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Abstract: Sparse Bayesian learning-based space–time adaptive processing (SBL-STAP) algorithms can
achieve superior clutter suppression performance with limited training sample support in practical
heterogeneous and non-stationary clutter environments. However, when the system has high degrees
of freedom (DOFs), SBL-STAP algorithms suffer from high computational complexity, since the large-
scale matrix calculations and the inversion operations of large-scale covariance matrices are involved
in the iterative process. In this article, we consider a computationally efficient implementation for SBL-
STAP algorithms. The efficient implementation is based on the fact that the covariance matrices that
need to be updated in the iterative process of the SBL-STAP algorithms have a Hermitian Toplitz-block-
Toeplitz (HTBT) structure, with the result being that the inverse covariance matrix can be expressed
in closed form by using a special case of the Gohberg–Semencul (G-S) formula. Based on the G-S-type
factorization of the inverse covariance matrix and the structure of the used dictionary matrix, we can
perform almost all operations in the SBL-STAP algorithms by 2-D FFT/IFFT. As a result, compared
with the original SBL-STAP algorithms, even for moderate data sizes, the proposed algorithms can
directly reduce the computational load by about two orders of magnitudes without any performance
loss. Finally, simulation results validate the effectiveness of the proposed algorithms.

Keywords: clutter suppression; Gohberg–Semencul factorization; space–time adaptive processing;
sparse Bayesian learning

1. Introduction

Space–time adaptive processing (STAP) [1–4] adopts two-dimensional joint adaptive
filtering in the space and time domains to achieve effective filtering of clutter, and it is
a key technology for radar clutter suppression and target detection using various types
of motion platforms. The self-adaptation of STAP technology is reflected in the accurate
perception of the external clutter environment, which relies on the real-time acquisition of
the clutter plus noise covariance matrix (CNCM) of the cell under test (CUT). However,
the CNCM is usually unknown in practical applications and need to be estimated on the
basis of the independent and identically distributed (IID) training samples. To achieve
an output signal-to-clutter-plus-noise ratio (SCNR) loss within 3 dB, according to the
well-known Reed–Mallett–Brennan (RMB) rule [5], the number of IID training samples
required to estimate CNCM should be greater than twice the system’s degrees of freedom
(DOFs). In fact, airborne radars usually work in heterogeneous and non-stationary clutter
environments, and it is difficult to obtain enough IID training samples.

Sparse recovery (SR) techniques [6–23] can use limited training samples to reconstruct
signals with high precision, and this feature is exactly in line with the requirement of using
as few observation samples as possible to accurately describe the clutter characteristics in
the STAP. Thus, SR-based STAP (SR-STAP) techniques [24–29] have inherent advantages
for CNCM estimation in fast-changing clutter environments. In recent years, many SR
techniques have been applied to airborne radar clutter suppression processing to improve
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the detection performance of slow moving targets under the condition that there are not
enough training samples in practice. The greedy algorithms [10–13] iteratively select
atoms from the dictionary and calculate the corresponding sparse coefficients, so that the
difference between the linear combination of these atoms and the observed data is gradually
reduced. The convex optimization (CVX) algorithms [14–19] relax the `0-norm optimization
problem into a CVX problem, and use the properties of the CVX function to obtain the sparse
coefficient vector. The focal underdetermined system solver (FOCUSS) algorithms [20,21]
use iterative `p-norm (0 < p < 1) optimization to approximate `0-norm optimization and
transform the `0-norm optimization problem into a weighted minimum norm least square
problem. The iterative adaptive approach (IAA) [22,23] is a non-parametric algorithm
based on iterative weighted least squares approach. Although these SR techniques have
great advantages in combination with STAP, they suffer from some drawbacks: the greedy
algorithms may fail when there has a strong correlation between the atoms of the dictionary,
resulting in poor sparse coefficient solutions. The performance of CVX algorithms and
FOCUSS algorithms is closely related to the choice of regularization parameters and the
IAA algorithms easily suffer from severe performance degradation in the non-ideal case.

Sparse Bayesian learning (SBL) [30–35], proposed by Tipping, is a popular SR tech-
nique for signal reconstruction. Compared with other SR algorithms, SBL does not require
setting regularization parameters and can be used to obtain a sparser global optimal solu-
tion. Moreover, SBL can still achieve favorable performance when the dictionary possesses
a high coherence. Due to their superior performance, SBL-based STAP (SBL-STAP) algo-
rithms with multiple measurement vectors (MMV) [36–43] have been widely researched.
However, in MMV-based SBL-STAP (MSBL-STAP) algorithms, an iterative procedure that
converges very slowly is utilized to reconstruct the CNCM. Additionally, inversion oper-
ations of the large-scale covariance matrices and several large-scale matrix calculations
are involved in each iteration, which is quite computationally expensive for MSBL-STAP
algorithms in practical applications. To tackle this problem, many efficient MSBL-STAP
methods have been developed. In [44], a fast tensor-based three-dimensional MSBL-STAP
(TMSBL-STAP) algorithm was proposed, in which the large-scale matrix calculation was
decomposed into small-scale matrix calculation by utilizing the Kronecker structure of
the data. However, this algorithm only relieves a small part of the computational bur-
den. In [45], by combining a simple approximation term, a fast-converging MSBL-STAP
(MFCSBL-STAP) algorithm was proposed to improve the convergence of MSBL-STAP
algorithm. In [46], an MSBL-STAP algorithm based on the iterative reweighed `2,1-norm
(IR`2,1-MSBL-STAP) was proposed, and the experiments showed that the algorithm had
great convergence performance. Compared with the basic MSBL-STAP algorithms, these
two algorithms can greatly improve the convergence speed and exhibit a comparable or
even a better reconstruction accuracy. However, they ignore the core problem that there ex-
ist large-scale covariance matrix inversion operations and large-scale matrix calculations in
each iteration of these MSBL-STAP algorithms, which have high computational complexity.

