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Abstract: The subsurface velocity model is crucial for high-resolution seismic imaging. Although
full-waveform inversion (FWI) is a high-accuracy velocity inversion method, it inevitably suffers from
challenging problems, including human interference, strong nonuniqueness, and high computing
costs. As an efficient and accurate nonlinear algorithm, deep learning (DL) has been used to estimate
velocity models. However, conventional DL is insufficient to characterize detailed structures and
retrieve complex velocity models. To address the aforementioned problems, we propose a hybrid
network (AG-ResUnet) involving fully convolutional layers, attention mechanism, and residual unit
to estimate velocity models from common source point (CSP) gathers. Specifically, the attention
mechanism extracts the boundary information, which serves as a structural constraint in network
training. We introduce the structural similarity index (SSIM) to the loss function, which minimizes
the misfit between predicted velocity and ground truth. Compared with FWI and other networks,
AG-ResUnet is more effective and efficient. Experiments on transfer learning and noisy data inversion
demonstrate that AG-ResUnet makes a generalized and robust velocity prediction with rich structural
details. The synthetic examples demonstrate that our method can improve seismic velocity inversion,
contributing to guiding the imaging of geological structures.

Keywords: deep learning; attention mechanism; structural similarity index; velocity inversion;
transfer learning; seismic imaging

1. Introduction

In seismic exploration, seismic imaging is one of the most commonly employed tech-
niques for mapping the structure of the oil and gas reservoir, which contributes to further
inferring reservoir characteristics (e.g., lithology, fluid- and fracture-property) [1–4]. A
reliable macro-velocity model is a prerequisite for seismic imaging [5–7]. Velocity inversion
methods mainly consist of stacking velocity analysis, migration velocity analysis, tomogra-
phy, full-waveform inversion, and so on [8–11]. Full-waveform inversion (FWI) has become
a promising method for estimating velocity models of complex structures [12–16].

FWI suffers from three main problems: strong nonlinearity, high computational cost,
and inversion non-uniqueness [15]. Tarantola proposed a time-domain FWI based on
generalized least squares, which addressed nonlinear inversion by linearization [17]. Con-
sidering the intrinsically nonlinear relationship between velocity and reflection coefficient,
nonlinear optimization algorithms were used to establish the mapping between seismo-
gram and velocity [18–20]. To improve the inversion efficiency, the frequency-domain FWI
was developed [21,22]. Compared with the time domain, the frequency domain wavefield
is decoupled. Therefore, multi-scale analysis was used in frequency-domain FWI [23,24].
The principle of this method is consecutively to use lower frequency information as the
input to estimate the higher frequency part, finally yielding ideal results [25–27]. In order
to address the non-uniqueness problem of inversion, Laplace-domain FWI was devel-
oped [28,29]. Because of the frequency insensitivity of the Laplace domain, it can obtain
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the long-wavelength velocity model from a simple initial model [30,31]. Although previous
studies indicate that FWI has the potential to image complex structures precisely, the objective
function of FWI is strongly nonlinear, and it inevitably suffers from the aforementioned issues.

Therefore, velocity inversion needs an efficient and robust method to build an accurate
model. Deep learning (DL) has been applied successfully in computer vision [32–35], demon-
strating excellent nonlinear processability. Motivated by this idea, numerous studies have
applied DL successfully in seismic denoising [36–38], seismic data reconstruction [39–41],
seismic data interpretation and attribute analysis [42–44], and so on. In velocity inversion
disciplines, DL has served as an alternative method to FWI with high precision, robustness,
and efficiency [45–49].

The loss function, network architecture, and data type are thoroughly studied to
improve the inversion resolution of complex stratigraphic boundaries. Local structures and
details are mainly impacted by loss function [50,51]. Li et al. and Liu et al. proposed a novel
loss function that combines structural similarity index (SSIM) and L1 norm, contributing to
improving the inversion resolution [52,53]. The SSIM, suitable for the human visual system
(HVS), evaluates the similarity of two images through lightness, contrast, and structure [54].
In terms of network architecture, Wu and Lin employed convolutional neural networks
(CNN) with conditional random fields (CRF) to precisely predict the fault structure [55].
Li et al. proposed fully connected layers to learn spatially aligned feature maps, which
improved the inversion accuracy of spatial locations of geological targets [52]. In selecting
input data, common source point (CSP) gathers are always fed into the network for training
the parameters of a network. However, they have weak spatial correspondence with
velocity models. Nowadays, common-imaging point gathers (CIG) have been utilized for
network training instead of seismograms, simplifying the feature extraction and showing
excellent velocity model building [56,57]. Although the modern DL algorithms improve
the inversion efficiency and effect, the experimental results show that it is insufficient to
characterize stratigraphic boundaries and geological structures [49].

