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Abstract: Feature matching is a fundamental procedure in several image processing methods applied
in remote sensing. Multispectral sensors with different wavelengths can provide complementary
information. In this work, we propose a multispectral line segment matching algorithm based
on phase congruency and multiple local homographies (PC-MLH) for image pairs captured by
the cross-spectrum sensors (visible spectrum and infrared spectrum) in man-made scenarios. The
feature points are first extracted and matched according to phase congruency. Next, multi-layer local
homographies are derived from clustered feature points via random sample consensus (RANSAC) to
guide line segment matching. Moreover, three geometric constraints (line position encoding, overlap
ratio, and point-to-line distance) are introduced in cascade to reduce the computational complexity.
The two main contributions of our work are as follows: First, compared with the conventional
line matching methods designed for single-spectrum images, PC-MLH is robust against nonlinear
radiation distortion (NRD) and can handle the unknown multiple local mapping, two common
challenges associated with multispectral feature matching. Second, fusion of line extraction results
and line position encoding for neighbouring matching increase the number of matched line segments
and speed up the matching process, respectively. The method is validated using two public datasets,
CVC-multimodal and VIS-IR. The results show that the percentage of correct matches (PCM) using
PC-MLH can reach 94%, which significantly outperforms other single-spectral and multispectral line
segment matching methods.

Keywords: multispectral image processing; line segment matching; phase congruency

1. Introduction

Feature matching is a fundamental procedure in several applications, such as Structure
from Motion (SfM), Simultaneous Localization and Mapping (SLAM), image fusion, and
image retrieval. For instance, in the processes of SfM and SLAM, the 3D structure is
constructed via the matched features. Thus, the efficiency and accuracy of feature matching
algorithms are of great importance. Among the various types of feature, point feature is
the most popular because of its robustness and repeatability. Nevertheless, in man-made
scenarios, the objects are always enveloped by line segments; thus, line feature provides
more structural and semantic information about the environment than does point feature.
Several line matching approaches have been proposed to improve the matching efficiency
and accuracy, and good results have been achieved for the line segment matching of
RGB-RGB image pairs [1–3]. Zhang et al. [4] and Gomez-Ojeda et al. [5] chose the line
feature for environment mapping. The constructed map demonstrated more structural
information, which will help the high-level applications like object detection, localization,
and navigation [6–9].

RGB–RGB-based feature matching belongs to single-spectral feature matching (in most
feature matching methods, images will be converted to greyscale first); that is, the spectra
of the two visual sensors are at the same spectrum band—visible spectrum (VS). Therefore,
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“RGB” is replaced by “VS” thereafter in this work. IR sensors, which work with longer
wavelengths than visible spectrum cameras, can be categorised into three types: near IR
(NIR), middle-wavelength IR, and long-wavelength IR (LWIR) sensors. The LWIR sensor is
also called the thermal sensor. The pixel values of LWIR images represent the temperature
of associated objects. Some researchers have tried to match features in image pairs shot by
multispectral cameras, particularly VS-infrared (IR) pairs, aiming to fuse complementary
information to VS images ([10,11]) for localization and navigation. However, accurately
and efficiently aligning IR and VS images remains a challenge. Li et al. [12] proposed a
method with relatively high performance for point matching between VS and LWIR image
pairs (multispectral image pair), but few other studies have examined multispectral line
segment matching, which could provide additional (especially thermal) information to
the matched line features. Such temperature information using multispectral sensors with
matched thermal-labelled and semantically-rich line features can provide extra guidance
for various applications not only in the field of not only remote sensing but also in robotics,
such as visual-based structural health monitoring and autonomous navigation.

The main challenges associated with multispectral line segment matching are as
follows: (1) The nonlinear radiation distortions (NRD) between the multispectral im-
ages [13,14], which is the most critical issue that has to be solved. This phenomenon
becomes extremely severe for image pairs obtained from sensors with large wavelength
difference like the LWIR-VS image pair, as demonstrated in Figure 1. For VS-VS image pair
(b) and (c) with affine transformation, the patterns of intensity and gradient change between
the neighbours of the red points along the gradient direction are similar, as shown in (e) and
(f). However, for LWIR-VS image pair (a) and (b), the intensity of the corresponding points
between the two images is different. This nonlinear distortion leads to the inconsistency of
gradient change shown in (d) and (e), resulting in the failure of gradient-based matching
methods. (2) Lack of repeatable line group structure: In the traditional single-spectral
VS-VS line segment matching, various approaches focus on the local or global geometric
structure of the detected line segments for matching. However, in multispectral matching,
the detected line segments of VS and IR images usually share a little structural similarity.
(3) Unknown local homography: When the transformation between two images is pro-
jective but not affine, no global transformation exists except for the fundamental matrix.
Nevertheless, the fundamental matrix only provides the epipolar lines on which a point
is located after transformation rather than pixel-wise mapping like homography. Such a
constraint is not sufficient for line segment matching.

In this paper, we propose a new approach for matching line segments detected from
multispectral image pairs in structural scenarios. The workflow is shown in Figure 2. Step
1: The matched feature points are first extracted according to phase congruency (PC) and
then clustered to obtain the multi-layer local homographies as guidance for line segment
matching. Step 2: The line segments of the two images are extracted. For IR images with
low texture, the line segment extraction results of the raw IR image and its PC version are
fused to increase the number of final matches. Step 3: Thereafter, previous multi-layer
homography matrices are used for generating a multi-layer stack of mapped line segments
of IR images. Step 4: The mapped IR line segment stack is matched with the reference VS
line segments based on the line position encoding scheme, overlap constraint, point-to-line
distance constraint, and a total evaluation progressively. If a matching candidate satisfies
all of the constraints in at least one homography layer, it will be treated as a true match.
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(a) LWIR image (b) VS image (c) VS image after affine
transformation
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Figure 1. Visualization of nonlinear radiation distortion (NRD) with the red points being the same
location in the environment. (d–f) show the intensity change near the red points in the image (a–c)
parallel to the gradient direction from top to down.
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Figure 2. Workflow of the proposed multispectral line segment matching method (data, algorithms,
and results are enclosed in orange, blue, and grey boxes, respectively).