In this article, we propose several efficient MSBL-STAP algorithms based on the G-S
factorization [47] for airborne radar in the case of uniformly spaced linear array (ULA)
and a constant pulse repetition frequency (PRF). In our proposed algorithms, based on
the fact that the inverse of the Hermitian Toplitz-block-Toeplitz (HTBT) matrix has low
displacement ranks [48] and can be written in a G-S factorization-based form, an equivalent
G-S factorization-based method is utilized to efficiently calculate the inverse covariance
matrices in the iterative process of the MSBL-STAP algorithms. Then, by utilizing the
property whereby the dictionary matrix is the Kronecker product of two Fourier matrices
and the obtained G-S-type factors of the inverse covariance matrix, many large-scale
matrices in the iterative process of the MSBL-STAP algorithms can be efficiently computed
by using 2D-FFT/IFFT [49].

The main contributions of this paper can be listed as follows:
(a) The algorithm efficiency is the focus of this paper; in this paper, several compu-

tationally effective MSBL-STAP algorithms based on G-S factorization are proposed. In
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our proposed algorithms, utilizing the G-S factorization of the inverse of the Hermitian
Toplitz-block-Toeplitz matrix and the structure of the dictionary matrix, almost all the
processing procedures of the original MSBL-STAP algorithms can be implemented with fast
FFT/IFFT. Compared with the original MSBL-STAP algorithms, these proposed algorithms
can directly reduce the computational complexity by several orders of magnitude without
any performance loss.

(b) A detailed comparison is presented to show the computational complexity of the
proposed computationally efficient MSBL-STAP algorithms and the original MSBL-STAP
algorithms and other SR-STAP algorithms.

(c) A detailed comparative analysis of our proposed algorithms, including the conver-
gence speed, the clutter suppression performance and the target detection performance,
with the original MSBL-STAP algorithms and other SR-STAP algorithms is carried out.

The rest of the paper is organized as follows. In Section 2, the general space–time
sparse signal model is introduced. In Section 3, a brief review of the traditional MSBL-
STAP algorithms is provided. In Section 4, we give a detail introduction of the proposed
algorithms. In Section 5, simulation results are provided to demonstrate the computational
efficiency, the clutter suppression performance and the target detection performance of the
proposed algorithms. Final conclusions are given in Section 6.

Notation: Boldface lowercase letters denote vectors and boldface uppercase letters
denote matrices. R+ represents the nonnegative real field and C represents the complex
field. (•)∗, (•)T and (•)H represent the complex conjugate, transpose and conjugate trans-
pose, respectively. The symbol ⊗ denotes the Kronecker product. 0 represents a zero
vector/matrix. INK denotes the NK × NK identity matrix. diag(•) represents a diagonal
matrix with entries of a vector on the diagonal or a vector is made up of all the elements on
the diagonal of a matrix. The symbol , denotes a definition. ‖•‖F denotes the Frobenius
norm. The symbol ∼ above a matrix represents reversing the elements in a matrix first by
row, then by column. F2−D(•)N,K and IF2−D(•)N,K denote the N- and K-point 2-D FFT
and IFFT operations.

2. Signal Model

Consider an airborne pulsed-Doppler radar system employing a side-looking ULA
consisting of N elements. The interelement spacing is d = λ/2, where λ is the wavelength.
K pulses are transmitted at a constant PRF during a coherent processing interval (CPI).
Then, the space–time sparse signal model in the MMV case can be written as

Y = DX + N (1)

where Y =
[
y1, y2, . . . , yL

]
∈ CNK×L is the received clutter plus noise data, X = [x1, x2, . . . , xL]

∈ RNsKd×L is the unknown angle-Doppler profile to be recovered with each row repre-
senting a possible clutter component, N = [n1, n2, . . . , nL] ∈ CNK×L is the zero mean
noise matrix with covariance matrix σ2I, σ2 is the noise power and I is the identity ma-
trix, D = St ⊗ Ss =

[
v1, v2, . . . , vNsKd

]
∈ CNK×NsKd is the space–time dictionary matrix,

vm(m = 1, 2, . . . , NsKd) is the spatial-temporal steering vector of the mth grid point of the
whole angle-Doppler plane, Ns = ρsN(ρs > 1) is the number of normalized spatial fre-
quency bins and Kd = ρdK

(
ρd > 1

)
is the number of normalized Doppler frequency bins,

Ss = [ss,1, ss,2, . . . , ss,Ns ] ∈ CN×Ns and St = [st,1, st,2, . . . , st,Kd ] ∈ CK×Kd are two Fourier
matrices, ss,n and st,k are the spatial and temporal steering vectors, given by

ss,n =
{

1, exp
[
−j2π fs,n

]
, . . . , exp

[
−j2π(N − 1) fs,n

]}T , n = 1, 2, . . . , Ns (2)

st,k =
{

1, exp
[
−j2π fd,k

]
, . . . , exp

[
−j2π(K− 1) fd,k

]}T , k = 1, 2, . . . , Kd (3)

where fs,n = (n− 1)/Ns is the normalized spatial frequency of the nth angle grid point
and fd,k = (k− 1)/Kd is the normalized Doppler frequency of the kth Doppler grid point.
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3. A Brief Review of the Traditional MSBL-STAP Algorithms

