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Abstract: The Nyainrong microcontinent carries key information about the ongoing evolution of the
central Tibetan Plateau. The 2021 Mw 5.7 Nagqu earthquake is the largest instrumentally recorded
event inside this microcontinent, which provides an ideal opportunity to elucidate the influence of this
ancient microcontinent on the seismogenic mechanisms, stress heterogeneity and strain partitioning
across the Tibetan Plateau. Here, we constrain the seismogenic fault geometry and distributed fault
slip using Interferometric Synthetic Aperture Radar (InSAR) observations. By using the regional
focal mechanism solutions, we invert the stress regimes surrounding the Nyainrong microcontinent.
Our analysis demonstrates that the mainshock was caused by a normal fault with a comparable
sinistral strike-slip component on a North-West dipping fault plane. The Nyainrong microcontinent
is surrounded by a dominant normal faulting stress regime to the northeast and a dominant strike-
slip stress regime to the southwest. Moreover, the clockwise rotation of the maximum horizontal
stress (SHmax) from the southwest to the northeast is ~20◦. This indicates that the Nyainrong
microcontinent is involved in the mainshock occurrence as well as regional stress heterogeneity, and
strain partitioning. Our results highlight the significance of the ancient microcontinent in the tectonic
evolution of the Tibetan Plateau.

Keywords: Nyainrong microcontinent; Nagqu Mw 5.7 earthquake; InSAR; transtensional coseismic
slip; stress inversion

1. Introduction

The Nyainrong microcontinent, which is also called the Amdo basement/terrane, is
located at the juncture of the Qiangtang terrane and Lhasa terrane in the central Tibetan
Plateau [1,2]. Previous paleoecology and geochemistry studies have demonstrated that
the Nyainrong microcontinent is an older tectonic unit, with an age of between ~170 to
~900 million years (Ma) [1–4]. It appeared much earlier than the initiation age (~50 Ma)
of the India–Eurasia collision [5]. The lower intercept age of 170 Ma corresponds to the
timing of low-grade metamorphism during the initial Lhasa–Qiangtang collision due
to the Bangong Ocean closing [1]. As shown in Figure 1, the ancient basement rock in
the Nyainrong microcontinent differs from the surrounding sedimentary rocks [3]. The
Nyainrong microcontinent is an east–west-trending eye-shaped terrane, covering an area
of ~8000 km2 (Figure 1). Although it is widely acknowledged that Tibet’s thick crust and
high elevation originated from the India–Eurasia collision, the role of the older tectonics is
less understood [6]. However, previous investigations of the Nyainrong microcontinent
were mainly focused on long-term (i.e., geological time of Ma) tectonic evolution based
on petrological, geochronological, and geochemical methods [1–4]. Therefore, a study
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of the kinematics and stress regime of the Nyainrong microcontinent from geodetic and
seismological data is further required for elucidating the short-term tectonic evolution of
the central Tibetan Plateau.

Remote Sens. 2022, 14, x FOR PEER REVIEW 2 of 17 
 

 

understood [6]. However, previous investigations of the Nyainrong microcontinent were 
mainly focused on long-term (i.e., geological time of Ma) tectonic evolution based on pet-
rological, geochronological, and geochemical methods [1–4]. Therefore, a study of the kin-
ematics and stress regime of the Nyainrong microcontinent from geodetic and seismolog-
ical data is further required for elucidating the short-term tectonic evolution of the central 
Tibetan Plateau. 