Therefore, this study focuses on improving the construction boundary extraction
ability of modern DL algorithms. Here, we present a hybrid network (AG-ResUnet)
consisting of Unet [58], residual units [59], and attention gates [60]. To precisely estimate
the geological structure details in the velocity model, we introduce SSIM to the loss function
and utilize SSIM to evaluate the inversion. Unlike other full reference image quality
assessments (FR-IQAs) that focus on the value difference of each pixel, SSIM pays more
attention to the local structural information in images, which is of great importance in
reconstructing the structural details. In this study, we first train the hybrid network by a
mix loss function, consisting of mean square error (MSE) and SSIM, to optimize each pixel
and local patch velocity misfits simultaneously. Second, we compare the training effect of
the mix loss function and MSE loss function and demonstrate that the mix loss function
plays a vital role in retrieving local structures. To illustrate the strength of our method,
we further compare predictions of AG-ResUnet and other methods (e.g., FWI and other
conventional networks). Finally, we conduct the transfer learning and noisy data inversion
experiments. The results demonstrate the generalization and robustness of our method.
The synthetic examples indicate that our method can provide high-resolution recovery of
the complex velocity model, thus significantly improving seismic imaging.

2. Methodology
2.1. Network Architecture

The input of network is CSP gathers calculated from a 2D reference velocity model,
and the output is the predicted velocity model. The AG-ResUnet consists of the Unet frame,
residual unit, and attention gate (AG) (Figure 1). In Unet architecture, high-resolution fea-
tures from the encoder combine with the decoder output (red arrow in Figure 1), avoiding
direct supervision and loss computation in high-level feature maps. Although multiple
convolutional layers can establish strongly nonlinear mappings between seismogram and
velocity, the degradation problem of deep networks still poses a significant challenge. To
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tackle the degradation problem due to vanishing gradients, we introduce the residual skip
connection (blue dotted line in Figure 1) between two non-adjacent layers in the encoder.
By taking advantage of residual units, the network can continue learning new features with
the vanishing of gradients.
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Figure 1. A block diagram of AG-ResUnet network architecture. Each box represents the output
feature maps of a convolutional layer. The number at the bottom of each box denotes channels in the
corresponding feature map. The down-sampling module consists of the repeated two convolutional
layers with 3 × 3 kernel sizes (blue arrow), two batch normalization layers (BN), linear rectification
function (ReLU), and the 2× 2 max-pooling layer (orange arrow). Each up-sampling module replaces
the max-pooling layer with a 2 × 2 transposed convolutional layer (black arrow).

AG (Figure 2), an attention mechanism, is employed in the medical segmentation,
showing an excellent capability of boundary recognition [60]. Inspired by this idea, we uti-
lize AGs in feature fusion, which adaptively focuses on the boundaries between geological
targets. Its mathematical framework is as follows:

al = σ2

(
ΨT
(

σ1

(
WT

x xl + WT
g gl + bx + bg

))
+ bΨ

)
(1)

x̂ = α·x (2)

where xl is the low-level feature map at the l layer down-sampling, gl is the l layer up-
sampling feature map, WT

x , WT
g , and ΨT are 1× 1 convolutional layers, the superscript

T means transpose, bx, bg, and bΨ are bias terms, σ1, σ2 are ReLU and Sigmod activation
functions, α is the gating coefficient, and x̂ is the feature map weighted by AG.

We take the addition of feature maps of x and g input into the nonlinear function σ1 to
obtain the output feature map. Then the channels of the output feature map are adjusted to
one by the convolutional layer Ψ. Finally, the feature map values are limited between zero
and one by σ2, and multiply x to obtain the gating coefficient α. The α value is higher at
geological boundaries.