In this section, firstly, we give a brief review of the basic MSBL-STAP algorithm
proposed by Duan [36]; then, we directly give the pseudocodes of two fast-converging
MSBL-STAP algorithms for the brevity of the article. According to the signal model in (1),
the Gaussian likelihood function of the measurement can be denoted as

p
Ä

Y|X; σ2
ä
=
Ä

πσ2
ä−NKL

exp
Ä
−σ−2‖Y−DX‖2

F

ä
(4)

Suppose that each column in X obeys a complex Gaussian prior, i.e.,

xl ∼ N(0, Γ), l = 1, 2, . . . , L (5)

where Γ= diag(γ), γ =
[
γ1, γ2, . . . , γNsKd

]T are the unknown variance parameters which
controlling the prior covariance of xl . Then, we can obtain the prior probability density
function (PDF) of X

p(X; Γ) = π−NsKd L|Γ|−L exp

Ç
−

L

∑
l=1

xH
l Γ−1xl

å
(6)

If the above prior distributions are obtained, we can obtain the posterior PDF of X by using
Bayesian estimation methods [30]:

p
Ä

X|Y; Γ, σ2
ä
= π−NsKd L|Σ|−L exp

ñ
L

∑
l=1
−(xl − µl)

HΣ−1(xl − µl)

ô
(7)

where µ = [µ1,µ2, . . . ,µL] and Σ are the posteriori mean matrix and the posteriori covari-
ance matrix respectively, given by

Σ = Γ− ΓDHR−1DΓ (8)

µ = ΓDHR−1Y (9)

where R = σ2INK + DΓDH is the covariance matrix to be inverted in each iteration of the
basic MSBL-STAP algorithm. Then, we use the expectation-maximization (EM) [30] method
to estimated γm (m = 1, 2, . . . , NsKd) and σ2, which are unknown hyperparameters in µ.
We have

γt+1
m =

1
L

L

∑
l=1

Ä
µt

l,m

ä2
+ Σt

m,m (10)Ä
σ2
ät+1

=

(
1/L

)
‖Y−Dµt‖2

F

NK−
NsKd
∑

m=1

(
1− Σt

m,m/γt
m
) (11)

where the superscript t indicates the tth iteration, µt
l,m is the mth component of µt

l , Σt
m,m is the

mth component of the main diagonal of Σt. In fact, by updating and iterating µ, we can finally
obtain the optimal sparse solution X̂ when a predefined convergence criterion is satisfied:

‖µt − µt−1‖
µt < δ (12)

where δ is a small enough positive value. Then, the angle-Doppler profile X̂ can be given by

X̂ = µ (13)
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Then, we can estimate the CNCM by the formula

Rc+n =
1
L

L

∑
l=1

NsKd

∑
m=1

∣∣∣x̂m
l

∣∣∣2vmvH
m + ασ2INK (14)

where x̂m
l is the mth element of the lth column of X̂ and α is a positive loading factor. Finally,

we can obtain the optimal STAP weight vector based on the linearly constrained minimum
variance (LCMV) principle, given by

wopt =
R−1

c+nvt

vH
t R−1

c+nvt
(15)

where vt is the spatial-temporal steering vector of the target.
The MFCSBL-STAP algorithm [45] proposed by Wang and the IR`2,1-MSBL-STAP [46]

algorithm proposed by Liu significantly accelerate the convergence speed of the basic
MSBL-STAP algorithm proposed by Duan [36]. For the sake of brevity in this article, here
we will not describe these two algorithms in detail. Instead, we give the pseudocodes of
these two algorithms in Tables 1 and 2.

Table 1. Pseudocode of MFCSBL-STAP algorithm.

Input: training samples Y, dictionary matrix D.

Initialize:
γ0 = 1,

(
σ2

0
)0

= 1, Γ0 = diag(γ0), R0 =
(
σ2)0INK + DΓ0DH , RML = YYH/L.

Repeat:
µt = ΓtDH(Rt)−1Y
γt+1

m =
(
γt

m
)2
∣∣∣vH

m
(
Rt)−1RML

(
Rt)−1vm

∣∣∣, (m = 1, 2, . . . , NsKd)(
σ2)t+1

=
(
1/L

)
‖Y−Dµt‖2

F

¬ñ
NK−

NsKd

∑
m=1

γt
mvH

m
(
Rt)−1vm

ô
(m = 1, 2, . . . , NsKd)

Rt+1 =
(
σ2)t+1INK + DΓt+1DH

The iterative procedure terminates when the iteration termination condition in (12) is satisfied.
Get the estimated angle-Doppler profile X̂ using (13).
Reconstruct the CNCM using (14) and compute the optimal STAP weight vector using (15).

Table 2. Pseudocode of IR`2,1-MSBL-STAP algorithm.

Input: training samples Y, dictionary matrix D.

Initialize:
γ0 = 1,

(
σ2

0
)0

= 1, Γ0 = diag(γ0), R0 =
(
σ2)0INK + DΓ0DH .