 
Figure 1. (a) Regional seismotectonic context around the 2021 Nagqu Mw 5.7 earthquake. Red focal 
mechanism is the hypocenter of the 2021 Nagqu event. Gray focal mechanisms are historical events 
with Mw > 5.5 from Global Centroid Moment Tensor (GCMT) [7]. Black focal mechanisms are Mw 
> 7 historical earthquakes. Black dots are historical earthquakes with Mw between 4 and 5.5. Purple 
and black vectors are, respectively, continuous and campaign Global Navigation Satellite System 
(GNSS) velocities from 1998 to 2014 [8]. Blue polygons are lakes with area larger than 1 km2 from 
National Tibetan Plateau Data Center [9]. Black rectangles represent the spatial coverages of Senti-
nel-1 SAR data from one ascending track 143 (AT143) and one descending track 77 (DT77). Blue 
rectangle bounds the extent of enlarged (b). (b) The zoom-in of blue box in (a). (c) Geological map 
covering a similar region of (b) modified from the 1:1.5 million geological maps of the Tibetan Plat-
eau and detailed lithology properties are available[10]. The lithology age marked in (c) is adopted 
from Xie et al. (2014) [2]. 
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Figure 1. (a) Regional seismotectonic context around the 2021 Nagqu Mw 5.7 earthquake. Red
focal mechanism is the hypocenter of the 2021 Nagqu event. Gray focal mechanisms are historical
events with Mw > 5.5 from Global Centroid Moment Tensor (GCMT) [7]. Black focal mechanisms are
Mw > 7 historical earthquakes. Black dots are historical earthquakes with Mw between 4 and 5.5.
Purple and black vectors are, respectively, continuous and campaign Global Navigation Satellite
System (GNSS) velocities from 1998 to 2014 [8]. Blue polygons are lakes with area larger than 1 km2

from National Tibetan Plateau Data Center [9]. Black rectangles represent the spatial coverages of
Sentinel-1 SAR data from one ascending track 143 (AT143) and one descending track 77 (DT77). Blue
rectangle bounds the extent of enlarged (b). (b) The zoom-in of blue box in (a). (c) Geological map
covering a similar region of (b) modified from the 1:1.5 million geological maps of the Tibetan Plateau
and detailed lithology properties are available [10]. The lithology age marked in (c) is adopted from
Xie et al. (2014) [2].

The Nagqu Mw 5.7 earthquake occurred in the east corner of the Nyainrong micro-
continent on 19 March 2021, which is the largest earthquake inside the microcontinent
during its instrumental history. This earthquake offers an unprecedented opportunity to
explore the kinematics and stress regime of this microcontinent based on the Interferometric
Synthetic Aperture Radar (InSAR) images and well-recorded seismic data. Geodetic and
seismological data were previously used by various research institutions, which revealed
the focal mechanisms of this earthquake, consistently characterized by normal faulting with
a moderate strike-slip component (Table 1). Li et al. (2021) investigated the fault geometry
and mechanisms of this earthquake using Sentinel-1 data, and the stress-loading effects
of historical large M > 7 earthquakes on the mainshock [11]. Li et al. (2022) examined the
stress and strain characteristics in the seismic region of the 2021 Nagqu Mw 5.7 earthquake
based on stress data, focal mechanisms, and the GNSS data [12]. However, these studies
did not consider the effect of the Nyainrong microcontinent on the seismic dynamics and
surrounding stress and strain. Thus, it remains unclear what role the Nyainrong microcon-
tinent played in the occurrence of the mainshock and the regional tectonic evolution, which
is crucial for better understanding the mechanisms of earthquake and faulting [13,14].
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Table 1. Source parameters for the 2021 Nagqu earthquake.

Source Lon (◦) Lat (◦) Depth
(km)

Strike
(◦)

Dip
(◦)

Rake
(◦) Mw

USGS 92.915 31.925 11.5 17/225 37/56 −113/−74 5.7
GCMT 92.92 31.85 19.4 354/237 50/62 −142/−47 5.8

GFZ 92.89 31.88 10 358/233 39/64 −138/−58 5.7
IPGP 92.899 31.906 10 7/232 43/56 −126/−61 5.7

Li et al. (2021) - - ~7 237 69 −70 5.7
This study 92.846 31.958 7.5 240 59 −56 5.7

Here, we use Sentinel-1 SAR images to produce the coseismic InSAR displacement
caused by the 2021 Nagqu Mw 5.7 earthquake. With both ascending and descending
InSAR observations, we decompose the 2D displacements including horizontal components
along the fault trace and vertical deformation. We further constrain the seismogenic fault
geometry and distributed fault slip to explore the faulting kinematics within the Nyainrong
microcontinent. Local focal mechanisms are used to perform the stress inversion and
investigate the role of the Nyainrong microcontinent in the regional stress heterogeneity
and strain partitioning. Our results highlight the significant role of ancient special structures
such as the Nyainrong microcontinent in the tectonic evolution and stress/strain state of
the Tibetan Plateau.