The main contributions of this work include: (1) The PC-based feature point matching
method gets rid of the effect of NRD, which makes the traditional intensity-based line
segment matching algorithms like MSLD [15], LBD [3], and scale-invariant line feature
descriptor [16] perform weakly when used in multispectral scenarios. Besides, PC-MLH
does not use the local line structure for matching. Therefore, compared with those single-
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spectral or multispectral line segment matching approaches relying on the intersections
or local line group structure [1,2,17–19], PC-MLH demonstrates high performance on the
evaluation metric PCM. (2) Matched feature points are used as prior to boost multispectral
line segment matching, which is robust against scenarios with multiple planes because of
the multiple local homographies generated. (3) Line detection result fusion is considered
to increase the number of matched lines in low-texture scenarios, and three geometric
constraints are considered in cascade to narrow the search range of matching candidates,
as well as decrease the time consumption of the algorithm.

The rest of this paper is organized as follows: Section 2 summarises the related works.
Section 3 discusses the methodology of our approach. Section 4 presents the experiment
results and analysis. Finally, Section 5 presents the conclusion.

2. Related Works
2.1. Single-Spectral Feature Matching

For single-spectral point feature matching (e.g., VS-VS image pairs), various algorithms
exist, such as the scale-invariant feature transform (SIFT) [20], speeded-up robust features
(SURF) [21], and Oriented FAST and Rotated BRIEF (ORB) [22]. These approaches involve
building the local descriptor using the gradient magnitude and orientation of the pixels.
Then, the distance between two points in the vector space of point descriptor will guide the
matching steps. These approaches have been proven to be very robust in several scenarios
and are insensitive to rotation, scale change, or other attributes. Another type of point
matching method utilizes structure-based point feature instead of the gradient or intensity
of pixels. In such techniques, features are constructed using local structural information
such as edges and lines. Moreover, in recent years, machine learning for point feature
detection, description, and matching has received considerable attention [23].

Three strategies are available for single-spectral line feature matching: individual
matching, structure matching, and machine learning strategies. Similar to point feature
matching, individual matching focuses on the intensity of neighbouring pixels of line
segments and constructs line descriptors according to the gradient of these points. The
mean-standard deviation line descriptor (MSLD) [15], line band descriptor (LBD) [3], and
scale-invariant line feature descriptor [16] are all methods for matching line segments
based on the local intensity. To overcome the inaccurate extraction of the endpoints of
line segments, LBD projected the descriptors to the latitude direction of the line segments,
thereby alleviating the negative effect of inaccurate extraction on algorithm performance.
As for structure matching, it can be further divided into local structure matching and group
matching. Local structure line matching methods made use of the local geometry invariants
(e.g., matched points and line junctions). In [24], the matched points located in the line
support region (LSR) were used to boost the line matching according to the constructed
affine or projective transformation. Al-Shahri and Yilmaz [25] proposed a top-down
strategy that involved the global epipolar constraint derived from matched feature points
and two local constraints (overlap and homography constraints). Jia et al. [26] built a line-
point-based and projective-invariant line descriptor by designing the characteristic number
extended from the cross ratio invariant in projective transformation. Some researchers
have combined the local intensity with the local structure for matching. The Line-Junction-
Line (LJL) method [2] allowed for exploiting the possibility of using the junctions of
two neighbouring line segments as anchors and then building SIFT-like descriptors of
these junctions to guide the following line matching. The basic idea is that the junctions
of two coplanar line segments are more robust for matching even under a remarkable
viewpoint change, compared with other local structures. Moreover, the matched LJL
structures can further provide the local homography for the registration of the remaining
unmatched individual line segments. Li and Yao [17] refined LJL by extracting the scale
and affine invariant local region for junction description instead of using a scale pyramid.
In this approach, T-junctions and X-junctions are divided into four and two V-junctions,
respectively, to form a uniform matching process. Chen et al. [19] added forward and
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backward topological constraints and a “merge + reassignment” strategy. Wang et al.
[27] built a daisy-like junction descriptor and designed an orientation constraint. They
also introduced the double-layer evaluation matrix for evaluating 1-to-n, n-to-n matching
candidates. These two methods [19,27] outperformed the LJL approach because of their
modifications. For group matching, Wang et al. [1] provided a wide-baseline line matching
method called line signature (LS) that matched line segments in groups. The method used
the inter-relationship among the line segments in a local group and hardly used intensity
information, making it stable under large viewpoint changes and illumination variations.
Lange et al. [28] and Zhang et al. [29] utilized learning-based methods for line segment
descriptor construction and matching.