Repeat:
µt = ΓtDH(Rt)−1Y

Σt = Γt − ΓtDH(Rt)−1DΓt

γt+1
m =

[
vH

m
(
Rt)−1vm

]− 1
2

ñ
1
L

L
∑

l=1

Ä
µt

l,m

ä2
ô 1

2

, (m = 1, 2, . . . , NsKd)

(
σ2)t+1

=
î(

1/L
)
‖Y−Dµt‖2

F

ó¬Ç
NK−

NsKd

∑
m=1

(
1− Σt

m,m/γt
m
)å

(m = 1, 2, . . . , NsKd)

Rt+1 =
(
σ2)t+1INK + DΓt+1DH

The iterative procedure terminates when the iteration termination condition in (12) is satisfied.
Get the estimated angle-Doppler profile X̂ using (13).
Reconstruct the CNCM using (14) and compute the optimal STAP weight vector using (15).

4. Proposed Algorithms

From the procedures of the basic MSBL-STAP algorithm, the MFCSBL-STAP algorithm
and the IR`2,1-MSBL-STAP algorithm, it can be observed that we need to calculate the
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product of many large-scale matrices and the inverse of the covariance matrix R in each
iteration. The size of R is NK× NK, i.e., the computational complexity in each iteration of
these MSBL-STAP algorithms is at least o

Ä
(NK)3

ä
. Thus, the MSBL-STAP algorithms have

a computational complexity that grows rapidly with the DOFs of the STAP system, which
hinders its application in many practical problems with even moderately large data sets.
To tackle this question, in this section, an efficient G-S factorization-based implementation
for these MSBL-STAP algorithms is proposed.

From (1), we know that the space–time dictionary matrix D is the Kronecker product
of two Fourier matrices St and Ss. The kNs + n + 1 column of D can be written as

D(ωk, ωn) = st(ωk)⊗ ss(ωn) (16)

where
st(ωk) =

{
1, exp

[
−jωk

]
, . . . , exp

[
−j(K− 1)ωk

]}T (17)

ss(ωn) =
{

1, exp
[
−jωn

]
, . . . , exp

[
−j(N − 1)ωn

]}T (18)

where ωk = 2πk/Kd, k = 0, 1, . . . , Kd − 1, ωn = 2πn/Ns, n = 1, 2, . . . , Ns. The covariance
matrix R in each iteration of the MSBL-STAP algorithms can be represented by

R = σ2I + Q (19)

where Q = DΓDH and can be represented by

Q =


Q0 QH

1 · · · QH
K−1

Q1 Q0
. . .

...
...

. . . . . . QH
1

QK−1 · · · Q1 Q0

 (20)

From (20), we know that Q is a HTBT matrix [50,51], and each submatrix Qj1 can be
calculated by

Qj1 = M0 + e−j2π 1
Kd

j1M1 + · · ·+ e−j2π
Kd−1

Kd
j1MKd−1 (21)

where j1 = 0, 1, . . . , K− 1, Mk = SsΛkSH
s , k = 0, 1, . . . , Kd − 1, Λk= daig(γk), γk is the kth

column vector of the matrix Γ, given {γm}NsKd
m=1 , Γ is a Ns × Kd matrix

Γ =


γ1 γNs+1 · · · γ(Kd−1)Ns+1
γ2 γNs+2 · · · γ(Kd−1)Ns+2
...

...
. . .

...
γNs γ2Ns · · · γKd Ns

 (22)

From (21) and (22), we know that the submatrix Qj1 is an N × N Toeplitz matrix, which
can be represented by

Qj1 =


qj1,0 qj1,−1 · · · qj1,−N+1

qj1,1 qj1,0
. . .

...
...

. . . . . . qj1,−1
qj1,N−1 · · · qj1,1 qj1,0

 (23)

From (20) and (23), we find that if we want to obtain the matrix Q, we only need to obtain
the elements of the first row and first column of each submatrix Qj1 , and the total number
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of required elements to construct Q is (2N − 1)K, which is far less than (NK)2. Utilizing the
definition of Q, we get

qj1,j2 =
Kd−1

∑
k=0

Ns−1

∑
n=0

γkNs+n+1e−j2π
j2
Ns ne−j2π

j1
Kd

k
(24)

where j2 = 0, 1, . . . , N − 1. According to (24), we find that
¶

qj1,j2

©
and

{
γkNs+n+1

}
form a

Fourier transform pair. Thus, by performing 2-D FFT to the Γ, we can efficiently obtain
the matrix Q. Since this term Q = DΓDH appears in all the three MSBL-STAP algorithms
mentioned above, this fast implementation to calculate Q is applicable to all of them.

Then, we can calculate the covariance matrix R using (19), and it is easy to know that
R is also a HTBT matrix with the same structure as Q in (20). Next, we detail the G-S
decomposition [47,52] of R−1 and show how to efficiently calculate R−1. It follows from
(20) that R has the following structure:

R =

ñ
R0 RH

K−1
RK−1 RK−1,N

ô
(25)

=

ñ
RK−1,N R̃∗K−1

R̃T
K−1 R0

ô
(26)

where
RK−1 =

î
RT

1 , RT
2 , . . . , RT

K−1

óT
(27)

R̃T
K−1 = [RK−1, RK−2, . . . , R1] (28)

It can be seen that RK−1,N is a (K− 1) × (K− 1) HTBT matrix. Define the N × N
exchange matrix SN as

SN ,

 1

. ..

