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Abstract: Obtaining accurate near-real-time precipitation data and merging multiple precipitation
estimates require sufficient in-situ rain gauge networks. The triple collocation (TC) approach is
a novel error assessment method that does not require rain gauge data and provides reasonable
precipitation estimates by merging data; this study assesses the TC approach for producing reliable
near-real-time satellite-based precipitation estimate (SPE) products and the utility of the merged SPEs
for hydrological modeling of ungauged areas. Three widely used near-real-time SPEs, including the
Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) early/late run
(E/L) series, and the Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks-Dynamic Infrared Rain Rate (PDIR) products, are used in the Beijiang basin in
south China. The results show that the TC-based merged SPEs generally outperform all original
SPEs, with higher consistency with the in-situ observations, and show superiority over the simple
equal-weighted merged SPEs used for comparison; these findings indicate the superiority of the TC
approach for utilizing the error characteristics of input SPEs for multi-SPE merging for ungauged
areas. The validation of the hydrological modeling utility based on the Génie Rural à 4 paramètres
Journalier (GR4J) model shows that the streamflow modeled by the TC-based merged SPEs has the
best performance among all SPEs, especially for modeling low streamflow because the integration
with the PDIR outperforms the IMERG products in low streamflow modeling. The TC merging
approach performs satisfactorily for producing reliable near-real-time SPEs without gauge data,
showing great potential for near-real-time applications, such as modeling rainstorms and monitoring
floods and flash droughts in ungauged areas.

Keywords: satellite precipitation estimates; multi-product merging; triple collocation; hydrological
modeling utility; ungauged areas

1. Introduction

Reliable near-real-time precipitation data are essential for monitoring and early warn-
ing of natural disasters, such as rainstorms, floods, landslides, and drought [1,2]. Tra-
ditionally, precipitation data are derived from ground-based in-situ gauge observations,
which typically have high accuracy and reliability; however, gauge observations have
high maintenance costs, and harsh terrain and environment may prevent their installation.
Therefore, gauge observations are typically sparse or unavailable in many remote areas
and underdeveloped countries [3–6]; moreover, it is difficult to obtain accurate and repre-
sentative precipitation estimates from sparse observations via spatial interpolation due to
the high spatiotemporal heterogeneity of precipitation, especially in areas with complex
terrain and atmospheric conditions [6,7]. Thus, monitoring and disaster prevention related
to precipitation have remained a challenge in sparsely gauged and ungauged areas.
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As a result of technological advances in spaceborne remote sensing and algorithms,
several precipitation estimation products based on satellite-derived infrared (IR), passive
microwave (PMW), and radar remote sensing information have been developed in recent
years; these satellite-based precipitation estimate (SPE) products typically feature broad
spatial coverage, high spatial continuity, and high resolution, with the potential for an
alternative precipitation data source for ungauged areas [8]. Widely-used SPEs include
the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) [9], the Integrated Multi-satellite Retrievals for Global Precipitation Measure-
ment (IMERG) series [10,11], the Climate Prediction Center (CPC) MORPHing technique
(CMORPH) [12], and the Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks (PERSIANN) [13], which provide near-real-time data prod-
ucts. Nevertheless, due to external sensor disturbance, sampling errors, and limitations
of the retrieving algorithms, SPEs typically have lower accuracy than ground observa-
tions [7]. Therefore, assessing the accuracy and applicability and performing adjustments
and improvements to the SPEs are required before utilizing SPEs [3,14].

Merging multiple SPEs to integrate their advantages and generate a more accurate and
reliable merged precipitation dataset is an effective approach to improving the performance
of SPEs [15]. Several multi-SPE merging approaches based on machine learning [16,17],
geophysical regression [18], or Bayesian-based weighted averaging approaches [14,19,20]
have been proposed; these studies generally found that multi-SPE merged data exhibited
higher robustness and outperformed most individual SPEs that were merged. Nevertheless,
in-situ gauge observation data are still required for multi-SPE merging approaches to
determine the error characteristics of SPEs. Therefore, using the merged approaches may
not be suitable for ungauged areas.

The triple collocation (TC) approach is a novel error assessment method that does
not require benchmarks [21] and provides a solution for estimating the error pattern
of SPEs, enabling multi-SPE merging for ungauged areas. The TC approach tactfully
exploits the statistical relationships between the estimations from independent sources to
assess their accuracy; it requires three independent data sources as input (referred to as a
triplet). Roebeling et al. [22] first used the TC approach to assess the errors of precipitation
estimation products. McColl et al. [23] extended the assessment metrics of the TC approach
from the root mean square error (RMSE) to the correlation coefficient (CC) between the
estimates and the unknown ground truth. Alemohammad et al. [24] improved the TC
approach for precipitation applications by introducing the multiplicative error model to
replace the additive error model. Some studies also found that the multiplicative TC
approach did not outperform the original additive TC approach [5,25]. Several studies have
successfully employed the TC approach to quantitatively assess the error of precipitation
estimation products including SPEs without taking gauge data as a benchmark [4,6,25–27].

The TC approach has also been used for merging multiple SPEs and other precipitation
data to generate better precipitation estimates for ungauged areas because it is reliable
for quantifying the error of precipitation estimates in the absence of in-situ observations.
Dong et al. [28] applied a TC-based least-square-error approach to merge SPEs and re-
analysis precipitation data for Europe and found that the merged product significantly
outperformed the input data. Lyu et al. [29] further improved the TC merging approach by
merging rainfall and snowfall separately and assessed its performance over mainland China.
Chen et al. [4] evaluated the TC-based and other merging approaches over the Yangtze
River basin; these studies demonstrated the substantial potential of the TC approach for
producing the more robust multi-SPE merged data for ungauged areas. Nevertheless, the
datasets to be merged are generally limited to a triplet input in the TC approach, typically
including a re-analysis product and the SM2RAIN, an SPE product [6,25,30]. As a result,
the record range of the merged precipitation data is limited to that of the two products,
limiting the production of near-real-time merged precipitation data; moreover, few studies
focused on the utility of TC-based multi-SPE merged precipitation data for hydrological
modeling.
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This study aims to (1) illustrate and evaluate a TC-based multi-SPE merging scheme
for generating merged near-real-time SPE data with higher accuracy without the help of
in-situ observation, and (2) validate the hydrological utility of the merged SPE data for
ungauged areas. The Beijiang basin, a typical area prone to flood disasters threatening
the economic center of South China, is used as a case study to evaluate the near-real-
time version of the two widely used SPE products, including the IMERG series and the
PERSIANN Dynamic Infrared (PDIR); this study is expected to provide a reference for
performing near-real-time multi-SPE merging for hydrological applications such as flood
and flash drought monitoring.

