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Abstract: Observations of excited hydroxyl (OH*) emissions are broadly used for inferring informa-
tion about atmospheric dynamics and composition. We present several analytical approximations for
characterizing the excited hydroxyl layer in the Martian atmosphere. They include the OH* number
density at the maximum and the height of the peak, along with the relations for assessing different
impacts on the OH* layer under night-time conditions. These characteristics are determined by the
ambient temperature, atomic oxygen concentration, and their vertical gradients. The derived relations
can be used for the analysis of airglow measurements and the interpretation of their variations.
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1. Introduction

Hydroxyl molecules in excited states (OH*) produce airglow in visible and near-IR
bands. Excited hydroxyl in the vibrationally excited state originates from the reaction of
ozone with atomic hydrogen; then, it can be deactivated by collisions with other molecules
and atoms, chemically removed by reaction with atomic oxygen, or emit a photon by spon-
taneous emission. The distribution and abundances of hydroxyl are very sensitive to atmo-
spheric dynamics, thermodynamics, and photochemistry. Therefore, airglow measurements
provide a useful tool for studying these processes. In the terrestrial atmosphere, observa-
tions of emissions of OH* are broadly used to obtain information about tides [1,2], planetary
waves [3,4], gravity waves [5–7], and quasi-biennial oscillation [8]. These emissions are
also utilized for studying sudden stratospheric warming events [9,10]. Observations of
OH* emissions have been used for retrieving temperature trends and variations induced
by the solar cycle, e.g., [11–15], and chemical composition in the mesopause region [16–18].

Recently, hydroxyl emissions were found in the atmosphere of Venus [19–23] and on
Mars [24]. Future observations open the possibility for similar applications of the emissions
at these planets (for example, investigations of waves and tides by airglow observations
and measurements of atomic oxygen concentrations). Commonly, complex photochemical
and general circulation models (i.e., non-linear global with interactively coupled dynamics,
chemistry, and radiation) are required for reproducing the behavior of the OH* layer, the
main characteristics of which are the altitude, emission intensity, and the shape. When
interpretating measurements, it is desirable to establish straightforward relations between
these quantities and the ambient temperature, air density, and concentration of minor
species involved in photochemical reactions and induced emissions. Since full solutions
are complex, it is not easy to assess the impacts of individual processes and interpret the
variabilities. Since the conditions differ between planets, we focus on Mars in this paper.

Satellite airglow measurements are not sufficiently precise and result in typical errors
in the determination of the layer altitude ~2–3 km. Ground-based observations are restricted
to local points and integrated volume emission, which leads to even larger errors in the
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determination of the altitude (on Earth, the OH* layer is commonly assumed at 87–88 km).
In order to study the morphology and variability of the layer, we select the concentration
of OH* at the peak, which is directly proportional to the volume emission, and the altitude
of the maximum as the characteristics of interest. In the next section, we analytically derive
several approximations for these parameters as well as for relative variations of the OH*
layer. In Section 3, we present applications of the derived formulae based on the input from
the Mars Climate Database (MCD) and determine their validity. Conclusions are given
in Section 4.

2. Analytical Formulae Derivation

The list of photochemical reactions pertinent to hydroxyl in the Martian atmosphere,
along with the corresponding rates, is given in Table 1.

Table 1. List of reactions, nomenclature of reaction rates, quenching coefficients, and spontaneous
emission coefficients used in the paper.