2. InSAR Observation and Fault Slip Inversion
2.1. InSAR Observations

The 2021 Nagqu earthquake occurred in the center of Tibet, where there are arid
climate conditions (average monthly precipitation ~20 mm) [15] and sparse vegetation
coverage. Such conditions are conducive to applying InSAR technology to obtain the
completed displacements over the epicenter region [16,17]. The constellation of Sentinel-1
satellites is operated by the European Space Agency with a shortened revisiting period
(6/12 days), which strengthens their capacity to capture millimeter-level surface displace-
ment. Here, we use C-band Sentinel-1 SAR data from one ascending track 143 (AT143)
and one descending track 77 (DT77) to map coseismic interferograms of the 2021 Nagqu
earthquake (Figure 1 and summarized in Table 2). Relying on the precise Sentinel-1 orbits,
high-accuracy coregistration between the primary and secondary Single Look Complex
(SLC) was carried out with the Gamma software [18]. Then, two coseismic interferograms
were generated with the coregistered SLCs. Furthermore, the one arc-sec digital elevation
model from the Shuttle Radar Topography Mission [19] and an improved power spectrum
filter method [20] was applied to mitigate the effect of topography and the phase noise in
the interferograms, respectively. Finally, the coseismic surface displacement fields were
retrieved by unwrapping the filtered interferograms by a minimum cost flow method [21].
In addition, given the topographic relief in the epicenter region, the potential topography-
dependent tropospheric delay was estimated and removed [22].

Table 2. Details of the coseismic Sentinel-1 SAR data used in this study. Bperp is the perpendicular
baseline.

Interferogram Primary
(yyyymmdd)

Secondary
(yyyymmdd) Path Direction Heading

Angle (◦)
Incidence
Angle (◦) Bperp (m)

AT143 20210312 20210324 143 Ascending 349.8 39.7 12
DT77 20210307 20210319 77 Descending 189.9 43.3 12

Given the excellent coherence and somewhat low noise level in the epicenter region,
the obtained coseismic interferograms characterize well-defined surface displacements
caused by the Nagqu earthquake (Figure 2). The displacements are concentrated in the east



Remote Sens. 2022, 14, 3834 4 of 15

corner of the Nyainrong microcontinent. The descending coseismic interferogram revealed
a symmetric double-lobe pattern with a peak subsidence value of ~3 cm away from the
satellite line of sight (LOS) direction. The southeastern region is characterized by uplift (LOS
range decrease), while the northeastern region is characterized by subsidence (LOS range
increase). However, the ascending coseismic interferogram reveals only one subsidence
lobe with up to ~2 cm LOS displacement. These distinct displacement patterns between the
two tracks can be potentially attributed to the less favorable viewing geometry associated
with the ascending orbit. Furthermore, we do not discern any remarkable ruptures from
the displacement maps, which indicates a blind fault in the SW–NE orientation.
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Figure 2. Observed and modeled coseismic ground displacement in satellite line of sight (LOS) in
both (a–d) AT143 and (e–h) DT77 tracks. Positive values indicate relative motion of the ground
surface toward the satellite (LOS range decrease). First column: the observed surface displacement
fields; Second column: model predictions; Third and fourth columns: residuals between observations
and models and the histograms of residuals. Black contour with a 0.1 m interval is the coseismic slip
model. Red line and black star represent the surface trace of the modeled seismogenic fault and the
epicenter estimated in this study based on InSAR data, respectively.