2. Study Area and Data
2.1. Beijiang River Basin

The Beijiang river is a major tributary to the Pearl River. The Beijiang river basin is
located in northern Guangdong province in south China (Figure 1); it has a drainage area of
34,039 km2 and an annual mean streamflow of 3.43× 1010 m3 at the Hengshi hydrological
station. The basin has very complex terrain, and karst landforms occupy one-third of its
area. The dominant climate of the basin is a subtropical humid monsoon climate, with
annual mean precipitation of over 1800 mm. The precipitation is highly concentrated
during the flood season. Therefore, severe flood disasters are frequent in the Beijiang river
basin and even cause floods in the downstream Pearl River Delta, the most populated and
developed area in southern China with many megacities, such as Guangzhou. Therefore,
the Beijiang river basin is suitable as a case study to illustrate the near-real-time SPE
merging approach and hydrological applications related to flood monitoring.
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2.2. SPE Products
2.2.1. IMERG Series

The IMERG product series [11] is the level 3 product of the Global Precipitation Mission
(GPM); it is the latest global SPE product that intercalibrates, merges, and interpolates most
satellite precipitation estimates, including IR, PMW, and spaceborne radar data, providing
reliable wide coverage and high spatiotemporal resolution precipitation data. Although
the GPM was launched in early 2014, the latest IMERG version-06 further integrates
satellite precipitation information of former precipitation measurement missions, such
as the TRMM, extending the data record up to June 2000 [31]; this study used the two
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near-real-time products of IMERG, i.e., the IMERG Early run (IMERG-E, with a latency of
6 h) and the IMERG Late run (IMERG-L, with a latency of 18 h). The difference between the
two products is that the IMERG-E is processed by forward propagation in the assimilation
algorithm, whereas the IMERG-L is processed by forward and backward propagation;
these daily IMERG products with a spatial resolution of 0.1◦ were obtained from the GPM
website (https://gpm.nasa.gov/data/directory, accessed on 31 January 2022).

2.2.2. PDIR

The PDIR [1,2] is a near-real-time global high-resolution SPE developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine
(UCI). The PDIR is based on the framework of the PERSIANN-Cloud Classification System
(PERSIANN-CCS) product [32], which classifies the segmented cloud patches of the cloud
images and adopts different cloud-top temperature-rain rate (Tb–RR) curves. Compared with
the PERSIANN-CSS product, the PDIR better captures warm precipitation, has an improved
cloud segmentation algorithm, expands the cloud classification system to include monthly
cloud data sets, and improves the (Tb–RR) curve model by incorporating additional PMW
and SPE data [2]. The PDIR provides near-real-time precipitation data from 2000 to the present
with short latency (15–60 min), quasi-global coverage (60◦S–60◦N), and high spatiotemporal
resolution (nearly 0.04◦ and hourly data). Daily PDIR data were downloaded from the CHRS
website (http://chrsdata.eng.uci.edu/, accessed on 31 January 2022).

2.3. Other Inputs for the TC Approach

The TC approach is based on the zero error cross-correlation (ECC) concept and
independent input data sources. Therefore, in addition to the SPEs used in this study,
two other precipitation estimation products with different data sources and mechanisms
were necessary as inputs for the TC approach [5] to estimate the error of the SPEs and
facilitate multi-SPE merging. Model-based re-analysis data and the SM2RAIN-Advanced
SCATterometer (ASCAT), a unique SPE with a different mechanism from the conventional
SPEs, are widely used for the TC approach using SPEs.

2.3.1. ERA5 Reanalysis

ERA5 (the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) ReAnalysis) [33] is the latest global atmospheric reanalysis data developed by the
ECMWF to replace its predecessor ERA-Interim; it provides global precipitation reanalysis
data from 1979 to the present, with a spatial resolution of 0.25◦ and an hourly temporal
resolution. ERA5 is produced by a four-dimensional variational assimilation algorithm in
the latest version of the Integrated Forecasting System (IFS Cycle 41r2). ERA5 has several
improvements over the ERA-interim in its assimilation system, such as a higher spatial
resolution (0.25◦) and an improved variational bias scheme that uses more observational
data. Because ERA5 is based on an atmospheric physical model and data assimilation, it
is widely adopted as an input to the TC approach to assessing SPEs and other products.
The daily ERA5 precipitation data were downloaded from the Copernicus Climate Change
Service website (https://doi.org/10.24381/cds.f17050d7, accessed on 31 January 2022).

2.3.2. SM2RAIN-ASCAT

SM2RAIN-ASCAT [30] is an SPE based on a bottom-up algorithm, setting it apart from
conventional SPEs. The SM2RAIN algorithm estimates precipitation using satellite-derived
soil moisture data and the soil water balance model [34,35]. The main data source of
the SM2RAIN-ASCAT is soil moisture data from the real-aperture radar instrument on
the MetOp satellite ASCAT; the data are not used by other conventional SPEs. Thus, the
SM2RAIN-ASCAT is produced using different algorithms than most other SPEs and re-
analysis data, and its data source is independent of other SPEs. Therefore, SM2RAIN-ASCAT
is also widely used in conjunction with the ERA5 as the input to the TC approach to assess other

https://gpm.nasa.gov/data/directory
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SPEs [6,25,27,30]. The SM2RAIN-ASCAT provides quasi-global daily terrestrial precipitation
estimations from 2007 to the present with a high spatial resolution of about 12.5 km.