Remote Sens. 2022, 14, 3810 4 of 18
Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 2. Attention gate work flow [60] The two input signals 𝑥  and 𝑔  of AG from the 
down-sampled and corresponding up-sampled feature maps, respectively, 𝑥ො is the feature map 
weighted by AG. 

We take the addition of feature maps of x and g input into the nonlinear function 𝜎ଵ 
to obtain the output feature map. Then the channels of the output feature map are ad-
justed to one by the convolutional layer 𝛹. Finally, the feature map values are limited 
between zero and one by 𝜎ଶ, and multiply x to obtain the gating coefficient 𝛼. The 𝛼 
value is higher at geological boundaries. 

2.2. Loss Function 
Mean-square error (MSE) is the most common loss function for regression problems 

(e.g., velocity inversion), 

𝐿ெௌா(𝑦, 𝑦ᇱ) = 1𝑁 (𝑦 − 𝑦ᇱ)ଶே
ୀଵ  (3) 

where N denotes the total number of pixels in one single image, 𝑦 and 𝑦ᇱ represent 
velocity label and inversion velocity, respectively. 𝐿ெௌா minimizes the only pixel-wise 
distance between output and target and ignores the texture structures. Consequently, the 
local structural information, critical for achieving high-resolution subsurface models, 
would not be retrieved using 𝐿ெௌா only. 

Local structures and details are vital factors to be focused on while recovering ve-
locity models. To make the network optimization focus on local structural information, 
we introduce SSIM to the loss function. It describes the similarity of the two models from 
the perspective of local structure [54]. Evaluating model similarity with SSIM is known as 
full reference, meaning that a complete reference label (e.g., reference velocity models) is 
assumed to be known. The value of SSIM ranges from zero to one. The larger the value, 
the closer the predicted velocity model is to the ground truth. SSIM is defined as: 𝑆𝑆𝐼𝑀(𝑦, 𝑦ᇱ) = ൫2𝜇௬𝜇௬ᇲ + 𝐶ଵ൯൫2𝜎௬௬ᇲ + 𝐶ଶ൯൫𝜇௬ଶ + 𝜇௬ᇲଶ + 𝐶ଵ൯൫𝜎௬ଶ + 𝜎௬ᇲଶ + 𝐶ଶ൯ (4) 

where 𝜇௬  and 𝜇௬ᇲ  represent the mean values of 𝑦  and 𝑦ᇱ , respectively, 𝜎௬  and 𝜎௬ᇲ 
are the corresponding standard deviation, 𝜎௬௬ᇲ denotes the covariance of 𝑦 and 𝑦ᇱ, and 𝐶ଵ and 𝐶ଶ represent constants to stabilize the division. 

The combination of the MSE loss and the SSIM serves as a mix loss function (𝐿ெ௫) 
maintaining the advantages of both loss functions, which simultaneously optimize each 
pixel and local patch misfits, 𝐿ெ௫(𝑦, 𝑦ᇱ) = 𝐿ெௌா(𝑦, 𝑦ᇱ) − 𝐿ெௌா(𝑦, 𝑦ᇱ) ∙ 𝑆𝑆𝐼𝑀(𝑦, 𝑦ᇱ) (5) 

where 𝑦 and 𝑦ᇱ represent velocity label and inversion velocity, respectively. 

Figure 2. Attention gate work flow [60] The two input signals xl and gl of AG from the down-sampled
and corresponding up-sampled feature maps, respectively, x̂ is the feature map weighted by AG.

2.2. Loss Function

Mean-square error (MSE) is the most common loss function for regression problems
(e.g., velocity inversion),

LMSE
(
yi, y′i

)
=

1
N

N

∑
i=1

(
yi − y′i

)2 (3)

where N denotes the total number of pixels in one single image, yi and y′i represent velocity
label and inversion velocity, respectively. LMSE minimizes the only pixel-wise distance
between output and target and ignores the texture structures. Consequently, the local
structural information, critical for achieving high-resolution subsurface models, would not
be retrieved using LMSE only.