Reactions Coefficients References

R1. H + O3
fvr1→ OHv=5,...,9 + O2

r1 = 1.4·10−10exp
(
−470

T

)
fv=9,...,5 = 0.47, 0.34, 0.15, 0.03, 0.01

[25,26]

R2.O + O2 + CO2 → O3 + CO2 r2 = 6.1·10−34(298/T)2.4 [25]
R3.O + O3 → 2O2 r3 = 8·10−12exp

(−2060
T
)

[25]

R4.O + OHv=1,...,9 → O2 + H r4(v = 9, . . . , 1) = (5.42, 4.8,
4.42, 4, 3.77, 4.43, 3.74, 3, 3.15)·10−11 [27]

R5.OHv + CO2, O2, N2, O
→ OHv′<v + CO2, O2, N2, O

Avv′Bvv′ , Gvv′ , Dvv′

See text [26–29]

R6.OHv → OHv′<v + hv Evv′ [30]

The table includes the source reaction for vibrationally excited hydroxyl (R1), the
reaction of chemical removal (R4), the reactions for collisional deactivation (R5), and
spontaneous emission (R6). Reactions R2 and R3 are related to the ozone balance equation,
which will be used below. This list omits the reaction of hydroperoxy radicals (HO2)
with atomic oxygen because they represent a negligible (or even non-existing) source for
the population of vibrationally excited hydroxyl [30–34]. Thus, the starting point of our
consideration is the almost complete set of equations for OH*.

Next, we assume that the excited hydroxyl is in a photochemical equilibrium at
night [31]; hence, we can write its concentration as a ratio of production to the loss term.
This allows us to explicitly express the concentration of excited hydroxyl at all excitation
levels (v = 1, . . . , 9) in the form

[OHv] ≈


fvr1[H][O3] + ∑9

v′=v+1 Av′v[OHv′ ][CO2] + ∑9
v′=v+1 Gv′v[OHv′ ][N2]+

+∑9
v′=v+1 Bv′v[OHv′ ][O2] + ∑9

v′=v+1 Dv′v[OHv′ ][O]+

+∑9
v′=v+1 Ev′v[OHv′ ]




∑v−1
v′′=0 Avv′′ [CO2] + ∑v−1

v′′=0 Gvv′′ [N2] + ∑v−1
v′′=0 Bvv′′ [O2]+

+∑v−1
v′′=0 Dvv′′ [O] + ∑v−1

v′′=0 Evv′′+

+r4(v)[O]


,
(

v < v′

v′′ < v

)
(1)

where v is the vibrational number; fv are the nascent distributions; r1 and r4 are the reaction
rates; and Avv′ , Bvv′ , Gvv′ , and Dvv′ are the quenching coefficients by carbon dioxide, molec-
ular oxygen, molecular nitrogen, and atomic oxygen, respectively. Hereafter, the square
brackets denote the number density of a particular chemical constituent. Relation (1) can be
simplified by only considering the main processes of production and relaxation, namely, the
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reaction of ozone with atomic hydrogen, quenching by carbon dioxide, molecular oxygen,
and molecular nitrogen:

[OHv] ≈

(
fvr1[H][O3] + ∑9

v′=v+1 Av′v[OHv′ ][CO2]+

+∑9
v′=v+1 Bv′v[OHv′ ][O2] + ∑9

v′=v+1 Gv′v[OHv′ ][N2]

)
(

∑v−1
v′′=0 Avv′′ [CO2] + ∑v−1

v′′=0 Bvv′′ [O2] + ∑v−1
v′′=0 Gvv′′ [N2]

) ,
(

v < v′

v′′ < v

)
. (2)

In (2), we neglected a spontaneous emission and quenching by atomic oxygen because
these processes are weak on Mars. For example, the total spontaneous emission coefficients
for vibrational levels OHv = 9 and OHv = 1 are E9 = 199.2495 s−1 and E1 = 17.62 s−1, respec-
tively [30]. On the other hand, [CO2] ≥ 1015 cm−3 at 50 km, e.g., [35,36], the collisional
removal rates A9 = 9.1 × 10−11 cm3 s−1, and A1 = 2.9 × 10−13 cm3s−1 [29,31,37–39] yield
the first term in the denominator in (1) exceeding 9 × 104 s−1 and 2.9 × 102 s−1 for the
corresponding vibrational numbers. Atomic oxygen concentrations at 50–60 km are around
109–1011 cm−3, e.g., [35,40,41]. Ref. [27] derived for reactive (O + OHv → O2 + H) and
non-reactive (O + OHv → OHv′<v + O) quenching rates by atomic oxygen (at T = 160 K) the
values 7.7 × 10−11 cm3 s−1 and 6 × 10−11 cm3 s−1 for v = 9 and 1, respectively. Hence, the
corresponding collisional removal rate due to atomic oxygen is less than 8–6 s−1 for all the
vibrational numbers and can be neglected.