2.4. In-Situ Observations

Daily gauge precipitation observation data from 1990 to 2018 were obtained from
30 meteorological stations in and around the Beijiang river basin (Figure 1). The observation
data were processed using strict quality control procedures, such as extreme value checks,
internal and temporal consistency checks, and the use of quality code; these precipitation
observation data were used as a benchmark to assess the original and merged SPEs and as
the input to drive the hydrological model.

Daily meteorological observation data, including air temperature, solar radiation, and
wind speed, were derived from the same meteorological stations as the precipitation data;
they were used to calculate potential evapotranspiration (PET) using the Penman-Monteith
equation [36] as input for the hydrological model. Before being input to the hydrological
model, the station-based precipitation and calculated PET data were converted to basin-
averaged values using Thiessen Polygon weighted averaging.

Daily streamflow observation data from 1991 to 2011 were obtained from the Hengshi
station, i.e., the basin outlet of the study area; they were used as a reference to calibrate the
hydrological model and as a benchmark to assess the modeled streamflow data obtained
from the original and merged SPEs.

Note that besides that for saving the space, only IMERG series and PDIR are selected
as cases in this study; this is also because of the limitation of the temporal range of the
streamflow observations available for this study. Therefore, this study only selects the near-
real-time SPEs with the longest and continuous overlapping periods with the observational
data of this study.

3. Methods
3.1. Triple Collocation (TC) Approach

The TC approach requires three estimates from independent sources as input; they
are denoted as R1, R2, and R3 and are called triplet members. Following are the process of
how we derive the formal formula of the TC approach:

The mechanism of TC approach is established on a linear error model, which can be
represented by the equation as:

Ri = αi + βi · T + εi (1)

where Ri is the ith precipitation estimate for i = 1, 2, 3; T is the actual precipitation; αi and
βi are the ordinary least-squares intercept and slope, respectively; εi is the random error; it
is important to note that T is a temporally variable that helps to construct the equation set
of TC theory so that finally derive the formal formulas of TC; it does not mean that any
data representing actual precipitation (like gauge observations) are required.

The TC approach relies on the zero ECC between the triplet members. Specifically,
the mean value of the error of each triplet member should be zero (E(εi) = 0), the errors
are uncorrelated to the actual data (Cov(εi, T) = 0), and the errors of two different triplet
members are uncorrelated (Cov

(
εi, ε j

)
= 0 when i 6= j). Therefore, the covariance between

each two triplet members (Qij) can be expressed as:{
Qij = Cov

(
Ri, Rj

)
= βiβ jσ

2(T)
Qii = σ2(Ri) = β2

i σ2(T) + σ2(εi)
(2)

Note that Equations (1) and (2) are the intermediate equation sets, instead of the
calculation procedure of TC approach; they need to be solved to derive the final formal
formula of TC approach:
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By solving Equation (2), the error variance of the triplet members can be derived as:
σ2(ε1) = Q11 − Q12Q13

Q23

σ2(ε2) = Q22 − Q12Q23
Q13

σ2(ε3) = Q33 − Q13Q23
Q12

(3)

Let θi = βiσ(T); then, we can also solve θi as:
θ1 =

√
Q12Q13

Q23

θ2 =
√

Q12Q23
Q13

θ3 =
√

Q13Q23
Q12

(4)

Equations (3) and (4) are the finally derived formal formulas of TC approach for
estimating the error of precipitation estimations without benchmark data.

It is can be found in the final formulas of TC that, only the covariances between the
different precipitation estimations (Qij) are required as input, while the data representing
actual precipitation, like gauge observations, are not required. Instead, the terms involv-
ing actual precipitation T are the solutions of Equation (4), which are derived from the
covariances of estimations as formula input.

3.2. TC-Based Merging Approach

The TC-based multi-source merging approach is based on the least-squares theory [37];
it is performed by using the weighted average of the multiple estimates as the merged
result to minimize the error of the merged result:

R∗TC = w1R∗1 + w2R∗2 + . . . wiR∗i + . . . + wnR∗n (5)

where R∗TC is the merged estimate; wi are the weights (
n
∑

i=1
wi = 1); R∗i is the ith estimate to

be merged.
Note that different from the previous section, R∗i denotes any precipitation estimates

(at least two) to be merged, which is not limited to the triplet members input to the TC
approach; n is the number of estimates to be merged, which can be only 2, 3, or more than
3. According to Yilmaz et al. [37], R∗i is assumed to be:

R∗i = β∗T + ε∗i (6)

That is, the ordinary least-squares intercept and slope between R∗i and T are the same
for all R∗i . Therefore, the error variance of R∗TC, denoted as σ2(εTC), can be expressed as:

J = σ2(ε∗TC) = w2
1σ2(ε∗1) + w2

2σ2(ε∗2) + . . . + w2
nσ2(ε∗n) (7)

When σ2(ε∗TC
)

is minimized by ensuring that ∂J/∂wi = 0, the weights wi can be
solved.

For instance, for the merging of three estimates, the weights are solved as:
w1 =

σ2(ε∗2)σ2(ε∗3)
σ2(ε∗1)σ2(ε∗2)+σ2(ε∗2)σ2(ε∗3)+σ2(ε∗1)σ2(ε∗3)

w2 =
σ2(ε∗1)σ2(ε∗3)

σ2(ε∗1)σ2(ε∗2)+σ2(ε∗2)σ2(ε∗3)+σ2(ε∗1)σ2(ε∗3)

w3 =
σ2(ε∗1)σ2(ε∗2)

σ2(ε∗1)σ2(ε∗2)+σ2(ε∗2)σ2(ε∗3)+σ2(ε∗1)σ2(ε∗3)

(8)

where σ2(ε∗i ) can be derived from the TC approach using Equation (3).