Local structures and details are vital factors to be focused on while recovering velocity
models. To make the network optimization focus on local structural information, we
introduce SSIM to the loss function. It describes the similarity of the two models from the
perspective of local structure [54]. Evaluating model similarity with SSIM is known as
full reference, meaning that a complete reference label (e.g., reference velocity models) is
assumed to be known. The value of SSIM ranges from zero to one. The larger the value,
the closer the predicted velocity model is to the ground truth. SSIM is defined as:

SSIM
(
y, y′

)
=

(
2µyµy′ + C1

)(
2σyy′ + C2

)
(

µ2
y + µ2

y′ + C1

)(
σ2

y + σ2
y′ + C2

) (4)

where µy and µy′ represent the mean values of yi and y′i, respectively, σy and σy′ are the
corresponding standard deviation, σyy′ denotes the covariance of yi and y′i, and C1 and C2
represent constants to stabilize the division.

The combination of the MSE loss and the SSIM serves as a mix loss function (LMix)
maintaining the advantages of both loss functions, which simultaneously optimize each
pixel and local patch misfits,

LMix
(
yi, y′i

)
= LMSE

(
yi, y′i

)
− LMSE

(
yi, y′i

)
·SSIM

(
yi, y′i

)
(5)

where yi and y′i represent velocity label and inversion velocity, respectively.

2.3. Quantitative Metrics

Besides the loss values, three additional metrics are used to evaluate the performance
of inversion, i.e., SSIM, peak signal-to-noise ratio (PSNR), and coefficient of determination
(R2). SSIM is vital for evaluating the inversion process since it considers the local structural
information, while PSNR and R2 only evaluate inversion by each pixel velocity.
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The reconstruction quality of the velocity model is determined by PSNR, and the
equation is as follows:

PSNR
(
y, y′

)
= 20·log10

(
Max(y)√
MSE(y, y′)

)
(6)

where y and y′ represent the velocity label and the inversion velocity, respectively. The
larger the PSNR value, the better the inversion.

R2 constantly evaluates the fit of the regression model, then gives the equation as follows:

R2(yi, y′i
)
= 1− ∑N

i=1 (yi − y′i)
2

∑N
i=1 (yi − yi)

2 (7)

where yi denotes mean values of the velocity label. The range of R2 is generally zero to one. If
the velocity inversion model and ground truth are the same, then the value of R2 would be 1.

3. Experiments
3.1. Data Preparation

There are two kinds of datasets used in this study. One is the synthetic salt dome
dataset, and the other is the Society of Exploration Geophysicists (SEG) [61] published
salt dataset. The salt dome is the diapir structure typically associated with oil and gas.
Imaging salt structures is necessary for studying reservoir structures. We refer to a strategy
of random geological modeling [62,63] to build P-wave velocity (Vp) models. We first
generate an initial model with 5~8 flat layers, and the Gaussian function is utilized to
simulate the continuous fluctuation of the stratigraphic interface. The velocity of the
first layer is randomly chosen from 1500~1600 m/s. The velocities of the remaining
layers gradually increase, and the exact increment is randomly assigned in the range of
150–250 m/s. Finally, a salt dome structure with a fixed velocity of 4000 m/s is added to
the flat model. The model (e.g., six models in Figure 3) has 200 samples in both the x and z
directions, with a sampling interval of 10 m.
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The SEG data is a 3D pseudo-real salt model built by SEG and the European Society
of Geologists and Engineers (EAGE) based on geological data. We sliced it and made
500 independent 2D stratigraphic models (e.g., six models in Figure 4). The spatial size and
grid interval are the same as those of the synthetic dataset. The velocity ranges from 1500
to 4482 m/s. Compared with the synthetic dataset, the salt structures of the SEG dataset
are more irregular.
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CSP gathers, the input of the network, are generated through acoustic wave propaga-
tion (Equations (8) and (9)),

1
v2(x, z)

∂2u(x, z, t)
∂t2 =

(
∂2u(x, z, t)

∂x2 +
∂2u(x, z, t)

∂z2

)
+ s(t) (8)

s(t) =
[
1− 2(π fmt)2

]
e−(π fmt)2

(9)

where (x, z) is spatial coordinates and t is propagation time, v(x, z) denotes P-wave velocity,
u(x, z, t) denotes the acoustic wavefield, s(t) is the Ricker wavelet, and fm is the dominant
frequency. We use the same parameters for both datasets (Table 1). According to the
workflow mentioned above, we generated 3000 and 500 pairs of synthetic seismograms
from the synthetic and SEG velocity models, respectively.