2.2. Two-Dimensional Displacement

As the LOS displacement represents only one-dimensional (1D) manifestation along
the satellite viewing direction, it provides only limited constraints on the real pattern
of crustal deformation (e.g., dextral or sinistral strike-slip, thrust or dip-slip) [23]. In
this context, 2D (two-dimensional) displacement can improve our understanding of the
characteristics of crustal deformation caused by the 2021 Mw 5.7 Nagqu earthquake. To
this end, the 2D coseismic ground deformation fields are decomposed from the ascending
and descending coseismic interferograms to better constrain the characteristics of the fault
deformation [23]. The decomposed 2D displacements are characterized by southwest
horizontal motion along the strike direction and subsidence in the northwestern lobe, and
northeast horizontal motion along the strike direction and uplift in the southeast lobe
(Figure 3). This identified pattern suggests that the crust deformation during the 2021
Nagqu earthquake is characterized by both normal and sinistral fault slips, corresponding
to a transtensional fault slip during the earthquake.
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Figure 3. Two-dimensional coseismic surface displacement maps. (a) Horizontal displacement in the
strike direction (red line). Positive values represent the motion toward to northeast along the strike
direction. (b) Vertical displacement. Negative values represent subsidence. Black contour with a
0.1 m interval is the coseismic slip model.

2.3. Seismogenic Fault Geometry and Distributed Slip

To reconstruct the source parameters of the seismogenic fault (longitude and latitude
of fault location, length, width, depth, strike angle, dip angle, strike-slip and dip-slip),
we applied the Geodetic Bayesian Inversion Software (GBIS), which had been previously
proposed by Bagnardi and Hooper [24]. Before implementing the source inversion, we
calculated the experimental semivariogram to quantify the covariance with tropospheric
delay and topographic residuals in the interferograms [24]. Moreover, to achieve a tractable
computational burden, we applied an adaptive gradient-based quadtree sampling method
to downsample the coseismic interferograms to ~400 grids [25]. By assuming that the
seismogenic fault was a rectangular plane with a uniform slip, the elastic half-space dis-
location model was utilized. In this way, we determined the Green function, linking the
down-sampled InSAR observations with the uniform fault slip [26].

Two NW–SW and SW–NE-orientated fault plane solutions for the Nagqu earthquake
were previously issued by different agencies (Table 1). Given the prior information of
double-lob coseismic displacement features (Figure 2), the decomposed 2D displacement
fields (Figure 3), and the consistent normal or transtensional faulting from different agencies
(Table 1), we preferred the SW–NE orientated fault plane dipping northwest. Thus, we
set the sampling boundary for a strike angle (180, 300) and a dip angle (0, 90), and loose
sampling boundaries were provided for other source parameters to broadly cover the
solution space. In the Bayesian inverse approach, the optimal model parameters were
determined by finding the maximum-a-posteriori probability solution from the posterior
probability density functions, which were obtained by sampling with the Markov chain
Monte Carlo method [27]. More detailed information about the inversion was provided in
a previous study [24].

After 5 × 106 iterations, we obtained well-converged Markov chains, indicating it did
explore the parameter space sufficiently. The maximum-a-posteriori probability uniform
slip model solution reveals the optimal fault plane of 9.8 km long and 9.3 km wide with
a strike angle of 240.4◦ and a dip angle of 59.2◦ (Table 3). Trade-offs between the fault
parameters are somewhat inconspicuous (i.e., strike and dip angles), as indicated by the
histograms of posterior probability distributions (Figure 4). These parameters of fault
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geometry are consistent with previous studies that used either geodetic or seismological
data (Table 1).

Table 3. The optimal solution and searching intervals of the fault geometry parameters in the
non-linear GBIS inversion.