Following the work of [31], we assume that ozone is in a photochemical equilibrium
in the vicinity of the night-time OH* layer. Then, the balance equation for ozone can be
represented as

r2[O][O2][CO2] = r1[O3][H] + r3[O][O3]. (3)

The share of the reaction of ozone with atomic oxygen in total ozone loss is small since,
for typical temperatures at 50–60 km (~150 K), the reaction rate r3 (~8.7 × 10−18 cm3 s−1)
is about 106 times smaller than r1 (~6.1 × 10−12 cm3 s−1), but the atomic hydrogen number
density is smaller than that of atomic oxygen by no more than ~102–103 times in this
region [31,35,36,40]. Therefore, the second term on the right-hand side of (3) can be
neglected:

r2[O][O2][CO2] ≈ r1[O3][H]. (4)

The substitution of (4) into the first term in the numerator in (2) gives

[OHv] ≈

(
fvr2[O][O2][CO2] + ∑9

v′=v+1 Av′v[OHv′ ][CO2]+

+∑9
v′=v+1 Bv′v[OHv′ ][O2] + ∑9

v′=v+1 Gv′v[OHv′ ][N2]

)
∑v−1

v′′=0 Avv′′ [CO2] + ∑v−1
v′′=0 Bvv′′ [O2] + ∑v−1

v′′=0 Gvv′′ [N2]
,
(

v < v′

v′′ < v

)
. (5)

Molecular oxygen and molecular nitrogen number densities are linearly proportional
to the concentration of carbon dioxide [O2] = α[CO2] = βM, [N2] = χ[CO2], where M is
the air number density, and α, β, and χ are the proportionality coefficients at the heights
of the OH* layer, e.g., [35,41]. In the current work, one will find such behavior below in
Figure 1a. This allows us to exclude the dependencies on concentrations [O2] and [N2] and
re-arrange (5):

[OHv] ≈
β fvr2[O]M + [OHv′ ]∑9

v′=v+1 Cv′v

∑v−1
v′′=0 Cvv′′

,
(

v < v′

v′′ < v

)
, (6)

where ∑9
v′=v+1 Cv′v = ∑9

v′=v+1 Av′v + α ∑9
v′=v+1 Bv′v + χ ∑9

v′=v+1 Gv′v and ∑v−1
v′′=0 Cvv′′

= ∑v−1
v′′=0 Avv′′ + α ∑v−1

v′′=0 Bvv′′ + χ ∑v−1
v′′=0 Gvv′′ .
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with (1) (solid lines) and estimated with (7) (dashed lines); (c) volume emissions from (1) and (7) 
(solid and dashed lines, respectively) for vibrational transitions 1–0 (blue), 2–1 (green), and 2–0 (red). 
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Figure 1. Night-time zonal mean quantities averaged between 70◦N and 90◦N and over the period of
solar longitudes Ls = 265◦–320◦: (a) O, O3, H, O2, CO2, N2, T from MCD; (b) OHv = 1, . . . ,9, calculated
with (1) (solid lines) and estimated with (7) (dashed lines); (c) volume emissions from (1) and (7)
(solid and dashed lines, respectively) for vibrational transitions 1–0 (blue), 2–1 (green), and 2–0 (red).