Table 1. Parameters of forward modeling. Forward modeling using finite difference method (FDM).
All surface points are treated as receivers for each shot to simulate a full coverage seismic survey.
Therefore, the number of receivers is 200 and the maximum offset is 2 km. The absorption boundary
is perfectly matched layers (PMLs).

Algorithm Receiver
Interval Time Interval Maximum

Travel Time
Dominant
Frequency Source Points Source Interval Boundary

Condition

FDM 10 m 0.003 s 3 s 25 Hz 6 28.5 m PML
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3.2. Implementation Details

Before the training process, it is necessary to standardize the seismic records (Equation (10),
which can improve training efficiency and prevent the vanishing gradient problem,

x′ =
x−mean(x)

std(x)
(10)

where x denotes raw seismogram, mean(x) and std(x) are mean value and standard devia-
tion of x, respectively, and x′ denotes standardized seismogram.

The neural network is implemented with PyTorch [64]. Seismograms of six sources
corresponding to a synthetic velocity model are fed into the network. The training parame-
ters are documented in Table 2. Here we conduct all the experiments in the same computer
configuration. All network training in the study is performed on a GPU, model Tesla V100.
Three thousand pairs of synthetic data are randomly split into two groups: training and test
sets, in which there are 2700 and 300 pairs, respectively. The trained AG-ResUnet serves as
an initial model to continue training on the SEG dataset in transfer learning. Five hundred
pairs of SEG data are randomly split into 400 pairs of the training sets and 100 pairs of test
sets. The transfer learning parameters are the same as in Table 2, except the epoch is 100.

Table 2. Parameters of training process in all networks.

Optimizer GPU Learning Rate Weight Decay Batch Size Epoch

Adam Tesla V100 1 × 10−3 1 × 10−4 8 200

4. Results
4.1. Optimized Performance of Loss Function

We first test the network optimization effect of the mix loss function from the synthetic
dataset. Figure 5 exhibits the prediction results of AG-ResUnet trained with LMSE and LMix,
respectively. Notice that ground truth is included as the reference. It is clear that the third
row of estimated models by LMix is close to the ground truth (Figure 5). For instance, the
layered structure is clearly recovered in Figure 5b. Compared with LMSE, inversion results
of LMix have more accurate salt dome boundaries (Figure 5). The inversion results of the
LMix are better than those of the LMSE in terms of SSIM, PSNR, and R2.
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Figure 5. Predictions of networks trained with LMSE and LMix in synthetic salt domes dataset.
(a–c) Ground truth, (d–f) LMSE results, and (g–i) LMix results. The red geological targets represent salt
domes, and other layered structures surround formations. The quantitative metrics in the inversion
image are calculated from the inversion result and the corresponding ground truth; the metrics in the
following inversion image are calculated this way.
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The metrics relationships between the LMSE and LMix for the test set are shown in
Figure 6. When the epoch is less than 25, the PSNR and R2 values of LMSE are slightly
higher than those of LMix. As the training epoch increases, the test loss of LMix converging
is lower than that of LMSE, and PSNR and SSIM are significantly higher than those of LMSE.
The R2 values of the two loss functions show the same change trend, both close to 1. From
the test set evaluation metrics (Table 3), the loss value of LMix is an order of magnitude
lower than that of LMSE, while training times for both loss functions are almost the same.
Tests based on synthetic data demonstrate that the LMix improves the inversion accuracy
without introducing extra computation. The LMix is also used to train other networks in
this study.
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Figure 6. Comparison of quantitative metrics versus number of epoch between AG-ResUnet trained
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(d) test R2. The red line represents the network’s performance trained by the mix loss function, and
the blue line represents the MSE loss function training result.

Table 3. Performance metrics statistics and cost time of different loss functions on synthetic test set.