Remote Sens. 2022, 14, 3835 7 of 20

For the merging of two estimates, weights are solved as follows:
w1 =

σ2(ε∗2)
σ2(ε∗1)+σ2(ε∗2)

w2 =
σ2(ε∗1)

σ2(ε∗1)+σ2(ε∗2)

(9)

The linear error model of the TC approach (Equation (1)) does not necessarily satisfy
the assumption of Equation (6). Therefore, before being input to the TC approach, the
estimates Ri are normalized to unify their intercepts and slopes to the truth T as:

R∗i =
(
Ri −Ri

)
/βi + T =

(
Ri −Ri

)
· σ(T)/θi + T (10)

where Ri is the mean value of Ri, T is the mean value of the ground truth T; θi can be
derived by the TC approach using Equation (4).

Since σ(T) and T are unknown, we use the averages of the standard deviations and
mean values of all estimates to substitute σ(T) and T:

R∗i =
(
Ri −Ri

)
· σ/θi + R (11)

where θi can be derived from Equation (4); σ and Ri are the averages of the standard
deviations and mean values of all estimates to be merged:{

σ = ∑n
i=1 σ(Ri)

n

R = ∑n
i=1 Ri

n

(12)

where σ(Ri) is the standard deviation of Ri.
This study focuses on the merging of the near-real-time SPEs (IMERG-E, IMERG-L,

and PDIR). The ERA5 and SM2RAIN-ASCAT do not participate in multi-source merging;
instead, they are only utilized to construct the TC triplets together with each SPE respec-
tively, so that helps to derive the θi and σ2(ε∗i ) of each SPE by using TC. The TC-based
multi-SPE merging is performed as follows:

(1) Selecting the near-real-time SPEs to be merged (at least two SPEs), such as IMERG-E
with PDIR, or IMERG-L with PDIR;

(2) Estimating the θi of each SPE respectively via Equation (4), by using ERA5 and
SM2RAIN-ASCAT as the other two triplet members as input to the TC approach;

(3) Normalizing each SPE using the estimated θi via Equations (11) and (12) to ensure
that Ri becomes R∗i ;

(4) Estimating the σ2(ε∗i ) of each normalized SPE via Equation (3) using ERA5 and
SM2RAIN-ASCAT as the other two triplet members;

(5) Calculating the weights wi using the estimated σ2(ε∗i ) for each SPE via Equation (8)
(for merging 3 SPEs) or Equation (9) (for merging 2 SPEs), then deriving the multi-SPE
merged product R∗TC via Equation (5).

3.3. Assessment Metrics

Several assessment metrics are used to evaluate the performance of the original and
merged near-real-time SPEs and their hydrological modeling utility; these metrics also
serve as the objective function for the calibration of the hydrological model. The assessment
metrics include the CC, RMSE, Nash-Sutcliffe efficiency coefficient (NSE) and its logarithm
version, the log_NSE, relative bias (RB), critical success index (CSI), Kling-Gupta efficiency
coefficient (KGE) [38] and its logarithm version, the log_KGE.

The CC is used to quantify the linear correlation between the SPE data and the bench-
mark data. The RMSE quantifies the deviation between the SPE data and the benchmark
data. The NSE and KGE quantify the general consistency between the SPE data and the
benchmark data. The log_NSE and log_KGE are similar but are more sensitive to low
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values and are only used for assessing the modeled streamflow data. The RB describes
the systematic bias of the estimates. The KGE is a widely-recognized effective objective
function for hydrological model calibration. The CSI quantifies the ability of SPEs to capture
specific precipitation events [4]. In this study, two thresholds of daily precipitation (≥1 mm
and ≥25 mm) are used to determine the light and heavy precipitation events for the CSI
calculation, respectively. The calculated CSI are denoted as CSI_1 and CSI_25, respectively.
The calculation formulas of the assessment metrics are listed in Table 1.

Table 1. Assessment metrics used in this study.

Metrics Formula Perfect Value Usage

Correlation coefficient (CC) CC = ∑ (S−S)(O−O)√
∑ (S−S)·∑ (O−O)

1 Assessing accuracy of SPEs

Root mean square error (RMSE) RMSE =

√
∑(S−O)

n
0 Assessing accuracy of SPEs

Nash-Sutcliffe efficiency coefficient (NSE) NSE = 1− ∑(S−O)2

∑ (O−O)
2 1

Assessing accuracy of SPEs
and modeled streamflow

log_NSE
Log_NSE =

1− ∑(log(S)−log(O))2

∑ (log(O)−log(O))
2

1
Assessing accuracy of SPEs
and modeled streamflow

Relative bias (RB) RB =
(

S
O
− 1
)
× 100% 0 Assessing accuracy of SPEs’

modeled streamflow

Critical success index (CSI) CSI = H
H+M+F 1 Assessing accuracy of SPEs

Kling-Gupta efficiency coefficient (KGE)

KGE = 1−√
(r− 1)2 + (α− 1)2 + (β− 1)2

where:
r = CC
α =

σ(S)
σ(O)

β = S
O

1

Assessing accuracy of SPEs’
modeled streamflow,
objective function of
hydrological model

calibration

log_KGE
Same as KGE, but logarithms

of the inputs are used for
calculation.

1 Assessing accuracy of SPEs’
modeled streamflow

Note: S and O are the SPE data to be assessed and the benchmark, respectively; S and O are their mean values; σ(S)
and σ(O) are their standard deviation; n is the record length; for CSI, H (hits) denotes the number of precipitation
events captured by both the SPEs and benchmark data, M (miss) denotes the precipitation event only captured by
the benchmark data, and F (false alarms) denotes the precipitation event only captured by the SPEs.

3.4. Hydrological Model and Calibration

The Génie Rural à 4 paramètres Journalier (GR4J) model [39] is used for validating
the hydrological modeling utility of the original and merged SPEs in this study. The
GR4J model is a simple but effective lumped daily hydrological model and only requires
precipitation and PET as inputs. The GR4J model has been successfully used for streamflow
modeling in many areas worldwide with various climate and geological conditions and has
outperformed other complicated models [40–42]. The GR4J model must be calibrated before
validating the hydrological utility of the SPEs. Only four parameters require calibration,
including the maximum capacity of the production storage, the groundwater exchange
coefficient, the maximum capacity of the routing storage, and the unit hydrograph time
base coefficient. The GR4J model typically must be pre-run for at least one year as the
“warm-up” period.