1

 (29)

According to (27) and (28), we get

R̃K−1 = S(K−1)NRK−1SN (30)

Applying the formula for the inverse of a partitioned matrix [53] to the right side of (25)
and (26), we get

R−1 =

ñ
0 0
0 R−1

K−1,N

ô
+

ï
IN

AK−1

ò
W−1

N

î
INAH

K−1

ó
(31)

=

ñ
R−1

K−1,N 0
0 0

ô
+

ï
B∗K−1

IN

ò
V−1

N

î
BT

K−1IN
ó

(32)

where
AK−1 = −R−1

K−1,NRK−1 (33)

WN = R0 −RH
K−1R−1

K−1,NRK−1 (34)

B∗K−1 = −R−1
K−1,NR̃∗K−1 (35)

VN = R0 − R̃T
K−1R−1

K−1,NR̃∗K−1 (36)

Due to the persymmetric property [54] of the HTBT matrix and its inverse, we have

S(K−1)NRK−1,NS(K−1)N = RT
K−1,N (37)

S(K−1)NR−1
K−1,NS(K−1)N = R−T

K−1,N (38)
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R−1
K−1,NS(K−1)N = S(K−1)NR−∗K−1,N (39)

Substituting (38) and (39) into (35) and (36), we get

B∗K−1 = Ã∗K−1 (40)

VN = W̃T
N (41)

The detailed derivation of (39)–(41) is shown in Appendix A. Then, substituting (40) and
(41) into (32), R−1 can be reformulated as

R−1 =

ñ
R−1

K−1,N 0
0 0

ô
+

ñ
Ã∗K−1

IN

ô
W̃−T

N

[
ÃT

K−1IN

]
(42)

Define a K× K lag-1 shifting matrix JK, which has the following form

JK ,


0
1 0

. . . . . .
1 0

 (43)

The block matrix has the fact that

JK,N

ñ
R−1

K−1,N 0
0 0

ô
JT

K,N =

ñ
0 0
0 R−1

K−1,N

ô
(44)

where JK,N = JK ⊗ IN . Based on (31), (42) and (44), we obtain the displacement representa-
tion [48] of R−1, given by

∇R−1 = R−1 − JK,NR−1JT
K,N

=

ï
IN

AK−1

ò
W−1

N

î
IN AH

K−1

ó
−
ñ

0
Ã∗K−1

ô
W̃−T

N

[
0 ÃT

K−1

] (45)

Let

T =

ï
IN

AK−1

ò
W−1/2

N = [t0, t1, . . . , tN−1] (46)

P =

ñ
0

Ã∗K−1

ô(
W̃−1/2

N

)T
=
[
p0, p1, . . . , pN−1

]
(47)

where n = 0, 1, . . . , N − 1, tn ∈ CNK×1 and pn ∈ CNK×1 are the (n + 1)th column vectors of
T and P, respectively. Substituting (46) and (47) into (45), ∇R−1 can be rewritten as

∇R−1 = TTH − PPH

=
N−1
∑

n=0

(
tntH

n − pnpH
n
) (48)

For the block matrix R−1, it has the fact that(
JK,N

)KR−1
Ä

JT
K,N

äK
= 0 (49)

Using (48) and (49), R−1 can be written as

R−1 =
K−1
∑

k=0

(
JK,N

)kÄ∇R−1
äÄ

JT
K,N

äk

=
N−1
∑

n=0

K−1
∑

k=0

(
JK,N

)k(tntH
n − pnpH

n
)Ä

JT
K,N

äk
(50)
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Let U =
[
UT

0 , UT
1 , . . . , UT

K−1
]T ∈ CNK×M, we define a Toplitz-block matrix LK,N

(
U, JK,N

)
as

LK,N
(
U, JK,N

)
,
î
U, JK,NU, . . . ,

(
JK,N

)K−1U
ó

=


U0 0 · · · 0

U1 U0 · · ·
...

...
...

. . . 0
UK−1 UK−2 · · · U0


NK×KM

(51)

Then, R−1 can be reformulated as

R−1 =
N−1

∑
n=0

î
LK,N

(
tn, JK,N

)
LH

K,N
(
tn, JK,N

)
−LK,N

(
pn, JK,N

)
LH

K,N
(
pn, JK,N

)ó
(52)

Equation (52) is termed as a two-dimensional (2-D) G-S formula, where tn and pn are the
G-S decomposition factors of R−1. From (46), (47) and (52), it is clear that once we obtain the
matrices AK−1 and WN , we can compute the matrices T and P, and then we can compute
R−1 by using (52). Meanwhile, the matrices AK−1 and WN can be calculated using a 2-D
Levinson–Durbin (L-D)-type algorithm with o

(
8N3(K2 − K + 2

))
flops. By extending the

L-D algorithm in the one-dimensional case in [55], we can obtain the L-D algorithm in the
2-D case. Here, we give the procedures of the 2-D L-D algorithm.

(1) Calculate the initial values

A1 = −R−1
0 R1 (53)

(RK−1)1 = R1 (54)

W(1)
N = R0 −RH

1 R−1
0 R1 (55)

(2) Repeat: k = 2, 3, . . . , K− 1

Hk−1 = ÃT
k−1(RK−1)k−1 + Rk (56)

Ak =

ï
Ak−1

0

ò
−
ñ

Ã∗k−1
IN

ô(
W̃(k−1)

N

)−T
Hk−1 (57)

W(k)
N = W(k−1)

N −HH
k−1

(
W̃(k−1)

N

)−T
Hk−1 (58)

(RK−1)k =

ï
(RK−1)k−1

Rk

ò
(59)

(3) Output: AK−1 and W(K−1)
N .

The detailed derivation of (56)–(58) is shown in Appendix B.
Since the term R−1 =

(
σ2INK + DΓDH)−1 is involved in the procedures of all the three

MSBL-STAP algorithms mentioned above, this rapid way of calculating R−1 is applicable
to all of them.