Dataset Loss Function Loss PSNR SSIM R2 Time

Test
LMSE 29528.22 28.00 0.8636 0.9994 299 m 17 s
LMix 3577.75 29.31 0.9903 0.9999 308 m 13 s

4.2. Qualitative Comparison
4.2.1. Comparison with Time-Domian FWI

Compared with AG-ResUnet and time-domain FWI, we analyzed performance be-
tween DL and the traditional inversion method. The forward parameters of FWI are
assigned according to Table 1, and the conjugate gradient optimizer is employed. The
inversion comparison based on the synthetic dataset is shown in Figure 7. Compared with
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the predictions and metrics of FWI, our approach has a more remarkable performance.
The subsurface velocity models from AG-ResUnet (Figure 7j–l) are almost the same as the
ground truth. Figure 7k,l can easily identify the salt dome outline. Although FWI can
also retrieve the stratigraphic structure (Figure 7g–i), the resolution is low and structural
boundaries are fuzzy.
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Figure 7. Comparisons of the velocity inversion in synthetic dataset. (a–c) Ground truth, (d–f) initial
velocity model of FWI, (g–i) results of FWI, and (j–l) predictions of our method. The initial model is
the true velocity model after Gaussian smoothing with mean 0 and variance 8.

To compare the efficiency of velocity inversion between FWI and AG-ResUnet, we
illustrate the time consumed by FWI and AG-ResUnet for the training and inversion
processes with the synthetic dataset (Table 4). Compared with FWI inversion time, the
prediction time of the trained network is only 1.8 s, and the computational efficiency is
much higher. To visualize the performance of our method, we plot the corresponding
pseudo-logging data at the same position (Figure 8). It is clear that the velocity profiles of
AG-ResUnet are nearly identical to the ground truth, but FWI velocity profiles exhibit slight
fluctuations. What is more important is that AG-ResUnet is capable of precisely capturing
the sudden velocity change (Figure 8).
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Table 4. Time consumed of FWI and AG-ResUnet for the training and inversion processes in synthetic
dataset. N/A indicates that FWI had no training time.

Dateset Process AG-ResUnet FWI

Synthetic Training 308 min 13 s N/A
Inversion 1.8 s 272 min 54 s

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Vertical velocity comparison. (a–c) Pseudo-logging data of the ground truth (the models 
shown in Figure 7a–c) and corresponding predicted velocity at the position of 750 m. The red line 
represents the ground truth, the blue is the velocity variation of AG-ResUnet, and the black is FWI. 

4.2.2. Comparison with Other Networks 
To further demonstrate the superiority of AG-ResUnet for complex model inversion, 

we compared our approach with the other four DL algorithms, i.e., Unet, ResUnet, 
PSPnet, and DeepLab v3+, which have excellent ability in the segmentation field [65–68]. 
We apply the aforementioned network models to perform network training on synthetic 
datasets. We select predictions in the synthetic dataset to comprehensively compare the 
performance of algorithms (Figure 9). Generally, the results inverted by each network 
show relatively uniform and accurate velocity distribution. From the predictions and 
metrics, the velocity model predicted by AG-ResUnet is very close to the ground truth 
regarding the subsurface interface. Taking the salt dome structure as an example, 
AG-ResUnet successfully predicts the converging boundaries, while the predictions of 
other networks have significant errors. 

 
Figure 9. Comparison of inversion results in different networks. (a) Ground truth, (b) Unet, (c) 
ResUnet, (d) PSPnet, (e) DeepLab v3+, and (f) AG-ResUnet. The metrics in each result show the 
inversion effect in terms of quantification. 

In order to comprehensively compare the trend of the metrics during the training 
process of each network, we show the metrics history of five networks from the test set 

Figure 8. Vertical velocity comparison. (a–c) Pseudo-logging data of the ground truth (the models
shown in Figure 7a–c) and corresponding predicted velocity at the position of 750 m. The red line
represents the ground truth, the blue is the velocity variation of AG-ResUnet, and the black is FWI.

4.2.2. Comparison with Other Networks

To further demonstrate the superiority of AG-ResUnet for complex model inversion,
we compared our approach with the other four DL algorithms, i.e., Unet, ResUnet, PSPnet,
and DeepLab v3+, which have excellent ability in the segmentation field [65–68]. We apply
the aforementioned network models to perform network training on synthetic datasets. We
select predictions in the synthetic dataset to comprehensively compare the performance
of algorithms (Figure 9). Generally, the results inverted by each network show relatively
uniform and accurate velocity distribution. From the predictions and metrics, the velocity
model predicted by AG-ResUnet is very close to the ground truth regarding the subsurface
interface. Taking the salt dome structure as an example, AG-ResUnet successfully predicts
the converging boundaries, while the predictions of other networks have significant errors.
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inversion effect in terms of quantification.
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In order to comprehensively compare the trend of the metrics during the training
process of each network, we show the metrics history of five networks from the test set
(Figure 10). The metrics of each network share the same trend. The loss term decreases
significantly within 25 epochs and then converges smoothly. Besides, AG-ResUnet has
the lowest test loss, and PSNR and SSIM reached a high point. We summarize the perfor-
mance metrics statistics and cost time of five networks with the synthetic test set (Table 5),
indicating that AG-ResUnet is more capable of extracting boundary features than other
methods. Although it has the longest training time, the time difference is within one order
of magnitude, and performance is totally acceptable given the competing power. The
inversion comparison of AG-ResUnet and ResUnet shows that the AG unit is of great
importance for enhancing the capability of identifying the subsurface velocity boundaries.
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Figure 10. Quantitative metrics history of five networks trained in synthetic test dataset. (a) Test Loss,
(b) test PSNR, (c) test SSIM, and (d) test R2.