2.2. Multispectral Feature Matching

Multispectral feature matching has numerous applications, such as image fusion in
satellite remote sensing and IR-VS image fusion in industry and robotics. Nonetheless,
NRD can render single-spectral intensity-based matching techniques ineffective [14]. Shen
et al. [30] proposed a new matching cost to release the gradient and colour variation in
VS/NIR matching. Brown and Susstrunk [31] modified the SIFT descriptor to make it
applicable to cross-spectrum matching. However, such methods will invariably fail in VS-
LWIR cases in which the wavelength difference between two sensors exceeds the feasible
region in which intensity-based matching can work; the gradient histograms could be fairly
different (the pixel values of a LWIR image are proportional to the temperature, but this
is not the case in VS images). Thus, the invariant attributes (i.e., structure and geometry
information) insensitive to the NRD should be adopted for feature matching.

For point matching, Aguilera et al. [32] designed the edge-oriented histogram (EOH)
descriptor constructed using the neighbouring edges of the interesting points. First, the
keypoints and edge image are extracted. Then, the neighbouring area of these keypoints in
the edge image is divided into 4 × 4 sub-regions. After that, five Sobel filters for detecting
edges in different directions are implemented to be convoluted with these sub-regions.
Thus, a histogram with 5× 4× 4 bins can be used as the descriptor of a keypoint for feature
matching. This method fully focused on the local geometric structure so that it still worked
even with strong NRD. Aguilera et al. [33] and Nunes et al. [13] have further extended
this idea, replacing the simple Sobel filters with Log-Gabor (LG) filters in the frequency
domain with different scalars (frequency) and orientations and then building the histogram
of the filtering results for point matching. Ma et al. [34] also used similar concepts.
Zhao et al. [35] applied phase congruency (PC) [36] to extract the corner and edge images.
Then, line segments were extracted from the PC edge images. After the PC process, the pixel
values of the PC image were normalized to [0,1] so that the PC images were independent
of pixel intensity, which can be helpful for multispectral feature matching. In the next step,
local scale-orientation-invariant feature keypoint descriptors were constructed from the
relative positions between the centre keypoints and the intensity-independent structures
(corners, line segments). Inspired by the important attribute that the PC response of a
pixel could simultaneously possess phase, orientation, and magnitude, histogram-oriented
phase congruency (HOPC) [37] was proposed for constructing an intensity-like descriptor
with the magnitude and orientation of the PC image. Liu et al. [38] modified this concept
for affine invariant. Chen et al. [39] also built a SIFT-like rotation-invariant descriptor
according to this attribute. RIFT [12] improved the matching performance by using the
MIM (maximum index map) for feature description instead of the overall summation of PC
responses of a pixel at all orientations and scales. Besides, learning-based multispectral
feature point matching has been a new trend in recent years [40,41].

Multispectral line segment matching, on the contrary, has not received as much
attention as multispectral point matching because of the challenges introduced in Section 1.
First, NRD problem causes the poor performance of individual (intensity-based) line
matching approaches such as LBD and MSLD. Thus, only geometry-based or structure-
based methods are worthy of consideration [18,42,43]. Li et al. [18] utilized the intersections
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of line segments as anchors and EOH-based point descriptor for the construction of line
segment descriptor. Second, the low texture of LWIR images compared with that of VS
images reduces the repeatability of local structures. For point matching, the influence
may not be so significant. However, when matching lines, intersection-based or group
matching-based approaches introduced before will suffer from a lack of repeatable local line
structures. Therefore, the number of matching candidates will largely decrease. Third, most
of the introduced multispectral line matching techniques assume that the transformation
between two images can be described by a single homography [44], which indicates the
existence of a global transformation. However, in man-made scenarios, multiple local
homographies usually exist (which means the existence of multiple planes).

In summary, the current line segment matching methods encounter the following
three problems in multispectral scenarios: NRD, low texture similarity, and the absence of
local transformations. To address these three problems, the proposed method based on PC
and multiple local homographies (PC-MLH) uses the matched and clustered multispectral
feature points as global guidance, and then the searching space is shrunk via several
methods, thereby significantly improving matching accuracy.

3. Methodology
3.1. Feature Point Matching and Clustering
3.1.1. PC and Feature Point Matching

Phase Congruency, first proposed by Kovesi et al. [36], is widely used in multispectral
feature extraction and matching. It filters an image in the frequency domain using LG
filters with different scales and orientations by

LGm,n( f , θ) = exp

(
− log( f / fm)2

2(log(σf / fm))2

)
exp

(
− (θ − θn)2

2σ2
θ

)
, (1)

where m and n are the local frequency index and the local direction index, respectively. f
denotes the frequency and θ represents the angle. fm and θn are the local centre frequency
and local centre direction, respectively. σf and σθ are the width parameters of the frequency
and angle, respectively.

In the spatial domain, such LG filters are composed of a real even part Fe
m,n and an

imaginary odd part Fo
m,n. The convolution results of the image I(x, y) (where (x, y) is the

pixel position) at frequency fm and direction θn can be depicted as two responses em,n(x, y)
and om,n(x, y) based on Fe

m,n and Fo
m,n:

[em,n(x, y), om,n(x, y)] =
[
I(x, y) ∗ Fe

m,n, I(x, y) ∗ Fo
m,n
]
. (2)

The local amplitude Am,n(x, y) and direction Φm,n(x, y) at pixel (x, y) are defined
according to the two convolution results above as follows:

Am,n(x, y) =
√

e2
m,n(x, y) + o2

m,n(x, y),

Φm,n(x, y) = arctan(em,n(x, y), om,n(x, y)).
(3)

Then the PC response of a pixel (x, y) is defined as

PC(x, y) = ∑m ∑n Wo(x, y)bAm,n(x, y)∆Φm,n(x, y)− Tc
∑m ∑n Am,n(x, y) + ε

, (4)

where Wo(x, y) represents the weight coefficient, ∆Φm,n(x, y) is the phase deviation, and T
is introduced to suppress the influence of noise. ε is a parameter to prevent the denominator
from being zero. bc is set to zero when the value inside is negative. The phase is normalized
to [0, 1] by the sum of local amplitudes ∑m ∑n Am,n(x, y). Therefore, the PC value is
insensitive to the intensity change of the images. When a pixel’s PC response is closer



Remote Sens. 2022, 14, 3857 7 of 20

to 1, it is more likely to be an edge. The detailed definition and derivation of the above
parameters can be found in [36].

