of different imaging methods by changing the number of selected transmitting
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antennas Mu from 12 to 24 with a step of 2. With 50 Monte Carlo trials, the averaged results
are shown in Figure 13a. Secondly, keeping Mu = Nu = Qu/3 = 24, we calculate the
NMSEs of different imaging methods by changing the SNR from −40 dB to 0 dB with a
step of 5 dB. Similarly, the averaged results obtained with 50 Monte Carlo trials are shown
in Figure 13b. It can be seen from Figure 13 that the proposed method can always achieve
the smallest NMSEs, indicating its effectiveness and robustness under different conditions.

Figure 13. (a) NMSEs of different imaging methods against the numbers of selected antennas/sub-
pulses and (b) NMSEs of different imaging methods against SNRs. The imaging methods are random
selection (RND Sel.), WBI detection and removal (WDR), simple waveform design (SWD), and the
proposed method.

4. Discussion

With various simulation results shown in Section 3, we have verified the proposed
sparse recovery imaging method with WBI prediction for MIMO radar. However, it should
be noted that, as the PredRNN is trained with the simulated dataset that only includes
two typical WBIs, i.e., CM-WBI and SM-WBI, the performance of the proposed method
will degrade to some extent in practical applications, where more different types of WBIs
may exist.

Actually, the two typical WBIs are considered mainly because they are widely used
in existing studies. To make the derivation of the proposed method convenient, other
types of WBIs are not considered in this study, resulting in the limitation of the established
WBI dataset. Theoretically, the proposed method does not restrict to any specific types
of WBIs because any WBI with spatiotemporal correlation features in the TF domain
can be predicted by PredRNN. However, its prediction performance is dependent on the
established dataset. If the dataset contains only the two typical WBIs, the trained PredRNN
will not be able to perform very well for other types of WBIs, which is consistent with the
principle of a neural network.

It is known that, to achieve wider applications, the training dataset for a neural net-
work must be augmented to contain more scenarios. Thus, for PredRNN, to predict more
WBI types accurately, the established dataset should be augmented. However, it should be
noted that, based on the trained PredRNN with the two typical WBIs, the size of the newly
added WBIs can be small and thus the retraining process will be easy, i.e., transfer learning
can be used to solve this problem.

Besides, from the viewpoint of cognition, the proposed method can be categorized
as belonging to the cognitive radar imaging approach. However, as only the historical
WBI information is exploited, the proposed method is only cognitive to the environment,
without the cognition to the target. If the target cognition technique is further applied
to adaptively select the transceiving antennas and sub-pulses, a higher target imaging
performance can be obtained for MIMO radar, which we will explore deeply in the future.
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5. Conclusions

In this paper, we propose a 3D high-resolution imaging method for MIMO radar
under the condition of wideband interference based on predictive neural network and
sparse recovery. Compared to the imaging methods based on interference mitigation, the
proposed method does not need to eliminate the interference component from the received
signal, and hence can reduce the loss of target information. Compared to the imaging
methods based on waveform design with the historical interference as the reference, the
proposed method uses the predicted interference to guide the waveform design. Thus, it
can be more adaptive and avoid the receiving of interference to a greater extent. Simulation
results show the effectiveness, advantages, and robustness of the proposed method under
different conditions.
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