Table 5. Performance metrics statistics and cost time of five networks on synthetic test set. The bold
numbers in this table indicate excellent performance.

Dataset Network Loss PSNR SSIM R2 Time

Test

Unet 7046.72 27.30 0.9265 0.9994 208 min 56 s
ResUnet 6045.29 28.05 0.9490 0.9998 295 min 26 s
PSPnet 13662.38 28.03 0.6249 0.9756 157 min 48 s

Deeplab v3+ 4290.33 28.76 0.9545 0.9996 247 min 38 s
AG-ResUnet 3577.75 29.31 0.9903 0.9999 308 min 13 s

4.3. Network Generalization

In order to demonstrate the generalization of our method, we perform the transfer
learning process with the SEG dataset and present the prediction results in Figure 11.
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The transfer learning results have accurately reconstructed the SEG salt body and clear
subsurface interface. The inversion results and evaluation metrics on the SEG dataset
demonstrate that transfer learning contributes to improving the trained network to identify
new geological features.
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To further demonstrate the training effect of transfer learning on mini-batch datasets,
we show the metrics trend for transfer learning from the SEG test set (Figure 12). The loss
term decreases considerably within ten epochs and then converges gradually. Similarly,
PSNR, SSIM, and R2 rise substantially within ten epochs and stabilize around a high level.
The training metrics of the mini-batch SEG dataset are close to the level of the synthetic
dataset. In particular, PSNR is stable at around 31 dB, which has exceeded the training
performance on the synthetic dataset. The results show that our method is generalizable,
and the trained AG-ResUnet can be an initial model to predict other datasets.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 12. Quantitative metrics history of AG-ResUnet transfer learning in SEG test dataset. (a) Test 
Loss, (b) test PSNR, (c) test SSIM, and (d) test R2. 

4.4. Network Stability 
To analyze the stability of AG-ResUnet, we conduct additional experiments using 

both synthetic and SEG datasets under more realistic conditions. When the synthetic 
dataset is contaminated with a certain level of noise, the majority of predictions from 
AG-ResUnet (Figure 13) are close to the ground truth. However, overall predictions are 
slightly lower than those of clean data. When the noise level is low (e.g., SNR = 20 dB), it 
is clear in Figure 13d–f that the stratigraphic interfaces and the salt domes of inversion 
are accurate, with almost no artifacts. With the increase of noise (e.g., SNR ≤ 10dB), the 
inversion results become poor, yet the velocity model can still be correctly recovered. 
Moreover, we use AG-ResUnet to invert the noise-contaminated SEG dataset, and the 
inversion results still show the aforementioned regularity (Figure 14). The results 
demonstrate that our method can yield a stable velocity model from noise-contaminated 
data. 

Figure 12. Quantitative metrics history of AG-ResUnet transfer learning in SEG test dataset. (a) Test
Loss, (b) test PSNR, (c) test SSIM, and (d) test R2.