Let ε denote the vector which is made up of all the elements on the diagonal of the
matrix Σ given in (8), i.e.,

ε = diag(Σ) (60)

Then, based on the G-S factorization of R−1 in (52), we can efficiently calculate the
vector ε given in (60) and the mean matrix µ given in (9) in the iterative process of the
MSBL-STAP algorithms. Firstly, we give the efficient way to compute ε.

Let
Z = DHR−1D (61)
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Then, according to (8) and (61), we can rewrite the covariance matrix Σ as

Σ = Γ− ΓZΓ (62)

During the iteration process of the MSBL-STAP algorithms, in fact, we only use these
elements on the diagonal of the covariance matrix Σ, i.e., we only need to compute the
vector ε given in (60). As a result, we only need to obtain these values on the diagonal
of Z. Let z =

[
z0, . . . , zNs−1, . . . , z(Kd−1)Ns , . . . , zKd Ns−1

]T , where z is a vector consists of all
the elements on the diagonal of the matrix Z. Utilize the structure of the matrix D, the
(kN + n + 1)th element of z can be written as

zkN+n+1 = DH(ωk, ωn)R−1D(ωk, ωn)

=
K−1
∑

m1=−K+1

N−1
∑

m2=−N+1
cm1,m2 e−jm2ωn e−jm1ωk

=
K−1
∑

m1=−K+1

N−1
∑

m2=−N+1
cm1,m2 e−jm2n/Ns e−jm1k/Kd

(63)

where cm1,m2 is the sum of all elements on the m2th main diagonal of all block matri-
ces on the m1th main diagonal of the HTBT matrix R−1. In addition, we can write
{cm1,m2}

m2=−N+1,...,N−1
m1=-K+1,...,0 as

c =


[
c−K+1,−N+1, c−K+1,−N+2, . . . , c−K+1,N−1

]T[
c−K+2,−N+1, c−K+2,−N+2, . . . , c−K+2,N−1

]T

...[
c0,−N+1, c0,−N+2, . . . , c0,N−1

]T

 (64)

By utilizing the G-S factorization of R−1 in (52), c can be represented by

c =
N−1

∑
n=0
LK,2N−1

(
Tn, JK,2N−1

)
t∗n −LK,2N−1

(
Pn, JK,2N−1

)
p∗n (65)

where

Tn =


LN,2N−1

(
t̃
K−1
n , J2N−1

)
LN,2N−1

(
2t̃

K−2
n , J2N−1

)
...

LN,2N−1

(
Kt̃

0
n, J2N−1

)


(2N−1)K×N

(66)

Pn =


LN,2N−1

Ä
p̃K−1

n , J2N−1

ä
LN,2N−1

Ä
2p̃K−2

n , J2N−1

ä
...

LN,2N−1

Ä
Kp̃0

n, J2N−1

ä


(2N−1)K×N

(67)

where
LN,2N−1

(
t̃
K−1
n , J2N−1

)
=
[
t̃
K−1
n , J2N−1 t̃

K−1
n , . . . ,

(
J2N−1

)N−1 t̃
K−1
n

]
(68)

LN,2N−1

Ä
p̃K−1

n , J2N−1

ä
=
î
p̃K−1

n , J2N−1p̃K−1
n , . . . ,

(
J2N−1

)N−1p̃K−1
n

ó
(69)

and

t̃
k
n =

ñ
t̃k
n
0

ô
2N−1

(70)
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p̃k
n =

ñ
p̃k

n
0

ô
2N−1

(71)

where t̃k
n = SNtk

n and p̃k
n = SNpk

n, k = 0, 1, . . . , K− 1, tk
n is the kth block vector of tn and pk

n
the kth block vector of pn.

Since D is the Kronecker product of two Fourier matrices and R−1 is a TBT matrix,
the evaluation of zkN+n+1 = DH(ωk, ωn)R−1D(ωk, ωn) can be transformed to calculate the
coefficients of a bivariate polynomial on the unit sphere [56,57], and these polynomial
coefficients can be computed using (65), which is a summation of the TBT matrix-vector
products. In addition, the 2-D convolution can be utilized to obtain the summation of the
TBT matrix-vector products. For STAP, by using FFT and IFFT, the 2-D convolution in
the spatial-temporal domain can be transformed into a dot product in the beam-Doppler
domain; thus, we can conclude that c can be efficiently calculated using 2-D FFT and
IFFT. Once we obtain the matrix c, we can obtain zkN+n+1 by performing Kd- and Ns-point
2-D FFT on the polynomial coefficients cm1,m2 . Since R−1 is a Hermitian matrix, we have
c−m1,−m2 = c∗m1,m2

, where m1 = −K + 1, . . . , 0 and m2 = −N + 1, . . . , N − 1. Then, given

{cm1,m2}
m2=−N+1,...,N−1
m1=−K+1,...,K−1 , we have

Z = F2−D(C) (72)

where

Z =

 z0 . . . z(Kd−1)Ns
...

. . .
...

zNs−1 . . . zKd Ns−1

 (73)

C =

C0 0 C2
0 0 0

C1 0 C3

 (74)

C0 =

 c0,0 · · · cK−1,0
...

. . .
...

c0,N−1 · · · cK−1,N−1

 (75)

C1 =

c0,−N+1 · · · cK−1,−N+1
...

. . .
...

c0,−1 · · · cK−1,−1

 (76)

C2 =

 c−K+1,0 · · · c−1,0
...

. . .
...

c−K+1,N−1 · · · c−1,N−1

 (77)

C3 =

c−K+1,−N+1 · · · c−1,−N+1
...