Another important property of PC of a pixel is that it also has an orientation [37]. The
orientation O(x, y) of the PC of a pixel (x, y) is given as

sintotal = ∑
m

∑
n

om,n(x, y) sin(n),

costotal = ∑
m

∑
n

om,n(x, y) cos(n),

O(x, y) = arctan(sintotal, costotal).

(5)

Due to the PC response and its orientation of a point in images being stable and
unique with different wavelengths, it is better to describe image pixels using PC response
instead of intensity and gradient, which are sensitive to NRD, for multispectral feature
matching. In the proposed approach, feature points are matched by RIFT [12]. In RIFT, the
feature points were detected according to the maximum moment map of the PC map. Then,
instead of directly using the PC magnitude and its orientation for matching, the authors
built a maximum index map (MIM) that set the pseudo-intensity of every pixel by the
index of the orientation with the maximum filtering response. Next, a SIFT-like descriptor
was built for every interesting feature point. Such a kind of descriptor is completely
constructed by the neighbouring edge structure of a pixel, so that it was very robust to the
wavelength change of sensors compared with the descriptor built according to the intensity
of neighbouring pixels.

3.1.2. Clustering of the Matched Multispectral Feature Points

The RIFT algorithm is proposed to register the image pairs in the remote-sensing area.
In such scenarios, the transformation between two images is always Affinity. Sometimes this
Affinity may even degrade to Similarity or Euclidean transformation. Therefore, a single
homography is sufficient to describe the global pixel-wise mapping between two images:

X′3×1 = H3×3X3×1, (6)

where X3×1 and X′3×1 are the correspondence points in two planes, and H3×3 is the ho-
mography of these two planes. However, when utilizing such a matching approach in
man-made structural scenarios, there always exist several dominant planes that have dif-
ferent corresponding homographies for pixel-wise and plane-wise mappings, which means
a simple homography does not exist for the global transformation. Thus, the matched
feature points should be clustered into different groups according to the reprojection error
to obtain different local homographies of different planes. Iterative random sample consen-
sus (RANSAC) [45] is chosen to achieve this goal because of its easy implementation and
relatively high clustering accuracy. After obtaining the matched points of a multispectral
image pair, RANSAC extracts a set of points that satisfy the homography projection error
threshold with the largest number. The points in the set are more likely to belong to the
same plane. Then, the selected points are removed from the initial point set, following
which the above process is run iteratively for the remaining points. Finally, the matched
points are clustered into several groups with their own local homographies.

3.2. Line Segment Fusion and Multi-Layer Local Homography Mapping

The line segments in an image are extracted by EDLines [46]. In some cases, the raw
IR image demonstrates low texture, and consequently, the line extraction result acquired
from the raw IR image (the 2nd image of Figure 3a) is not rich enough compared with the
extraction result from its corresponding VS image (the 1st image of Figure 3a). In this case,
possible line matching candidates are few, as in Figure 3b. Because PC can emphasize the
edge feature, especially in the low-texture area, the line segments extracted from the PC
response of the IR image (the 3rd image of Figure 3a) are fused with the line segments
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extracted from the raw IR image to address this issue. The fused IR line segments are then
matched with the line segments in VS images, the 1st image of Figure 3a. The matching
result after fusion is shown in Figure 3c, which has more matched pairs compared with
Figure 3b.

(a)

(b) (c)

Figure 3. Illustration of line segment fusion results. (a) Line segment detected in VS, IR image,
and PC of IR image. (b) Matching result using VS and IR images. (c) Matching result after line
segment fusion.

For a clear description, we define li
IR, i = 1, 2, 3, ..., p as the detected line segments in

the IR image and l j
VS, j = 1, 2, 3, ..., q as the detected line segments in the VS image. After

different local homographies are obtained in the clustering step, the detected line segments
li
IR are mapped into the VS image by different local homographies H IR→VS

k , k = 1, 2, 3, ..., n
using the formula (6), where n is the number of clustered feature point groups. The
mapped line segments are described as li,mapped

IR,k . As demonstrated in Figure 4, the line
segments in an IR image are mapped into the corresponding VS image according to four
local homographies H IR→VS

k , after which each mapped IR line segments by each local
homography will be tentatively matched with the neighbouring line segments in the
VS image.

Line Segments of 

LWIR Images

Multiple Local 

Homography Mapping

Projected Line Segments of 

LWIR Image in VS Image

H

Line Segments of 

VS Images

Geometric Constraints 

for Matching

Figure 4. Illustration of multiple local homographies for matching line segments in IR and VS images.
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3.3. Geometric Constraints for Matching Candidates Selection

Three geometric constraints (line position constraint, overlap constraint, and point-to-
line constraint) and an overall constraint are designed for fast matching with high accuracy.
If every line segment in the mapped IR image is to be paired with every line segment in the
corresponding VS image, then the total number of constructed line pairs is p× q× n, where
p, q are the number of detected line segments in the IR and VS image, respectively, and n is
the number of homography layers. This pairing method is very time-consuming, and many
of the line pairs are apparently not matched. However, after mapping the line segments in
the IR image into the VS image, the distance between line segment correspondence will
not be too far. In this situation, the line segments can be encoded according to their middle
point position, as illustrated in Figure 5, and then the mapped line segments li,mapped

IR,k in a bin

will only be possible to be paired with the line segments l j
VS scattered in the neighbouring

bins. Through this minimal pairing strategy, those line pairs that cannot be matched will
not be considered and occupy the computing resource.