In this study, the GR4J model is calibrated and validated using the basin-averaged
precipitation observations and the observed streamflow data at the Hengshi station uti-
lizing the Shuffled Complex Evolution-University of Arizona (SCE-UA) optimization
algorithm [43]. The KGE between the observed and modeled streamflow is used as the
objective function to be maximized. The year 1990 is taken as the “warm-up” period; the
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period 1991 to 2000 is used as the calibration period, i.e., the objective function is calculated
using the modeled data in this period. 2001 to 2011 is used as the validation period.

Figure 2 shows the calibration result of the GR4J model for the Beijiang river basin.
The results show a satisfactory performance for daily streamflow modeling in the Beijiang
river basin, with high KGEs of 0.96 and 0.93, high NSEs of 0.93 and 0.88, and an RB close to
zero for the calibration and validation periods. The findings indicate that the calibrated
GR4J model is suitable for assessing the hydrological modeling utility of the original and
merged SPEs in this study.
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3.5. Experimental Design

TC-based merging is performed for three near-real-time SPEs, i.e., the IMERG-E,
IMERG-L, and PDIR, to generate an integrated near-real-time SPE. Since the IMERG-E and
IMERG-L are derived from the same product series, and their differences are only the extent
of data assimilation and the time latency [44], the two IMERG products are not merged
together. Therefore, the PDIR is merged with the IMERG-E and IMERG-L separately using
the TC-based merging approach to generate two merged SPEs, which are called TC-EP
(IMERG-E with PDIR) and TC-LP (IMERG-L with PDIR). The merging and assessment
of the SPEs are performed from 2001 to 2018, which is the intersection of the monitoring
period of the three SPEs and the in-situ observations.

In the multi-SPE merging procedure, the three near-real-time SPEs and the SM2RAIN-
ASCAT are resampled to obtain the same spatial resolution of ERA5, i.e., 0.25◦. Next, the
parameters of the TC-based merging approach for the SPEs, including the coefficients θi,
σ, and R for the normalization of the SPE and the weights wi for weighted averaging, are
estimated for 2007–2018, which is the monitoring period of SM2RAIN-ASCAT, the shortest
period of the triplet members. Subsequently, the near-real-time SPEs are merged for the
entire period (2001 to 2018) using these parameters.

For the assessment of the original and merged SPEs, the gauge observations at the
meteorological stations are used as the benchmark to assess the original and merged SPEs.
The gridded SPE data are interpolated to the location of the meteorological stations using
bilinear interpolation, and the output is used for comparison with the gauge observation
using the assessment metrics. For the assessment of the hydrological utility of the SPEs,
the gridded SPE data are spatially averaged over the Beijiang river basin to generate
basin-averaged daily precipitation data; these are input into the calibrated GR4J model
to generate the SPE-modeled streamflow data. Finally, the results are compared with the
in-situ observed streamflow data at the Hengshi station using the assessment metrics.
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Additionally, we use an arithmetic mean (AM)-based merging approach for the SPEs
for comparison to evaluate the superiority of the TC-based merging approach:

RAM =
∑n

i=1 Ri

n
(13)

where RAM is the arithmetic mean merged SPE, and n is the number of SPEs to be merged.
The merged SPEs of IMERG-E with PDIR and IMERG-L with PDIR using AM merging are
denoted as AM_EP and AM_LP, respectively.

4. Results
4.1. Assessment of the Near-Real-Time Merged SPEs

Table 2 lists the assessment metrics of the original SPEs and merged SPEs using the TC
and AM approaches from 2001 to 2018 at all stations. For the three original SPEs, IMERG-L
shows the highest accuracy, with a CC over 0.7, an NSE over 0.4, and the smallest RMSE.
IMERG-E has slightly lower performance than IMERG-L with similar metric values. The
PDIR shows the lowest accuracy among the three SPEs, with a CC of about 0.5 and an NSE
close to zero. The likely reason is that the major data source of PDIR is IR data, whereas
the IMERG series utilizes PMW and precipitation radar data. Both IMERG products
underestimate precipitation while PDIR slightly overestimates precipitation.

Table 2. Assessment metrics of the original and merged SPEs at the daily scale.

SPEs CC RMSE (mm/day) NSE RB (%) CSI_1 CSI_25

IMERG-E 0.692 9.7 0.393 −3.1 0.559 0.347
IMERG-L 0.715 9.5 0.419 −4.2 0.582 0.370

PDIR 0.516 11.9 0.096 1.9 0.474 0.226
AM-EP 0.646 10.0 0.355 −0.6 0.517 0.305
AM-LP 0.672 9.6 0.401 −1.2 0.524 0.320
TC-EP 0.677 9.6 0.405 0.9 0.531 0.329
TC-LP 0.706 9.2 0.456 1.5 0.540 0.351

For the merged SPEs, both TC-based merged SPEs exhibit improvements over the
input original SPEs; however, the CC values are slightly lower, and the TC-EP and TC-LP
have smaller RMSEs and RBs and higher NSEs (over 0.4 and 0.45 respectively) than the
IMERG-E and IMERG-L, respectively; this result suggests that although the PDIR has lower
accuracy than the other SPEs to be merged, its superiority (e.g., RB) results in higher overall
performance of the merged product. TC-LP outperforms TC-EP, probably because the input
IMERG-L for TC-LP has higher accuracy than the IMERG-E for TC-EP. A comparison of the
TC-EP and TC-LP with the AM-EP and AM-LP also shows that the TC-based merged SPEs
outperform the AM-based merged SPEs. The former has much higher CCs (e.g., about
0.64 for AM-EP and 0.68 for TC-EP) and higher NSEs (e.g., 0.35 for AM-EP and 0.4 for
TC-EP) than the latter; this result indicates that the TC-based approach utilizes the error
characteristic of the SPEs and finds suitable weights for multi-SPE merging, generating
more reasonable merging products than the simple equal-weighted AM merging approach
for ungauged areas. Therefore, the TC-based approach has great potential for generating
more reliable multi-SPE merged near-real-time precipitation data for ungauged areas.