. . .
...

c−K+1,−1 · · · c−1,−1

 (78)

Since the update of the covariance matrix Σ is not involved in the procedures of the
MFCSBL-STAP algorithm, this part only suitable for the basic MSBL-STAP algorithm and
the IR`2,1-MSBL-STAP algorithm.

Then, we give an efficient way to compute the mean matrix µ, which can be divided
into three steps

Θ = R−1Y (79)

Φ = DHΘ (80)

µ = ΓΦ (81)
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First, substituting (65) into (79), we get

θl =
N−1

∑
n=0

î
LK,N

(
tn, JK,N

)
LH

K,N
(
tn, JK,N

)
−LK,N

(
pn, JK,N

)
LH

K,N
(
pn, JK,N

)ó
yl (82)

where θl and yl are the lth column vectors of matrices Θ and Y. From (82), we observe that
each column of Θ can be computed by the sum of Toeplitz-block matrix-vector products,
which can be calculated by the 1-D convolution. In addition, we can efficiently calculate
the 1-D convolution through FFT and IFFT. Since D is the product of two Fourier matrices,
the (kN + n + 1)th element of the ϕl can be written as

ϕl,kN+n+1 =
K−1
∑

m1=0

N−1
∑

m2=0
θl,m1 N+m2+1ejm2ωn ejm1ωk

=
K−1
∑

m1=0

N−1
∑

m2=0
θl,m1 N+m2+1e−jm2n/Ns e−jm1k/Kd

(83)

where θl,m1 N+m2+1 is the (m1N + m2 + 1)th value of θl . Thus, given
{

θl,m
}l=1,...,L

m=1,...,NK, let

θl =


θl,1 θl,N+1 · · · θl,(K−1)N+1
θl,2 θl,N+2 · · · θl,(K−1)N+2

...
...

. . .
...

θl,N θl,2N . . . θl,KN

 (84)

According to (83) and the definition of IFFT, we observe that ϕl,kN+n+1 can be efficiently
calculated by using K- and N-points 2-D IFFT, i.e.,

ϕl = IF 2−D
(
θl
)

(85)

where

ϕl =


ϕl,1 ϕl,N+1 · · · ϕl,(K−1)N+1
ϕl,2 ϕl,N+2 · · · ϕl,(K−1)N+2

...
...

. . .
...

ϕl,N ϕl,2N . . . ϕl,KN

 (86)

Finally, µ can be computed using (81). Since the update of the mean matrix µ is involved in
the procedures of all the three MSBL-STAP algorithms mentioned above; thus, this rapid
way to calculate µ is applicable to all of them.

We denote the proposed efficient implementation of the basic MSBL-STAP algorithm
based on the G-S factorization as GS-MSBL-STAP. The procedures of the GS-MSBL-STAP
algorithm are summarized as follows.

Step 1: Give the initial values γ0 = 1,
(
σ2)0

= 1

Step 2: Give the γt and
(
σ2)t, Using (19)–(24), obtain the first N columns of the covariance

matrix Rt by applying 2-D FFT, with o
(
5KsNd log2(KsNd)

)
flops.

Step 3: Given the first N columns of Rt, compute the
Ä

R−1
ät

through 2-D L-D algorithm,
with o

(
8N3(K2 − K + 2

))
flops.

Step 4: Utilizing (60)–(86), calculate the vector εt and the mean matrix µt by applying 2-D
FFT and IFFT, with o

(
5NK2 log2(NK)

)
+ o
(
5LKdNs log2(KdNs)

)
flops.

Step 5: Update γt+1 and
(
σ2)t+1 using (10) and (11).

Step 6: Repeat step 2 to step 5 until the predefined convergence criteria is satisfied.
Step 7: obtain the estimated angle-Doppler profile X̂ using (13)
Step 8: Compute the CNCM using (14)
Step 9: Compute the optimal STAP weight vector Using (15).
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We denote the proposed efficient implementations of the MFCSBL-STAP algorithm
and IR`2,1-MSBL-STAP algorithm based on the G-S factorization GS-MFCSBL-STAP and
GS-IR`2,1-MSBL-STAP, respectively. Since they have almost the same procedures as the
GS-MSBL-STAP, here we will not describe these two algorithms in detail for the sake of
article brevity.

5. Numerical Simulation

In this section, numerical experiments based on simulated data and measured data
are conducted to assess the computational efficiency, the clutter suppression performance,
and the target detection performance of the proposed computationally efficient GS-based
MSBL-STAP algorithms. The simulation parameters of the radar system are listed in Table 3.
The dictionary resolution scales are set to be ρs = 4 and ρd = 4. The number of used
training samples is 10. We use the metric of the signal to interference plus noise ratio (SINR)
loss as a measure to assess the performance of the proposed algorithms, which is calculated
by the ratio of the output SINR and the signal to noise ratio (SNR) achieved by a matched
filter in a noise-only environment, i.e.,

SINRloss =
σ2

NK

∣∣∣wH
optvt

∣∣∣
wH

optRidealwopt
(87)

where Rideal is the clairvoyant CNCM.

Table 3. Simulation parameters of the radar system.