Figure 5. Line position encoding for fast matching. Left: position grid of the mapped lines of the
IR image in the VS image; Right: position grid of the lines in the VS image. Mapped line segments
with the middle points located in the red bin will only be paired with the VS line segments with the
middle points located in the neighbouring nine orange bins for further evaluation.

Aside from line position encoding, two additional constraints are added for efficient
outlier removal: the overlap constraint with the corresponding threshold To and the point-
to-line distance constraint with the distance threshold Td. First, a matched line pair should
have a large proportion of overlapped parts. The startpoint and endpoint of a line segment
in the IR image are defined as sIR and eIR, respectively (xsIR < xeIR ). Similarly, sVS and eVS
can be defined in the VS image. After local homography transformation, the coordinates
of sIR and eIR on the VS image are s′IR and e′IR. For every IR-VS line pair, the two mapped
points of the IR line segment are further projected onto the VS line segment: s′IR,Proj and
e′IR,Proj. Following this, there are four defined points on the VS line segment of this IR-VS
pair (s′IR,Proj, e′IR,Proj, sVS, eVS). The overlapped two line segments in a line pair must satisfy
any one of the following two conditions:

sVS < e′IR,Proj < eVS, (7)

or
sVS < s′IR,Proj < eVS. (8)

Then, the qualified line pairs are used to compute the overlap ratio Ro as follows:

Ro =
‖−−→P2P3‖

min(‖−−→P1P3‖, ‖
−−→
P2P4‖)

, (9)

where (P1, P2, P3, P4) are the sorted points of the points set (sVS, s′IR,Proj, eVS, e′IR,Proj) based
on their x coordinates: XP1 < XP2 < XP3 < XP4 . Only when Ro > To, is the line pair
accepted as a matched candidate, as demonstrated in Figure 6a. If one line segment is fully
dropped on another line segment, then Roverlap = 1.
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Figure 6. Geometric constraints illustration (a) and two examples of false match (b) that only satisfy
one of the two geometric constraints. (The matching candidate enveloped with a blue rectangle only
satisfies the point-to-line constraint. Another candidate in the purple rectangle only agrees with the
overlap threshold).

Second, a matched line pair should have a relatively small point-to-line distance, where
‘point’ means the mapped points s′IR or e′IR and the term ’line’ means the corresponding
line segment l j

VS in VS image. The score is calculated as

Dp2l =
√

dist2
1 + dist2

2

dist1,2 =
‖XT l j

VS‖√
a2 + b2

,
(10)

where l j
VS = (a, b, 1)′ is the VS line segment of the matching candidate, X is s′IR or e′IR with

the homogeneous coordinate form X = (x, y, 1)′.
These two constraints are used for separately evaluating the matching candidate from

different perspectives and both of them are of importance. If a matching candidate satisfies
only one of them, it is very likely to be a false match, as depicted in Figure 6b. However, a
correct match does not mean it has an overlap ratio close to 1 and a point-to-line distance
close to 0 because of the fragmented line segment extraction and the projection error. Thus,
relatively small To and large Td are chosen for initial outlier removal. Then, an extra total
evaluation threshold Tt is added to combine the overlap and point-to-line constraints to
obtain the final score S of a matching candidate:

S =

{
eDp2l eλ(1−Ro) (Dp2l < Td) ∧ (Ro > To)

∞ else
, (11)

where λ is a hyper-parameter for adjusting the weight of the two constraints. A matching
candidate has n total scores computed from different homography layers. If at least one
of them is smaller than the total threshold Tt, the candidate (li

IR, l j
VS) is considered a true

matching result.
To further reduce computational complexity, these constraints are set up in cascade.

That is, after line position encoding, the overlap ratio is calculated only when two line
segments overlap; the point-to-line distance is calculated only when the overlap ratio is
greater than the threshold To; and the total score of this matching candidate is computed
only when Dp2l is less than the threshold Td. A matching candidate will no longer be
considered as long as it does not meet with the associated constraint in any above step. The
overall process is shown in Algorithm 1.
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Algorithm 1 PC-MLH for Multispectral Line Segment Matching

Input: Mapped IR line segments in the VS image and VS line segments. Multiple local
homographies Hk, K = 1, 2, ..., n.

Output: Set of matched pairs
1: Line position encoding strategy based on their middle point positions
2: for Every line segment li,mapped

IR in a bin and the VS line segments l j
VS in the neighbouring

bins do
3: if Two line segments have overlapping parts then
4: Compute the overlap ratio Roverlap
5: if Roverlap > To then
6: Compute the point-to-line distance Dp2l
7: if Dp2l < Td then
8: Compute the total score S
9: if S < Tt then

10: Save (li
IR, l j

VS) as a matched pair
11: end if
12: end if
13: end if
14: end if
15: end for

4. Experiment Results
4.1. Datasets and Evaluation Criterion

The outdoor datasets CVC-Multimodal [47] and VIS-IR [33] (hereafter represented by
CVC and VIS for convenience) are used for both qualitative and quantitative evaluation.
Because most of the images in the VIS dataset have an apparent dominant plane, while
the CVC dataset is a more general scenario with multiple planes existing in an image,
the experimental results of these two datasets are separately analysed. To the best of our
knowledge, there is seldom open-source codes of the multispectral line segment matching
approach in recent years. Therefore, we directly use the statistics in LSM-IM [18] for
comparison because it was validated on the same dataset (CVC) used in our experiments.
Besides, we also compare the current PC-MLH with some classical matching approaches
designed for single-spectrum scenarios (VS-VS). LBD, LJL, and LS are selected as references;
these approaches are based on intensity, local structure matching, and group matching,
respectively. All of these algorithms use VS-LWIR image pairs in these two datasets as
input. A learning-based line matching algorithm is not chosen for comparison because
such algorithms are trained by single-spectrum datasets based on the local intensity and
therefore do not differ from the traditional intensity-based approaches from the perspective
of multispectral line segment matching.