Writing the numeric value of the reaction rate r2 explicitly and reorganizing (6), we
can obtain

[OHv] ≈ εγv[O]T−2.4M, (7)

where ε = 6.1·10−24·2982.4β and γv =
fv+∑v′=9

v′=v+1 γv′Cv′v

∑v′′ =v−1
v′′ =0

Cvv′′
, ( f9<v<5 = 0, v < v′, v′′ < v).

Note that the coefficient ε depends on r2 and, therefore, can vary. For example,
refs. [29,31] utilized r2 = 1.2 × 10−27 after the work in [42]. The other examples of r2
applied in previous studies include 2.7 × 10−34·3002.4 [40], 1.4 × 10−34·3002.4 [35], and
1.5 × 10−34·3002.4 [43]. Despite the differences, all the studies were in consensus that
r2 ∼ T−2.4.

2.1. Peak Concentration of the Excited Hydroxyl Layer and Its Altitude

We now can derive an expression for the peak concentration of the hydroxyl layer
OH* and its altitude. For that, we exclude air density M from (7) using the ideal gas law:

[OHv] ≈ ϑvT−3.4[O]p, (8)

where the notation ϑv = εγv/kb is used, p is pressure, and kb is the Boltzmann constant.
Differentiating (8) by pressure and equating the result to zero gives the pressure at the

local maximum of OH* concentration:

ppeak≈
1

3.4 ∂ ln T
∂p −

∂ ln[O]
∂p

≈ 1
∂

∂p

(
ln
(

T3.4

[O]

)) , (9)

Substituting (9) into (8), we obtain the value of the maximum concentration of the
excited hydroxyl:

[OHv]peak ≈
ϑvT−3.4[O]

3.4 ∂ ln T
∂p −

∂ ln[O]
∂p

≈ ϑvT−3.4[O]

∂
∂p

(
ln
(

T3.4

[O]

)) , (10)

It is seen from (9) and (10) that the peak concentration of OH* and its height are
explicitly determined by vertical profiles of temperature, the concentration of atomic
oxygen, and the coefficient ϑv, which encompasses photochemical parameters. Note that
the derivations above are valid only within a thin layer near the peak of the OH* layer
because several assumptions were utilized that are only valid in this region.
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2.2. Variations of the Excited Hydroxyl Layer

The hydroxyl layer is extremely variable. Therefore, it is desirable to link its relative
variations to those of the observable background quantities. For that, we decompose
the atomic oxygen number density, temperature, and air number density into the mean
([O], T, M) and deviations ([O]′, T′, M′), where the bar denotes an appropriate (spatial,
temporal, or both) averaging, and substitute them into (7):

[OHv] = εγv

(
[O] + [O]′

)(
T + T′

)−2.4
(
[M] + [M]′

)
. (11)

Temperature variations T′/T are small, at least on Mars and other planets of the
terrestrial group. This allows one to apply the Taylor series expansion to the term with
temperature in (11). Cross-multiplying all terms yields

[OHv] ≈ εγv[O]T−2.4
[M] + εγv[O]T−2.4

[M]′ + εγv[O]′T−2.4
[M]

−2.4εγv[O]T′T−3.4
[M] + εγv[O]′T−2.4

[M]′

−2.4εγv[O]T′T−3.4
[M]′ − 2.4εγv[O]′T′T−3.4

[M]

−2.4εγv[O]′T′T−3.4
[M]′.

(12)

The excited hydroxyl concentration for a given vibrational number can be written in a
more compact form:

[OHv] ≈ [OHv] + [OHv]
′
M + [OHv]

′
O + [OHv]

′
T + [OHv]

′′
OM + [OHv]

′′
TM

+[OHv]
′′

TO + higher order terms,
(13)

where the following notations are used: [OHv] = εγvT−2.4
[O][M], [OHv]

′
M =

εγvT−2.4
[O][M]′, [OHv]

′
O = εγvT−2.4

[O]′[M], [OHv]
′
T = −2.4εγvT′T−3.4

[O][M], [OHv]
′′

OM =

εγvT−2.4
[O]′[M]′, [OHv]

′′
TM = −2.4εγvT′T−3.4

[O][M]′, [OHv]
′′

TO = −2.4εγvT′T−3.4
[O]′[M].