Parameters Length
(km)

Width
(km) Depth Strike

(◦)
Dip
(◦)

Strike-Slip
(cm)

Dip-Slip
(cm)

E-Shift
(km)

N-Shift
(km)

Lower boundary 0 0 0 180 0 −1 −1 −20 −20
Upper boundary 20 20 20 300 90 1 1 20 20

Optimal Para. 9.8 9.3 11.7 240.4 59.2 0.10 −0.09 −7.1 12.0
2.5% 8.2 4.0 9.0 233.1 52.7 0.06 −0.22 −8.3 9.1
97.5% 11.0 13.1 15.0 244.1 69.3 0.25 −0.08 −5.6 14.0

Note: E-shift and N-shift are differential E–W and N–S distances with respect to the GCMT epicenter location.
Depth is the lower depth of uniform fault. The optical solutions are maximum-a-posteriori probability solutions,
and a 95% confidence interval (between 2.5% and 97.5% percentiles) of posterior probability density functions of
fault parameters.
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Figure 4. Marginal posterior probability distributions for the source parameters for the 2021 Nagqu
Mw 5.7 earthquake. Scatter plots are contoured according to frequency (warm and cold colors for
high frequency and low frequency, respectively). Red lines represent the maximum-a-posteriori
probability solution (see also Table 1).

To resolve a distributed coseismic slip model, while also improving the fitness of the
data and models, we fixed the fault geometry, derived from GBIS non-linear inversion.
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Moreover, we extended the fault length and the width to 30 km and 18 km (i.e., to 15 km
depth), respectively. In this context, we utilized an automated fault discretization method
to invert the finite coseismic slip model [28]. This approach iteratively discretizes the fault
plane to account for the spatial variations of model resolution during the distributed slip
inversion. The higher order Tikhonov Regularization strategy was adopted to stabilize
the slip estimation, and the regularization factor was determined using the jRi strategy
(Figure 5) to balance the regularization and perturbation errors [28]. Note that the regu-
larization and perturbation errors reflect the difference between noise-free observations
and regularized model results and the influence of observation noise on the inversion
results, respectively.
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The coseismic slip inversion results on a northwest dipping fault configuration indicate
that the 2021 Nagqu earthquake ruptured on a fault structure with a length of ~15 km and
a width of ~12 km (Figure 6). Coseismic slip mainly concentrates at 2−12 km in depth,
and the maximum slip (~0.3 m) is located at a depth of ~8 km (Figure 6a). The coseismic
fault slip reveals the comparable components of dip-slip and sinistral slip (Figure 6b,c)
with a mean rake angle of −56◦ within the slip zone (>0.1 m). This illustrates that the
2021 Nagqu earthquake occurred within local transtensional tectonics. The absence of
remarkable coseismic slip in shallow depth (0−2 km) suggests that the Nagqu earthquake
may not have ruptured the surface (Figure 6). The predicted displacements from the
best-fitting model explain both the ascending and descending coseismic observations well,
with a Root Mean Square of ~0.7 cm (ascending) and ~0.5 cm (descending), respectively
(Figure 2). The remaining residuals can be potentially explained by the residual topography
and atmospheric artifacts. Assuming the average shear moduli of 33 GPa in the epicenter
region [29], we calculated a geodetic moment as ~4.5 × 1017 Nm, corresponding to Mw 5.7.
Our estimated coseismic slip distribution and moment magnitude are comparable with
those reported in previous studies using the geodetic or seismological dataset (Table 1).
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Figure 6. Distributed coseismic slip. (a) Total coseismic slip; (b) sinistral slip component; and
(c) dip-slip component. Black stars represent the hypocenter of the 2021 Mw 5.7 Nagqu earthquake
estimated in this study based on InSAR data. Black arrows indicate the slip vector. (d–f) are 3D views
of (a–c), respectively.