Similar to the previous line segment matching algorithms [1–3,18,19,27], the perfor-
mance indices include the number of detected matches (NDM), the number of correct
matches (NCM), and the percentage of correct matches (PCM) that are calculated by
NCM/NDM. All of the experiments in this section are carried out on a desktop computer
equipped with Intel(R) Core(TM) i7-8700 @ 3.20 GHZ, RAM 32 GB, NVIDIA GEFORCE
GTX 1080. The PC-MLH is designed and verified on MATLAB R2021b, while the other
three traditional algorithms are tested using open-source codes. Thus, we do not compare
the time consumption among them. However, the line segment extraction parts of these
four algorithms are all modified to EDLines [46] with the same parameters for performance
comparison on the three indices defined above.

4.2. Parameters Analysis
4.2.1. Clustering Threshold Tr

In the PC-MLH process of feature point clustering by RANSAC, the clustering thresh-
old Tr should be defined properly for selecting the inlier points that satisfy the current
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homography model at every iteration step. The point coordinates are normalized with
respect to the relative position to the centroid of points used for constructing the local
homography, aiming to obtain a more stable clustering result. In the experiments, Tr is set
as 0.001–0.03 for comparison. Suppose that the detected feature points set in IR and VS
images are {Xu|u = 1, 2, 3, ..., o} and {Yu|u = 1, 2, 3, ..., o}, respectively, where o is the total
number of matched points and Xu and Yu are the correspondences, the inlier set can now
be expressed as

Inliers = {(Xu, Yu)|‖Yu − HXu‖ < Tr, u = 1, 2, ..., o}. (12)

Table 1 shows the average number of homography layers per image in CVC, VIS, and
All (combing CVC and VIS) datasets defined by

n

∑
i=1

Li/n, (13)

where Li is the number of local homography layers of image i, and n is the total number of
images. A relatively large Tr means a high tolerance for the projection error; thus, points
are grouped as much as possible in a single iteration step. Consequently, the number of
total layers is reciprocally related to Tr.

Table 1. Average number of homography layers (ANHL) with different Tr.

Tr = 0.001 Tr = 0.003 Tr = 0.005 Tr = 0.01 Tr = 0.03

ANHL-CVC 3.59 2.15 1.68 1.42 1.06
ANHL-VIS 3.25 1.84 1.40 1.25 1.09
ANHL-ALL 3.49 2.06 1.60 1.37 1.07

After implementing the proposed PC-MLH on the CVC dataset, the NDM, NCM with
different Tr are depicted in Figure 7a. A clear trend can be seen in the figure: a smaller
clustering threshold yields more correct line matches while maintaining a high PCM at the
same time. From Tr = 0.03 to Tr = 0.001, the NCM increases significantly from 512 to 940,
while the PCM fluctuates in a narrow range of 87.93–93.6% with an average high value.
The distribution of line matches in different local homography layers is demonstrated in
Figure 7b. The results prove that such a local homography matching scheme is effective
because (1) the average number of homography layers and the NCM are strongly positively
correlated, and (2) more matches are detected in the deeper layers when Tr is smaller. At
Tr = 0.03, the average number of homography layers is 1.06 (Table 1), with almost all of the
matches in the first layer (blue part in Figure 7b). In this case, the NCM is 512 (Figure 7a),
with 92.86% of them in the first layer. The algorithm treats the image transformation as
a single homography with one plane. When the threshold gets lower (Tr = 0.005), the
percentage of correct matches in the first layer decreases to approximately 64.2% (Figure 7b),
with an NCM of 721 (Figure 7a) and an average number of homography layers of 1.68
(Table 1). At a lower Tr of 0.001, the percentage in the first layer dramatically drops to
29.5%, with 27.2% in the second layer, and 19.6% and 12.23% in the third and fourth layer,
respectively (Figure 7b). The average number of homography layers rises to 3.59 (Table 1).
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Figure 7. The influence of different Tr on algorithm performance on the CVC dataset. (a) NDM, NCM
of the CVC dataset, (b) layer distribution of the CVC dataset.

Theoretically, if the image pairs are captured indoors with a small depth of field
(DOF), the difference in homography between any two planes could be so big that feature
points that are spread out on different planes rarely cluster together into the same group.
However, when the LWIR-VS image pairs are captured in an outdoor scenario with a very
large DOF and the baseline between two cameras is small (which is true for these two
datasets), the general projective geometry is degraded to a weak perspective geometry; that
is, the homography difference between two planes is relatively small. In this case, feature
points belonging to different planes may be grouped into a set as long as the reprojection
error according to this homography is less than the clustering threshold. This explains
why in these two datasets, different groups of clustered feature points always have an
apparent overlapped area. Nevertheless, the local homography scheme still performs well
because, for any local area, there exists a local homography with a smaller reprojection
error than other homographies. Then, the line matching in this area can be guided by such
homography, which is the same process in an indoor scenario.