Hence, relative variations of OH* concentration due to linear parts (RV′) can be ex-
pressed in terms of the relative variations of temperature, atomic oxygen, and concentration
of air:

RV′T ≡
[OHv ]

′
T

[OHv ]
= −2.4 T′

T
,

RV′O ≡
[OHv ]

′
O

[OHv ]
= [O]′

[O]
,

RV′M ≡
[OHv ]

′
M

[OHv ]
= [M]′

[M]
.

(14)

The relative variations of the concentration due to second momenta (RV”) are

RV ′′TM ≡
[OHv ]

′′
TM

[OHv ]
= −2.4 T′ [M]′

T[M]
,

RV ′′OM ≡
[OHv ]

′′
OM

[OHv ]
= [O]′ [M]′

[O][M]
,

RV ′′TO ≡
[OHv ]

′′
TO

[OHv ]
= −2.4 T′ [O]′

T[O]
.

(15)

In the derivation of (14) and (15), namely, in handling the terms with air number den-
sity, we assumed that variations of the height of the OH* layer do not exceed the air density
scale height. Therefore, the derived equations are only valid when the displacements of
the OH* layer from the average altitude do not exceed the air density scale height. In
the terrestrial atmosphere, this condition is fulfilled for day-to-day, intra-seasonal, gravity
wave-induced variations and for annual cycles at latitudes where height deviations of the
OH* layer are relatively small. Similar care should be taken when (14) and (15) are applied
on Mars.
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3. Calculations and Discussion

In this section, we test the applicability of the derived formulae. They contain photo-
chemical parameters in the most general form. In particular, they assume multi-quantum
relaxation for quenching and spontaneous emission processes, where transitions occur from
all vibrational levels above to all levels below. To date, not all multi-quantum quenching
coefficients for carbon dioxide and molecular nitrogen are known. Only the rates for the
so-called collisional cascade quenching [33], where transitions take place to one level below,
have been provided in the literature. The most recent update for these coefficients was
presented by [28,29] for quenching by carbon dioxide and molecular nitrogen, respectively.
We adopted these values in our calculations. Namely, we used the diagonal matrix for Avv′

and Gvv′ for transitions v→ v − 1 with values of [28,29] and assigned the non-diagonal
terms for other transitions to zero.

The input profiles of O, O3, H, O2, CO2, and N2 concentrations, and temperature, were
taken from the Mars Climate Database (MCD), which is based on simulations with the
Laboratoire de Météorologie Dynamique General Circulation Model (LMD-GCM) [44,45].
The MCD contains distributions of minor gases in the Martian atmosphere, including
ozone [46], which is directly involved in OH* production; water vapor [47], which is the
principal source of odd-hydrogens (H, OH, HO2); and variations of other long-lived species
(carbon dioxide and molecular nitrogen) involved in quenching processes [48,49].

Figure 1a presents the input profiles of night-time O, O3, H, O2, CO2, and temperature
T from the MCD averaged zonally between 70◦N and 90◦N and over the interval of
solar longitudes Ls = 265◦–320◦. The averaging over this region and time period has
been performed in order to provide a colocation with the observations [24]. The results
of calculations for [OH*] using the general Formula (1) and approximated by (7) for
OHv = 1, . . . ,9 are shown in Figure 1b with solid and dashed lines, correspondingly.

The results illustrate good agreement between OH* concentrations and peak altitudes
calculated with the full model (1) and the simplified formula (7). The best agreement
occurs near the peaks at ~48–53 km. The differences below and above the maxima can be
partially explained by deviations of ozone from photochemical equilibrium in the polar
night region, where the ozone lifetime is prolonged under the condition of permanent night
and downward transport of atomic oxygen [50].