3. Stress Inversion from Local Focal Mechanisms

We estimated the local stress fields by the focal mechanisms during 1990−2019 from
a previous study [11]. We focused on three event clusters (M ≥ 4.3), namely Zone 1–3,
surrounding the Nyainrong microcontinent (Figure 7). Zone 1 is adjacent to the southwest
region of the Nyainrong microcontinent, while Zone 2 and Zone 3 are adjacent to the
northeastern region of the Nyainrong microcontinent (Figure 7). In total, 22 focal solutions
were classified as six, eight, and eight records in Zone 1, Zone 2 and Zone 3, respectively
(Table 4). We utilized an iterative joint inversion method [30] to calculate principal stresses
σ1, σ2 , σ3, and the stress ratio R = (σ1 − σ2)/(σ1 − σ3), 0 < R < 1 representing the relative
magnitudes of the principal stresses [31]. With the bootstrap resampling approach [32], this
method allows for determining the 95% confidence intervals of an optimal stress tensor. To
obtain the optimal stress parameters (Table 4), we estimated 2000 bootstrap samples with
random noise of 10◦. The average misfit angle α is the difference between the observed and
predicted fault slip directions, which can be used to reflect the degree of stress heterogeneity
and evaluate the performance of stress inversion.

Table 4. Stress tensor parameters as obtained from focal mechanisms inversion.

Subzones N a σ1(
◦)az./pl. b σ2(

◦)az./pl. σ3(
◦)az./pl. R c α(◦) d Stress Regime SHmax e

Zone1 6 171/36 4/54 266/6 0.34 28 SS 174 (−6)
Zone2 8 140/76 9/9 278/11 0.25 13 NF 007
Zone3 8 325/81 195/6 104/7 0.28 17 NF 014

a Number of focal mechanisms; b Azimuth and plunge angles; c stress ratio R = (σ1 − σ2)/(σ1 − σ3), 0 < R < 1;
d misfit angle; e maximum horizontal compressive stress orientation.
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Zone 1 is characterized by a near EW σ1 orientation with a 36◦ plunge angle, a low
R (0.34) value and near horizontal σ3 (Figure 7b and Table 4). This implies that Zone
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1 is dominated by a strike-slip (SS) stress regime according to Zoback’s classification
scheme [33]. However, the plunge angles (~80◦) of σ1 axes in Zone 2 and Zone 3 are
substantially larger than those in Zone 1. In addition, the near horizontal σ2 and σ3 in Zone
2 and Zone 3 also indicate that the northeastern zones are dominated by normal fault (NF)
stress regime (Figure 7 and Table 4). However, the typical girdle distributions of the σ1/σ2
samples and relatively low stress ratio R (~0.25), especially in Zone 3, indicate a stress
permutation between σ1 and σ2 (Figure 7) [34]. These switches between σ1 and σ2 reflect
the close correlation between strike-slip and normal faulting behaviors [34], resonating
with different faulting behaviors in the study region (Figure 7). Considering the used focal
mechanisms are within acceptable uncertainties, the larger misfit angle of 28◦ in Zone 1
than that of ~15◦ in Zone 2 and Zone 3, indicates the background tectonic stress fields in
Zone 1 are higher heterogeneous [35]. The maximum horizontal stress (SHmax), estimated
based on the method proposed by Lund and Townend [36], shows the directions of SHmax
in the three subzones are directed on near north–south (Figure 7 and Table 4). However,
the striking clockwise rotation of SHmax is obvious from Zone 1 to Zone 3. This stress
clockwise rotation from southwest to northeast is consistent with the clockwise rotation of
GNSS velocity [8].

4. Discussion
4.1. Origins of the 2021 Nagqu Earthquake

The collision of the India–Eurasia plates caused widespread Cenozoic deformation
throughout the Tibetan Plateau and its surrounding regions [37,38]. The east–west extension
and the north–south shortening has dominated crust deformation in the Tibetan Plateau
from the Neogene to the present day, along with the ongoing convergence that occurs at the
Tibetan Plateau margin [39,40]. Thus, the forces driving the India–Eurasia plate collision
are suggested as the fundamental driving force for the occurrence of the 2021 Nagqu event.
Seismo-tomographic results corroborate the suggestion that the eastward extension resulted
from the eastward movement of the lower crust and/or upper mantle [41,42]. In addition,
the fact that about 85% of movement release of normal faulting over the last half century has
occurred in the region with high altitudes (>5 km), suggests variations in the gravitational
potential energy of the lithosphere are likely responsible for material extension [43].