Nevertheless, the results of the CSIs show that multi-SPE merging provides no ap-
parent improvements in the detection of light and heavy precipitation events. CSI_1 and
CSI_25 of TC-EP and TC-LP are higher than those of AM-EP and AM-LP but somewhat
lower than those of IMERG-E and IMERG-L as the merging inputs. Since the PDIR as an
input of the merged SPEs has much lower CSIs, it might indicate that the TC-based merging
approach is more easily influenced by low-quality inputs for detecting precipitation events.

Figure 3 shows the boxplots of the assessment metrics of the SPEs for the meteoro-
logical stations; it is observed that TC-EP and TC-LP have the best performances among
all original and merged SPEs, except for the CSI. The PDIR exhibits the lowest accuracy
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of the SPEs and the widest range of the RMSE, NSE, and RB values, revealing relatively
high instability over different spatial locations. In comparison, the TC-EP and TC-LP
generally have a narrower range of the NSE than the other SPEs, indicating the relatively
high stability of the performance of the TC-based merging approach.
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Next, all the original and merged SPEs and the precipitation observations are tempo-
rally aggregated monthly, and the assessment metrics are calculated to evaluate the SPEs’
performance. The results are listed in Table 3 and shown in Figure 4. Note that CSI_1 and
CSI_25 are used for assessing the skill of detecting daily precipitation events, thus they are
not used to assess the monthly precipitation data and not shown in Table 3 and Figure 4.
The accuracy of all SPEs shows an improvement from the daily to the monthly timescale,
with CCs exceeding 0.8 (except for the PDIR) and NSEs close to 0.7. The TC-based TC-EP
and TC-LP still show the best performance among all SPEs, indicating improvements over
the IMERG series and the AM-based SPEs, with CCs of 0.86, NSEs of 0.73, and the smallest
RMSE; these results indicate that, although the TC-based merged SPEs are processed at the
daily scale, they exhibit superiority for monthly precipitation estimation, showing the po-
tential of the TC-based merged SPEs for performing long-term near-real-time applications
such as drought monitoring.
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Table 3. Assessment metrics of the original and merged SPEs at the monthly scale.

SPEs CC RMSE (mm/Month) NSE RB (%)

IMERG-E 0.851 68.7 0.692 −3.1
IMERG-L 0.852 68.4 0.695 −4.2

PDIR 0.762 82.7 0.553 1.9
AM-EP 0.840 68.2 0.696 −0.6
AM-LP 0.847 66.7 0.709 −1.2
TC-EP 0.853 65.8 0.717 0.9
TC-LP 0.859 64.2 0.731 1.5
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The RMSEs of the SPEs are calculated for each year from 2001 to 2018 to generate
annual time series data based on the daily and monthly precipitation data to investigate the
temporal variation of the performance of the TC-based merged SPEs. The results are shown
in Figure 5. The PDIR generally has the largest RMSE, and the IMERG-E and IMERG-
L show the lowest RMSEs in most years. In contrast, the merged SPEs, including the
AM-EP/LP and TC-EP/LP, have slightly larger RMSE than the original IMERG products.
Nevertheless, the original IMERG products show relatively larger errors in some years
(e.g., 2007, 2013, and 2014); these errors are even larger than those of the PDIR, whereas the
merged SPEs have a smaller error during these years; this result indicates that multi-SPE
merging generates stable precipitation estimates with relatively small errors during periods
when some SPE inputs have higher errors. The TC-based merged SPEs have smaller errors
than the AM-based merged SPEs, demonstrating the superiority of the TC approach for
merging SPEs without in-situ observations.
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4.2. Assessment of the Hydrological Utility of the Merged SPEs

The original and merged SPEs are input to the calibrated GR4J hydrological model
to generate daily and monthly streamflow data. The results are used to calculate the
assessment metrics using the in-situ streamflow observations as a benchmark. The results of
daily and monthly streamflow modeling are shown in Tables 4 and 5/Figure 7, respectively.
Note that “Gauge-modeled” in Tables 4 and 5 represents the streamflow modeling results
by using the basin-averaged precipitation observations, i.e., the modeled streamflow of the
calibration result produced in Section 3.4.

Table 4. Assessment metrics of the modeled daily streamflow for the original and merged SPEs.

SPEs KGE log_KGE NSE log_NSE RMSE (m3/s) RB (%)

Gauge-modeled 0.931 0.885 0.881 0.848 435.7 3.6
IMERG-E 0.746 0.725 0.665 0.467 732.1 −13.9
IMERG-L 0.757 0.741 0.685 0.487 710.7 −15.4

PDIR 0.660 0.769 0.453 0.523 936.0 0.6
AM-EP 0.726 0.797 0.642 0.601 757.3 −7.0
AM-LP 0.737 0.807 0.673 0.618 723.8 −7.9
TC-EP 0.755 0.818 0.679 0.650 717.0 −5.8
TC-LP 0.781 0.845 0.718 0.696 671.8 −4.8

The results in Table 4 show that the streamflow modeled by the TC-based merged
SPEs outperforms the other SPEs, with high KGE values of about 0.75 and 0.78 and NSEs
of about 0.68 and 0.72 for TC-EP and TC-LP, respectively; these values are up to 0.03 higher
than the original IMERG products and up to about 0.05 higher than the AM-based merged
SPEs. For the logarithmic metrics, the TC-EP and TC-LP show improvements over the
original IMERG products and AM-based SPEs, with log_KGE values of about 0.84 and
0.82 and log_NSE values of about 0.68 and 0.72 for TC-EP and TC-LP, respectively; these
values are 0.12 higher than those of the original IMERG products and 0.08 higher than
those of the AM-based products. Since the log_KGE and log_NSE are more sensitive to low
streamflow, these results indicate the superiority of the TC-based approach for modeling
low-streamflow data. Note that although the PDIR shows lower KGE and NSE values for
the modeled streamflow than the IMERG products, it has higher log_KGE and log_NSE
values than the IMERG products. The likely reason is the superiority of the TC-based
merging approach for improving low-streamflow modeling results because it utilizes the
better low-flow modeling performance of the PDIR. Figure 6 also shows that the TC-based
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merged SPEs generally perform better for capturing both floods and low-flow conditions
in the hydrograph (except for some cases), whereas the PDIR and IMERG products show
lower performance in comparison with the in-situ observations.