The vertical separation of the hydroxyl layer depending on vibrational numbers is
well-known in Earth’s atmosphere, e.g., [26,51]. It cannot be explained from (9) since v
does not depend on p. This is the result of omitting quenching by atomic oxygen in the loss
term for excited hydroxyl. The inclusion of this term produces a weak vertical separation
by vibrational numbers (solid lines). Vertical distances between layers corresponding to
different vibrational numbers are expected to be smaller on Mars than on Earth, as was
found by [24]. This is because the atomic oxygen quenching, which is responsible for
separation, is comparable with that of molecular oxygen near the Earth mesopause but is
negligible compared to the CO2 quenching in the Martian atmosphere.

The increase in excited hydroxyl concentration with decreasing vibrational number
was found from observations and modeling for the Earth’s atmosphere [26,28,32,33,51] and
from modeling results for the Martian atmosphere [31]. To explain this fact, let us consider
Equation (6). Direct population from the reaction of ozone with atomic hydrogen (first
term in the numerator) is a slower process than population by quenching from the upper
vibrational levels (second term in the numerator). The second term in the numerator (and
therefore the whole numerator) increases with a decreasing vibrational number, whereas
the denominator can only decrease with a decline in the vibrational number. Thus, the
increase in the OH* concentration with a decreasing vibrational number becomes evident.

Volume emission is a measurable quantity that is proportional to the concentration of
OH*. We calculated it with the full formula (1) and approximated it by (7) (both assume the
photochemical equilibrium of excited hydroxyl) and plotted it in Figure 1c using solid and
dashed lines, respectively. The colors indicate the main vibrational transitions: 1–0 (blue),
2–1 (green), and 2–0 (red). The figure shows that the locations of peaks (at ~48–53 km) and
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the corresponding volume emissions are in good agreement with the observations of [24]
in terms of shape and magnitude.

Equations derived in Section 2 provide some predictions and can be applied for
analysis in the future, which we illustrate below. The terrestrial OH* airglow layer demon-
strates annual and semiannual variations [2,8,52,53]. Similar variations can be expected
from the Martian OH* due to seasonal changes in atomic oxygen, air number density,
and temperature.

Figure 2 shows time series of night-time one-month sliding averaged values at the
peak of the OHv = 2 layer calculated with (1) at middle (40◦N) latitudes: (a) the concen-
tration [OHv = 2], (b) the height of the peak, (c) the atomic oxygen concentration, and
(d) temperature. It is seen that the concentration and the height of the peak at the northern
middle latitude vary seasonally, with the maxim concentrations and lowest height occur-
ring during the first half of the year (Ls ≈ 0◦–180◦). The amplitude of the annual height
variation on Mars is more than 20 km (Figure 2b), which by several times exceeds that
near the Earth mesopause (~5–10 km). The figures show a clear anticorrelation between
the OHv = 2 number density and the height of the peak, as also follows from (8). Since
volume emission is linearly proportional to the hydroxyl concentration, this points to an
anticorrelation between the emission and the height of the layer. A similar anticorrelation
has also been observed on Earth, e.g., [8,54,55].
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Figure 2a,c demonstrates a correlation between the concentrations of atomic oxygen
and excited hydroxyl. This correlation happens between Ls~210◦ and 340◦, where the
minor maximum of [OH*] coincides with the maximum of [O]. The correlation between the
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air number density and the peak altitude is even more robust because the magnitude of
seasonal variations of the air density is larger than that of atomic oxygen. The effects of
atomic oxygen and air number densities on the OH* layer oppose each other. When the
OH* layer is low in summer, the air density is large, while the atomic oxygen concentration
is small. The OH* layer moves higher in winter, and the air density decreases, but the
atomic oxygen concentration rises. In the Earth’s mesosphere at high and middle latitudes,
the behavior of the OH* layer is opposite: high altitude and low emission in summer, but a
lower altitude and stronger emission in winter. This is because the main driver for the OH*
layer on Earth is atomic oxygen, which is transported downward in winter and upward in
summer. On Mars, the layer behavior is additionally determined by air density variations.
Seasonal changes in temperature play a minor role in the annual cycle of OH* since it only
varies by about 15 K over the year (Figure 2d).