As the 2021 Nagqu Mw 5.7 earthquake is the largest ever recorded event within the
Nyainrong microcontinent, this indicates a relatively low frequency of strong earthquakes
inside the microcontinent. The earthquake occurred within the ancient (~170−900 Ma)
Nyainrong microcontinent [1–4], containing rocks with a distinct lithology (e.g., orthogneiss)
from the surrounding sedimentary rocks (Figure 1). Thus, the Nyainrong microcontinent
may impede lateral material movement, forcing the material to detour around it. Conse-
quently, the accumulated tectonic strain at the boundary modulates the local geodynamic
process, which helps explain why strong earthquakes are rare within the Nyainrong mi-
crocontinent. This is similar to the special structure, namely the Emeishan large igneous
province, in the southeast Tibetan Plateau. Few strong earthquakes occurred in this special
structure with similar detoured crustal flow [44,45], which played a vital role in the occur-
rence of the 2021 Mw 6.1 Yangbi earthquake [46]. Similarly, the microplates Shillong Plateau
and Assam Basin play an essential role in controlling the regional seismicity patterns (i.e.,
sparse seismic activity and small magnitude), as previously indicated by the numerical
block-and-fault dynamics model [47]. This provides a reasonable explanation for the rare
moderate–strong earthquakes recorded inside the Nyainrong microcontinent.

In light of the above analysis, we suggest that the north–south shortening, the east–
west extension, and the ancient Nyainrong microcontinent are jointly involved in control-
ling the occurrence of the 2021 Nagqu Mw 5.7 earthquake. The north–south shortening
and east–west extension formed stress on the Nyainrong microcontinent (Figure 8), which
is constituted of rigid basement rock that has substantially lower tensile strength than
compressive strength [48] and is vulnerable to normal faulting behavior. This explains
the normal faulting with a strike-slip component in the interior of the Nyainrong micro-
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continent, especially in the corner region where the strike direction of boundary faults
changes considerably and is conducive to stress accumulation and eventually becomes the
nucleation site of the 2021 Nagqu earthquake. Interestingly, this phenomenon is consis-
tent with the normal faulting (i.e., Cona Lake) in the west counterpart of the Nyainrong
microcontinent (Figure 8).
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4.2. Implication of the Nyainrong Microcontinent on Strain Partitioning and Stress Heterogeneous

Previous studies have reported that strain partitioning across faults is a widespread
phenomenon in the Tibetan Plateau [42,49–53]. According to wave speed models derived
from dense seismographs, significant differences in structure and rheology are discerned
across large faults in the eastern Tibetan Plateau [42], which indicates strain partitioning
across major faults. Block kinematic modeling based on the GNSS velocity field reveals
strain partitioning on major fault structures in the northeast Tibetan Plateau [49]. Joint
GNSS–InSAR data models reveal strain partitioning along the Altyn Tagh Fault and the
Jinsha suture zone in the northwestern Tibetan Plateau [51]. In the southeast Tibetan
Plateau, quantitative kinematical data of main faults along the Sichuan–Yunnan block
from photogrammetric, geomorphological, and chronological methods, reveal dip-slip
components in many fault segments while they are strike-slip dominated [52]. Earthquake
focal mechanisms in the Tibetan Plateau indicate that deformation is dominated by thrust
faulting in the margin of the Tibetan Plateau, normal faulting in the southern Tibetan
Plateau and strike-slip faulting in the northern Tibetan Plateau (Figure 1) [45,50,51].