Remote Sens. 2022, 14, 3810 13 of 18

4.4. Network Stability

To analyze the stability of AG-ResUnet, we conduct additional experiments using both
synthetic and SEG datasets under more realistic conditions. When the synthetic dataset is
contaminated with a certain level of noise, the majority of predictions from AG-ResUnet
(Figure 13) are close to the ground truth. However, overall predictions are slightly lower
than those of clean data. When the noise level is low (e.g., SNR = 20 dB), it is clear in
Figure 13d–f that the stratigraphic interfaces and the salt domes of inversion are accurate,
with almost no artifacts. With the increase of noise (e.g., SNR ≤ 10dB), the inversion results
become poor, yet the velocity model can still be correctly recovered. Moreover, we use
AG-ResUnet to invert the noise-contaminated SEG dataset, and the inversion results still
show the aforementioned regularity (Figure 14). The results demonstrate that our method
can yield a stable velocity model from noise-contaminated data.
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5. Discussion

We have demonstrated that our method can produce reliable results. The outstanding
performance of AG-ResUnet benefits from the attention structure (i.e., AG). As illustrated
by the workflow of AG in Section 2, this module fully considers the feature structure (e.g.,
geological targets and stratigraphic boundaries) extracted from the feature maps of the
downsampling and upsampling process. We serve the feature structure extracted by AG as
the training constraints. Therefore, our algorithm maintains a high boundary processing
ability when dealing with different feature data. More importantly, the gating signal for
each skip connection aggregates information from multiple scales, as shown in Figure 1,
which increases the resolution of the reconstructed model and achieves better performance.
By taking advantage of AG, our method is more robust and sensitive in extracting structural
boundary information indicated by the inversion results of AG-ResUnet and other methods
(Figures 7–9). Another reason for introducing AG into the network is that it is simple to
calculate. Notice that the AG parameters can generally be updated by back-propagation
without employing a sampling-based method used in the traditional attention mecha-
nisms [69]. Comparing the quantitative metrics of ResUnet and AG-ResUnet in Table 5, it
is clear that the training time remains the same after introducing AG. In other words, AGs
can be easily integrated into traditional CNN architectures with minimal computational
overhead, increasing the model sensitivity and accuracy for predicting velocity models.

Moreover, the characterization of structural details also depends on the loss function.
The error sensitivity approach (e.g., MSE loss function, mean absolute error (MAE) loss func-
tion) computes the error between each pixel of the prediction and the ground truth, which
is insufficient to extract relevant structural information between each element. Therefore,
to further improve the resolution of inversion, we introduce the SSIM into the loss function,
which has been widely used in geophysical research, e.g., seismic velocity inversion [56]
and seismogram super-resolution reconstruction [70]. The SSIM term comprehensively
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evaluates the structural similarity of the retrieved model so that the network optimization
focuses on structural information. The inversion comparison in Figures 5 and 6 shows that
the combination of MSE and SSIM terms contributes to estimating accurate velocity models
and mitigating the problem of non-uniqueness in inversion.

By taking advantage of the aforementioned improvements, the transfer learning and
stability experiment results demonstrate that AG-ResUnet has a strong generalization,
robustness, and the potential of processing field data. Due to the difference in the geo-
logical structure of different areas, it is reasonable to apply transfer learning to field data
processing [49,71,72]. Transfer learning, in which we use the previously trained network as
an initial network for an updated velocity model due to the change in geological conditions,
can reduce the training costs and be adapted to more general field conditions. Notice that
transfer learning also requires sufficient data. However, field data are usually very limited,
making it difficult for data-driven DL methods to work. Nowadays, the physics-guided
networks, relying on prior physical information, show the potential to solve the velocity
inversions in case of limited data [73–75]. Therefore, future work may pay more attention
to using prior physical information to guide the optimization of the network.

6. Conclusions

This study proposes a novel and practical approach to directly estimate velocity
models from seismic data using AG-ResUnet. We have demonstrated that our approach can
produce a reliable result. Our method has two advantages in network architecture and loss
function. The AG-ResUnet network introduces attention gates that can adaptively detect
areas with significant velocity changes, equivalent to introducing additional structural
constraints for processing. Furthermore, the mix loss function contributes to the inversion
results approximating the ground truth. By taking advantage of these two improvements,
our method enhances the ability of DL algorithms to characterize detailed structures and
retrieve complex velocity models.

AG-ResUnet provides a reliable way to strengthen the complex structure extraction
from CSP gathers, showing excellent transfer learning properties and strong generalization.
Experimental results demonstrate that our approach yields a stable and robust estimation
in the cases of noisy data. To summarize, AG-ResUnet has high accuracy, strong generaliza-
tion, and robustness for velocity inversion. Our method contributes to imaging geologic
reservoirs, CO2 monitoring, and geotechnical engineering.
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