In order to assess the sensitivity of the OH* layer to input parameters, we separately
calculated the contributions of relative variations of atomic oxygen, temperature, and air
density to variations of [OH*] or to the volume emission rate. We only considered the first
half of the year (Ls = 0◦–180◦), during which displacements of the height of the layer did
not exceed the air density scale height (~10 km). Thus, the overbar in (14) and (15) denotes
a semiannual averaging, and primes are for deviations from the semiannual mean. As in
Figure 2, we only considered night-time values at 40◦ N, which were smoothed with the
one-month moving window averaging.

The results are plotted in Figure 3, with contributions from (14) and (15) shown by solid
and dashed lines, respectively. The figure illustrates our notion above that temperature
(red lines) plays a minor role in the hydroxyl layer variability. The main contribution comes
from variations of atomic oxygen and the ambient air concentration acting in opposite
phases. The first peak of [OH*] at Ls~40◦–50◦ (Figure 2a) is primarily determined by the
growth of the air number density (blue line) and, to a much lesser degree, by the declining
temperature (red line, see also Figure 2d). The secondary peak of [OH*] around Ls~150◦ is
mainly caused by the increase in the atomic oxygen concentration (green line), whereas the
declining air density and rising temperature act in the opposite direction. The variations
due to second momenta (dashed lines) are much weaker (do not exceed 10%).
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4. Conclusions

We presented the derivation of the simplified formulae relating the height of the
peak of the excited hydroxyl layer, its displacements, and the strength of emission with
values that can be observed in the Martian atmosphere at night-time. The assumptions
used in the derivation and relevant for Mars conditions include (1) the photochemical
equilibrium of ozone near the peak of the layer and (2) that total quenching by carbon
dioxide, molecular oxygen, and molecular nitrogen is greater than quenching by atomic
oxygen and spontaneous emission.

Under these approximations, the night-time concentration of OH* near the peak is
directly proportional to the concentration of atomic oxygen and pressure and inversely to
the power of temperature. Since pressure drops with altitude, the hydroxyl emission, the
major part of which is produced in the vicinity of the peak, anticorrelates with the height of
the OH* layer.

Calculations using input parameters from the Mars Climate Database demonstrate
annual variations of the OH* layer at middle latitude (40◦N) resulting from the seasonal
cycle of temperature, air number density, and atomic oxygen. We illustrated how rela-
tive variations of each of these quantities directly impact the relative variations of the
concentration of the hydroxyl layer.

The presented approach and simplified formulae can be applied for the analysis
and interpretation of future observations of hydroxyl emission on Mars. Coupled with
observations of temperature and atomic oxygen (or ozone), airglow measurements can
reveal additional information about the Martian atmosphere’s dynamics and composition.

Finally, we should note that Equations (9) and (10) introduce the possibility of inferring
the altitudes of the OH* peak, the concentration at peak, the atomic oxygen concentration
at peak, and the ground-state hydroxyl concentration (which is the key constituent for
resolving the problem of the Martian (CO2) atmosphere stability due to catalytic recombi-
nation [56–58]), by surface-based or nadir observations of emissions from two vibrational
transitions, accompanied by temperature observations from vibro-rotational transitions
following [59].

The strength and advantage of full models are that they seek to most fully encompass
processes occurring in a photochemical system. The advantage of an analytical approach is
that it allows inferring, under certain conditions and assumptions, simple relations within
this system. In this work, we did exactly the latter: derived simplified relations between
OH* peak height and density and observable parameters of emission. They can/should
motivate the development of future observations and help with interpretations when such
observations become available.
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