Table 5 shows that the performance of the modeled streamflow of all SPEs has also
improved at the monthly scale, with KGEs generally over 0.8 and NSEs close to 0.8. The TC-
based TC-EP and TC-LP outperform all other SPEs, and the discrepancies in the metrics are
larger. For instance, the KGEs and NSEs of the TC-EP and TC-LP are 0.05 higher than those
of the IMERG products and 0.03 higher than those of the AM-EP and AM-LP. The PDIR also
outperforms the IMERG products in low streamflow modeling, and its log_KGE is close
to that of the TC-based SPEs. Therefore, the logarithmic metrics and the gap between the
IMERG products and the TC-based merged SPEs are larger. The log_NSE values of TC-EP
and TC-LP are 0.72 to 0.76, respectively, while those of the IMERG products are below 0.5,
revealing the superiority of the TC-based merged SPEs for low streamflow modeling.
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Table 5. Assessment metrics of the modeled monthly streamflow for the original and merged SPEs.

SPEs KGE log_KGE NSE log_NSE RMSE (m3/s) RB (%)

Gauge-modeled 0.919 0.848 0.969 0.926 157.5 3.5
IMERG-E 0.810 0.673 0.757 0.475 440.6 −14.1
IMERG-L 0.793 0.689 0.764 0.486 434.9 −15.6

PDIR 0.788 0.800 0.661 0.611 520.6 0.5
AM-EP 0.826 0.789 0.778 0.667 421.0 −7.2
AM-LP 0.817 0.798 0.786 0.676 414.0 −8.0
TC-EP 0.850 0.809 0.802 0.720 397.8 −5.9
TC-LP 0.848 0.845 0.820 0.764 379.5 −5.0



Remote Sens. 2022, 14, 3835 15 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

Table 5. Assessment metrics of the modeled monthly streamflow for the original and merged SPEs. 

SPEs KGE log_KGE NSE log_NSE RMSE (𝐦𝟑/𝐬) RB (%) 
Gauge-modeled 0.919 0.848 0.969 0.926 157.5 3.5 

IMERG-E 0.810 0.673 0.757 0.475 440.6 −14.1 
IMERG-L 0.793 0.689 0.764 0.486 434.9 −15.6 

PDIR 0.788 0.800 0.661 0.611 520.6 0.5 
AM-EP 0.826 0.789 0.778 0.667 421.0 −7.2 
AM-LP 0.817 0.798 0.786 0.676 414.0 −8.0 
TC-EP 0.850 0.809 0.802 0.720 397.8 −5.9 
TC-LP 0.848 0.845 0.820 0.764 379.5 −5.0 

 
Figure 7. Time series of the modeled monthly streamflow data for the original and merged SPEs. 

Figure 8 shows the exceedance probability curves of the streamflow modeled by the 
SPEs. The data are obtained from the sorted daily streamflow records and their corre-
sponding quantiles, showing the discrepancies of the modeled streamflow at different 
quantiles, thereby revealing the systematic bias of SPEs for different magnitudes of 
streamflow. The results show that, for the original SPEs, both IMERG products generally 
underestimate low streamflow below 500 m³/s. Whereas, the PDIR generally exhibits 
smaller discrepancies with the in-situ observations for the low streamflow below 500 m³/s, 
indicating the smaller systematic bias in low streamflow modeling. Nevertheless, such a 
local superiority of PDIR has limited influence on the overall poorer accuracy of PDIR in 
general. The curves of the AM-based and TC-based SPEs, which integrate the PDIR data, 
are much closer to the in-situ observations than the original IMERG products, thus also 
indicating the better performance in systematic bias in low streamflow modeling. 

Figure 7. Time series of the modeled monthly streamflow data for the original and merged SPEs.

Figure 7 shows that the streamflow modeled by the TC-based merged SPEs is highly
consistent with the hydrograph results at the monthly scale. In addition, the PDIR and
the IMERG products have different performances for matching the hydrograph results in
different periods. The PDIR generally captures smaller flows, while the IMERG products
capture the mid and high flows more accurately. As the merged products of the PDIR and
IMERG products, the TC-EP and TC-LP reasonably balance their advantages for low and
high flow modeling, generating more reliable streamflow modeling results.

Figure 8 shows the exceedance probability curves of the streamflow modeled by the
SPEs. The data are obtained from the sorted daily streamflow records and their correspond-
ing quantiles, showing the discrepancies of the modeled streamflow at different quantiles,
thereby revealing the systematic bias of SPEs for different magnitudes of streamflow. The
results show that, for the original SPEs, both IMERG products generally underestimate low
streamflow below 500 m3/s. Whereas, the PDIR generally exhibits smaller discrepancies
with the in-situ observations for the low streamflow below 500 m3/s, indicating the smaller
systematic bias in low streamflow modeling. Nevertheless, such a local superiority of
PDIR has limited influence on the overall poorer accuracy of PDIR in general. The curves
of the AM-based and TC-based SPEs, which integrate the PDIR data, are much closer to
the in-situ observations than the original IMERG products, thus also indicating the better
performance in systematic bias in low streamflow modeling.
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5. Discussion

SPE is an important precipitation data source for the ungauged areas. Merging mul-
tiple SPEs can provide better precipitation estimates, because the advantages of different
SPEs for different areas and seasons can be comprehensively utilized [14,15,17,20]. For ex-
ample, the conventional SPEs perform better in the South China, and the SM2RAIN-ASCAT
performs better in arid regions of China [15,26]. Ma et al. [14] proposed the dynamic
Bayesian model averaging (BMA) merging approach to utilize the seasonal discrepancies of
the error of SPEs. Nevertheless, in the conventional merging approaches like BMA, in-situ
observations are necessary for the merging approaches and serve as a benchmark to ensure
optimal performance of the merged products. Therefore, for the areas with sparse or even
no gauge data, such gauge-relied merging approaches would be difficult to be performed.