The inverted stress fields of three subzones surrounding the Nyainrong microcontinent
(Figure 7) allow for exploring the effect of local structure (i.e., the Nyainrong microconti-
nent) on stress/strain partitioning. Zone 1 is under a strike-slip regime, which contrasts
with the widespread normal faulting and dip-slip events in the further southwest region
(Figures 1 and 7). While both Zone 2 and Zone 3 are under the stress regime of normal
faulting, which contrasts with the widespread strike-slip faulting and events in the further
northeast region (Figures 1 and 7). In comparison, our slip model indicates a transtensional
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slip in the interior of the Nyainrong microcontinent (Figure 6). The NE–SW variation
in faulting behavior across the Nyainrong microcontinent is potentially associated with
the obstruction of the Nyainrong microcontinent, which transforms the strain behavior
around the margin of the Nyainrong microcontinent. This implies that the Nyainrong
microcontinent may play an important role in the transformation of stress/strain behavior
(i.e., different faulting behaviors). In addition, a striking clockwise rotation (~20◦) of SHmax
from Zone 1 to Zone 3 (Figure 7) shows a good agreement with the clockwise rotation of
GNSS velocity [8]. Small magnitude events (M < 6.2) are not statistically considered to
induce SHmax rotation [54,55]. Thus, stress rotation, caused by a coseismic slip is unlikely
to be the scenario observed in this study due to the small event magnitude (M < 6.2) in
these three subzones. The spatial relationship between the three subzones and the Nyain-
rong microcontinent indicates that special structures with distinctly different lithology
compared to the surrounding region play an essential role in controlling the stress rotation.
This is consistent with the structure controls (e.g., fault structure geometry, contrasting
rheology/lithology) in stress behavior proposed in other regions [56–62].

Thus, being inspired by the 2021 Nagqu Mw 5.7, we conclude that the Nyainrong
microcontinent plays a key role in controlling the occurrence of the earthquake and the
surrounding strain partitioning (i.e., different faulting behaviors), as well as affecting the
stress heterogeneity. Although these ancient structures are not susceptible to internal
nucleation of strong earthquakes, the surrounding and corner regions are more prone to
stress accumulation and represent highly seismic areas. The 1:1.5 million geological maps
of the Tibetan Plateau and its surrounding areas demonstrate multiple similar structures
such as the Nyainrong microcontinent [10]. Thus, it is of great significance to consider the
effect of these special structures on strain partitioning in future research for deepening our
understanding of the evolution, seismogenic mechanism and the dynamic process of the
Tibetan Plateau.

5. Conclusions

In this study, we use surface displacement fields retrieved from InSAR data to explore
the seismogenic fault geometry and distributed coseismic slip for the 2021 Mw 5.7 Nagqu
earthquake that occurred in the east corner zone of the Nyainrong microcontinent. The
2D displacement maps decomposed with both ascending and descending InSAR data,
reveal the maximum surface subsidence of ~3 cm at the hanging wall as well as up to
1.5 cm displacement in the strike direction. We find that the InSAR observations can be best
explained by the fault slip on a seismogenic fault with a strike of 240◦ and a dip angle of 59◦.
Coseismic slip is featured by normal faulting and a comparable sinistral strike-slip com-
ponent with a peak value of 0.3 m at 8 km depth. The ancient Nyainrong microcontinent,
as well as the north–south shortening and east–west extension during the India–Eurasia
collision both contribute to the occurrence of the 2021 Nagqu Mw 5.7 earthquake. The
stress inversion results of three subzones surrounding the Nyainrong microcontinent reveal
a distinct strike-slip stress regime in the southwest region and a normal faulting stress
regime in the northeast region. This regional stress and strain heterogeneity highlights
the significant modulation from the Nyainrong microcontinent on the occurrence of the
2021 Nagqu earthquake. Thus, the Nyainrong microcontinent plays an essential role in the
regional tectonic evolution. Despite these promising results, further studies are needed to
quantify the effect of special structures such as the Nyainrong microcontinent on the earth-
quake nucleation process, strain partitioning and stress heterogeneity through numerical
simulation using the finite element method and laboratory experiments in rock physics.
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