The effect of Tr on the matching performance of the PC-MLH tested by VIS shows
a slightly different result. The NDM and NCM are shown in Figure 8a. As previously
mentioned, in many of the images, a dominant plane occupies a large proportion of
the image; thus, the homography difference between different layers is tiny, and all of
these homographies are close to the real homography transformation. Consequently, the
region the PCM located in shifts from [87.93%, 93.6%] on CVC to [97.27%, 99.28%] on VIS.
Moreover, because the dominant planes of the VIS dataset always have a strong structural
texture, the corresponding NDM and NCM are greater than those of CVC for every Tr,
even though the total number of images is 44, compared with 100 images of CVC. The
average number of homography layers and match distribution are given in the second row
of Table 1 and Figure 8b, respectively, demonstrating a similar pattern to those of CVC. The
percentage of matches in the first layer (blue part in Figure 8b) falls from 94.52% (Tr = 0.3)
to 37.8% (Tr = 0.001).
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Figure 8. The influence of different Tr on algorithm performance on the VIS dataset. (a) NDM and
NCM of the VIS dataset, (b) layer distribution of the VIS dataset.

4.2.2. Line Detection Threshold and Parameters of Line Position Encoding

To guarantee the credibility of the experiments, during line segment detection using
EDLines, the minimum length of detectable line segments lmin is set to the same value for
different approaches. Too small and too large values of lmin are not appropriate because the
detected line segments will be fragmented and rare, respectively, which is not only incon-
sistent with the actual scenario but also has a negative impact on matching performance.
After testing under different lmin, lmin = 30 can get a relatively good result. During line
position encoding according to the middle point positions, we set one bin with the size of
20× 16. Thus, li

IR will search the possible matched line l j
VS in the neighbouring 3× 3 bins

as mentioned in Figure 5 with the size of (3× 20)× (3× 16) = 60× 48.

4.2.3. Matching Thresholds To, Td, Tt, λ

The thresholds of designed three geometric constraints and the hyper-parameter λ are
strongly related to the final matching quality. Since the case where two line segments do not
overlap but still belong to the same line segments is not considered, we assume that matched
line segments must have an overlapping proportion greater than To = 0.8. This simple
assumption accounts for almost all of the matched line pairs under the previously defined
parameter settings. In addition, Td and Tt are empirically set as 10 and 5, respectively. The
weight parameter λ is simply set to 1 in the experiments.

4.3. Matching Performance Comparison

Figure 9 presents the matching results of the proposed PC-MLH on the datasets CVC
and VIS. Figure 10 compares the performances of various algorithms. They are all fed
with VS-LWIR image pairs of these two datasets as input. The NDM, NCM, and PCM
of these four approaches (PC-MLH, LS, LBD, LSM-IM) are shown in Table 2. Because
LSM-IM only used the CVC dataset, “PCM-CVC (%)” in Table 2 denotes the performance
comparison among all of the four algorithms on the CVC dataset, while the last column,
“PCM-ALL (%)”, represents the average performance of algorithms except LSM-IM on
both the CVC and VIS datasets. A huge performance improvement can be seen by using
PC-MLH compared with multispectral matching techniques and traditional matching
techniques designed for single-spectrum scenarios.
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Figure 9. Demonstration of matching results of the PC-MLH (different colours mean that the matched
lines are detected from different local homography layers). The images in the 1st and 3rd columns
belong to LWIR images, and those in the 2nd and 4th columns are VS ones.

Table 2. Performance comparison among different algorithms.

NDM NCM PCM-CVC (%) PCM-ALL (%)

LBD 838 116 13.55 13.84
LS 2004 727 33.48 36.28

LSM-IM - - 67.69 -
PC-MLH 2613 2456 88.10 93.99

Among these three approaches, LS shows a relatively reasonable result; it matches the
local line group mostly based on the mutual structure information. In some image pairs
sharing many similar local line structures in VS and IR images, LS achieves a competitive
index: an NDM of 2004 and a PCM of 36.28% (Table 2). However, in most cases, there
are few similar local structures between two images, and therefore, their NDM, NCM,
and PCM decrease sharply. Another problem existing in LS results because of its group
matching scheme is that the wrong matches also occur in the form of groups, as illus-
trated in Figure 10d marked by blue rectangles. These problems impair the robustness of
LS for multispectral line segment matching. In contrast, the LBD is almost fully based
on the local intensity of a line segment for matching, and thus underperforms LS. The
NDM and PCM are only 838 and 13.84% (Table 2), respectively. This demonstrates that
the NRD phenomenon makes it very hard to resort to intensity for multispectral line
segment matching.
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(a) PC-MLH-image pair 1 (b) PC-MLH-image pair 2

(c) LS-image pair 1 (d) LS-image pair 2

(e) LBD-image pair 1 (f) LBD-image pair 2

Figure 10. Performance comparison of PC-MLH, LS, and LBD on two LWIR-VS image pairs. In
(a–f), the left and right images are LWIR and VS images, respectively. (a,c,e) are the results of image
pair 1; (b,d,f) are the results of image pair 2. Both of the VS and LWIR images were converted to
corresponding greyscale images before the process of line segment extraction.

For the multispectral matching method LSM-IM, different error thresholds (line seg-
ment distance) are selected for cumulative comparison. Therefore, we chose the threshold
section [0, 5] which is very close to the Point-to-Line distance threshold defined in this
proposal, and then the PCM of LSM-IM and PC-MLH on the dataset CVC are comparable
within the same error section. The data shows that the PCM of LSM-IM reaches 67.69%
(the third row of the Table 2), which is a significant improvement on the accuracy metric
compared with single-spectral approaches, but still less than the PCM of PC-MLH, which
achieved 88.10% on the CVC dataset. Note that the NDM and NCM are not introduced in
LSM-IM, and therefore, only PCM is available.