The TC approach provides a solution for quantitatively estimating the error of the
precipitation products and their weights without gauge data. In fact, the non-zero ECC
assumption used in the TC approach cannot always be satisfied, since source data overlap-
ping is typically inevitable when re-analysis data and SPEs are used [6,25,45]. Nevertheless,
the assessment results of the TC approach have been widely found to be reasonable, as
this method captures the error pattern of the SPEs, and the deviations from the traditional
assessment approach are acceptable [5,25,26]. Because of the significantly different mech-
anisms, reanalysis data and SM2RAIN-ASCAT are usually utilized to constitute the TC
triplet together with the SPEs thereby assess the SPEs using TC approach [6,25]. The suc-
cess of the TC approach inspired researchers to utilize it and merge multiple precipitation
products without requiring gauge data [4,28,29], demonstrating the feasibility of utilizing
TC for multiple product merging. Chen et al. [4] found that the gauge-free TC-based
merging approach performed comparably to the gauge-required Bayesian-based approach.
Nevertheless, in the current studies, the data inputs to be merged are only limited to the TC
triplet members, which also include the reanalysis and SM2RAIN-ASCAT. Such merging
schemes are difficult to produce near-real-time precipitation data, because the reanalysis
data and SM2RAIN-ASCAT as merging inputs are typically not hourly-scale near-real-time
data (data release is several days later than real time), which delays the release of finally
merged product; however, since the least-squares merging method of [37] requires the
error variance of the estimates, this study only used the near-real-time SPEs for multi-SPE
merging to obtain near-real-time merged SPE using the error variance of the SPEs separately
derived by the TC approach. Thus, the ERA5 and SM2RAIN-ASCAT were merely used to
complete the triplets, which are required for the TC approach.

Although the TC-based merging approach used in this study generally performed
well, it could be further improved in follow-up studies. In this study, the average weights
were estimated for each grid cell independently by the TC approach; thus, spatial variability
occurred, although it was constant over time. Since the superiority of different SPEs has
been found to vary seasonally in some areas [20], the TC-based merging approach can also
be further improved by dynamically considering the seasonal discrepancies of the SPEs’
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error; moreover, although the suitability of the TC for assessing SPEs has been confirmed,
the ECC might be significant in some cases and might cause a bias in the estimated average.
Therefore, Ref. [6] proposed an approach to correct the TC assessment results by limited
gauge data; this method could be utilized for the TC-based merging approach to improve
the merging performance.

For the near-real-time SPEs, latency to real time and resolution are also necessary
to be considered. When the SPEs are derived by merging multiple other SPEs, it would
inevitably match the longest latency of the input SPEs, and both the conventional gauge-
relied merging approach and the gauge-free TC approach are no exception. Nevertheless, it
is also should be note that there usually has tradeoff between accuracy and latency among
near-real-time SPEs. For instance, the PDIR used in this study features shortest latency
(15–60 min) but much poorer accuracy; the IMERG-E/L features apparently higher accuracy
but longer latency (over 6 h). Therefore, when selecting the near-real-time SPEs, data
accuracy and latency should be comprehensively considered according to the requirement
of application. In this study, the TC-based merging approach still provides useful near-real-
time SPEs which at least could be used to substitute IMERG-E/L in the accuracy-latency
tradeoff, as they have the same long latency of IMERG-E/L, but generally have higher
accuracy than IMERG-E/L; this indicate that the TC-based merging still has substantial
improvement for near-real-time SPEs even when considering the latency of SPEs. While
for the issue of different resolutions of the SPEs to be merged, downscaling the gridcells
of coarse SPEs to fit the finer SPEs before merging might be a feasible solution. Such a
downscaling approach might be geographical interpolation or introducing other auxiliary
remote sensing images [46,47]. Since the aim of this study is improving the accuracy of
SPEs over ungauged areas by multi-SPE merging, issues about resolution of SPEs are out
of the scope of this study and thus not are further concerned in this study.

6. Conclusions

This study illustrated and evaluated the TC approach for merging multiple near-real-
time SPEs and validated the hydrological modeling utility of the merged SPE products
to provide more reliable near-real-time precipitation products for ungauged areas. The
Beijiang river basin was used as a case study, and near-real-time IMERG-E/L and PDIR
products were used. The simple AM was used for comparison.

The results showed that the TC-based approach was effective for merging multiple
near-real-time SPEs and generated more reliable merged SPEs, with generally higher CCs
and NSEs and smaller RMSEs than the original SPEs. The TC-based SPEs also outperformed
the AM-based SPEs, demonstrating the superiority of the TC approach for determining the
merging weights of the SPEs by estimating their error and indicating the suitability of the
method for missing in-situ observations. Nevertheless, it should be noted that the TC-based
merged SPEs did not show an improved ability to detect different precipitation events.

The TC-based merged SPEs also outperformed all other SPEs for hydrological model-
ing using the GR4J model. The method provided higher KGEs and NSEs than the original
SPEs and the AM-based SPEs. The likely reason was the better performance of the PDIR for
low streamflow modeling. The log_KGE and log_NSE metrics also showed the superiority
of the TC-merged SPEs over the IMERG products for low streamflow modeling because
the TC-based merging approach utilized the advantages of the input SPEs.

Overall, the TC-based multi-SPE merging approach improved the accuracy and hy-
drological modeling performance of the near-real-time SPEs. Since the TC approach does
not require in-situ gauge observations, it has great potential for deriving more reliable
near-real-time precipitation estimates, making it suitable for near-real-time applications,
such as rainstorm, flood, and flash drought monitoring for areas with sparse or no gauges.
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