In the experiments, LJL fails for all the image pairs in both the CVC and VIS datasets.
It uses the local structure for junction construction and then uses local intensity for putative
junction matching. Thus, it suffers from both the disadvantages of structure-based methods
and intensity-based methods. The average number of constructed line junctions and
putative matched junctions are 500 and 2, respectively, which is not enough for the following
matching process. However, the proposed PC-MLH utilizes the PC for point matching and
does not generate the matching result according to the local line structure or intersections,
avoiding the NRD problem and the insufficiency of the local structure.

The distributions of computation consumption (the average time, the percentage of
time consumed by the RIFT process, the maximum time, the lower quarter time, and the
upper quarter time) are given in Table 3. The data shows that the RIFT feature matching
process takes most of the time consumed by this algorithm. Regardless of the clustering
threshold Tr, the average RIFT time consumption ranges between 85% and 97%, approxi-
mately. A large Tr value, which means a small average number of local homography layers,
reduces the time need for clustering. Thus, as Tr changes from 0.001 to 0.03, the percentage
of the RIFT’s time consumption slightly increases because the time spent on feature point
clustering dominates the remain processes, except RIFT feature point matching.
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Table 3. Time consumption analysis of PC-MLH with different clustering thresholds Tr.

Clustering
Threshold Tr

Avg. Total
(s)

Avg RIFT
Consuming

(%)
Max. (s) Lower

Quarter (s)
Upper

Quarter (s)

CVC-0.001 10.30 91.81 17.59 6.88 12.66
VIS-0.001 13.03 85.61 19.55 10.05 15.09

CVC-0.003 9.54 96.73 14.39 6.72 11.74
VIS-0.003 12.97 97.21 19.20 10.15 15.16

CVC-0.005 9.54 97.13 13.63 6.80 11.89
VIS-0.005 12.80 97.15 19.91 9.96 14.66

CVC-0.01 9.51 97.31 14.09 6.67 11.88
VIS-0.01 12.85 97.36 19.69 10.16 14.83

CVC-0.03 9.45 97.33 13.97 6.70 11.70
VIS-0.03 12.81 97.38 19.97 9.92 14.77

In Section 3.3, line position encoding and another two geometric constraints processed
in cascade are implemented for the reduction of computational complexity. Compared
with calculating both overlap and point-to-line constraints of every line pair in the IR and
VS images, the degree of time reduction because of the above strategy is illustrated in
Figure 11. In cases in which the number of detected line segments in image pairs is large,
the effect of the cascade strategy will be more significant. In CVC (Figure 11a), the total
time decreases slightly. However, in VIS (Figure 11b), with an average large number of
detected line segments, such a method shows superiority in time reduction.
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Figure 11. Time reduction via line position encoding and cascade matching strategies. (a) Time
reduction for the CVC dataset, (b) Time reduction for the VIS dataset.

4.4. Limitation Analysis

Although much progress has been made by the method proposed in this paper,
it also has two main limitations. First, the RIFT [12] is only weak projective-invariant.
Consequently, when the mapping between two imagery planes of VS and IR cameras is a
heavy projective transformation, the feature matching step may suffer from performance
degradation, resulting in possible decrease of the PC-MLH’s performance. Nevertheless,
in most cases, weak projective transformation is sufficient to approximately describe the
mapping between two imagery planes. Second, as shown in Figure 11 and the second
column of Table 3, although the time consumption is reduced by up to 25% via the designed
fast matching strategy, the average time consumption per image is still about 10 s. If this
algorithm is deployed for real-time applications like SLAM in which the overall time spent
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on feature extraction, description and matching is around 30~100 ms per frame, further
optimization about time complexity needs to be carefully considered.

5. Conclusions

In this paper, a multispectral line segment matching algorithm called PC-MLH (based
on PC and multiple local homographies) was proposed for matching line features in image
pairs acquired from cameras with different spectral resolutions. We first elaborated on
the limitations associated with conventional feature matching methods and the main
challenges associated with multispectral line segment matching, and then provided the
details of PC-MLH. Multiple local homographies were generated for image transformation
based on multispectral feature point matching and clustering. According to the generated
local homographies, the line segments in the IR image were mapped into the VS image.
Finally, three geometric constraints were implemented in cascade for fast matching. The
experiments demonstrated that PC-MLH qualitatively and quantitatively outperformed
other single-spectral and multispectral line segment matching methods in terms of the
NDM, NCM, and PCM. The time reduction achieved by the fast matching method was also
analysed. The future study will investigate how to reduce the overall time consumption of
the algorithm for real-time matching applications, match the line segments in the image
pairs with a heavy projective transformation, and design an end-to-end learning-based
pipeline for multispectral line segment matching.
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Abbreviations

PC Phase Congruency
MLH Multiple Local Homographies
RANSAC RANdom SAmple Consensus
NRD Nonlinear Radiation Distortion
PCM Percentage of Correct Matching
IR Infrared
VS Visible Spectrum
NIR Near-Infrared
MWIR Middle-Wavelength Infrared
LWIR Long-Wavelength Infrared
LJL Line-Junction-Line
LS Line Signature
LBD Line Band Descriptor
EOH Edge-Oriented Histogram
LG filter Log-Gabor filter
NCM Number of Correct Matches
NDM Number of Detected Matches
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