Parameter Value

Bandwidth 2.5 M
Wavelength 0.3 m

Pulse repetition frequency 2000 Hz
Platform velocity 150 m/s
Platform height 9 km
Element number 8

Pulse number 8
CNR 40 dB

5.1. Simulated Data

First, we detail the computational complexity of the proposed GS-MSBL-STAP al-
gorithm, GS-MFCSBL-STAP algorithm and GS-IR`2,1-MSBL-STAP algorithm for a single
iteration and compare them with the original MSBL-STAP algorithms and other classical
SR-STAP algorithms, including MCVX-STAP [14], MOMP-STAP [12], MFOCUSS-STAP [20],
MIAA-STAP [58], MSBL-STAP [36], MFCSBL-STAP [45] and IR`2,1-MSBL-STAP [46]. The
computational complexity is measured by the number of floating-point operations. For
simplicity, the low-order terms are omitted. The results are given in Table 4, where the
sparse level rs of the MOMP-STAP algorithm is set to be equal to the clutter rank.
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Table 4. Computational complexity comparison.

Algorithm The Number of Floating-Point Operations for a Single Iteration

MCVX-STAP o
Ä

8(NsKdL)3
ä

MOMP-STAP o
(
8NKNsKdL + 8r3

s + 16NKr2
s + 8NKLrs

)
MFOCUSS-STAP o

Ä
8NKNsKdL + 8(NK)3 + 8NK(NsKd)2 + 16(NK)2NsKd

ä
MIAA-STAP o

Ä
8NKNsKdL + 8(NK)3 + 32(NK)2NsKd + 16NKNsKd

ä
MSBL-STAP o

Ä
8NKNsKdL + 8(NK)3 + 32NK(NsKd)2 + 24(NK)2NsKd

ä
MFCSBL-STAP o

Ä
8NKNsKdL + 8(NK)3 + 16NK(NsKd)2 + 40(NK)2(NsKd)

ä
IR`2,1-MSBL-STAP o

Ä
8NKNsKdL + 8(NK)3 + 32NK(NsKd)2 + 32(NK)2NsKd

ä
GS-MSBL-STAP o

Ä
8N3(K2 − K + 2

)
+ 5(L + 1)NsKd log2(NsKd) + 5(NK)2 log2(NK) + 8NsKd NKL

ä
GS-MFCSBL-STAP o

Ä
8N3(K2 − K + 2

)
+ 5(L + 1)NsKd log2(NsKd) + 8NKNsKdL + 24(NK)2NsKd

ä
GS-IR`2,1-MSBL-STAP o

Ä
8N3(K2 − K + 2

)
+ 5(L + 1)NsKd log2(NsKd) + 5(NK)2 log2(NK) + 8NKNsKdL + 8(NK)2NsKd

ä
In fact, during the process of the MSBL-STAP algorithms, for each iteration, the

computational complexities are mainly related to the update of the posterior mean matrix
µ, the posterior variance matrix Σ and the estimated clutter covariance matrix R. We
can easily observe that these three terms Σ = Γ − ΓDHR−1DΓ, µ = ΓDHR−1Y and
R = σ2INK + DΓDH contain large-scale matrix inversion operations and large-scale matrix
multiplication operations. Traditional MSBL-STAP algorithms directly compute these three
terms. Thus, they suffer from high computational complexity. In the process of the proposed
GS-based MSBL-STAP algorithms, utilizing the structure of the dictionary matrix D and the
G-S factorization of the R−1, all the three terms can be rapidly computed by using 2-D FFT
and IFFT. Thus, compared with the Traditional MSBL-STAP algorithms, the computational
complexities of the proposed GS-based MSBL-STAP algorithms are significantly reduced.
In Table 4, the number of floating-point operations of different SR-STAP algorithms for a
single iteration are listed, and it can be observed that the MCVX-STAP algorithm has a
high degree of computational complexity, which grows rapidly with the product of the
number of training samples and the number of the atoms in the space–time dictionary
matrix and the MOMP-STAP algorithm has the lowest computational complexity among
the SR-STAP algorithms. Compared with the MSBL-STAP algorithm, the MFCSBL-STAP
algorithm and the IR`2,1-MSBL-STAP algorithm, it can also be observed that the proposed
GS-MSBL-STAP algorithm, the GS-MFCSBL-STAP algorithm and GS-IR`2,1-MSBL-STAP
algorithm have lower computational complexities.

Figure 1 provides a more direct illustration of the computational complexities of the
different SR-STAP algorithms. It shows the number of floating-point operations for a
single iteration as the function of the number of the system DOFs. From Figure 1, it can be
intuitively observed that the proposed GS-MSBL-STAP algorithm, the GS-MFCSBL-STAP al-
gorithm, and the GS-IR`2,1-MSBL-STAP algorithm have lower computational complexities
than the CVX-STAP algorithm, the MFOCUSS-STAP algorithm, the MSBL-STAP algorithm,
the MFCSBL-STAP algorithm, and the IR`2,1-MSBL-STAP algorithm. Additionally, with the
growth in the number of system DOFs, it can be found that the proposed computationally
efficient GS-based MSBL-STAP algorithms have lower growth rates than the other SR-STAP
algorithms. Table 5 presents the computational complexities of various SR-STAP algorithms
under different system DOFs. In Table 5, it can be observed that when the number of system
DOFs is 128, compared with the MSBL-STAP algorithm, the MFCSBL-STAP algorithm
and the IR`2,1-MSBL-STAP algorithm, using the proposed GS-MSBL-STAP algorithm, the
GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP algorithm can reduce the
computational load by about one order of magnitude. Meanwhile, when the number of
system DOFs is 512, using the proposed GS-based MSBL-STAP algorithms can reduce the
computational load by about two orders of magnitude.
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Table 5. Computational complexities of various SR-STAP algorithms under different system DOFs.

Algorithm

The Number of
Floating-Operations for

Single Iteration

System DOFs

128 256 512

MCVX-STAP 1.484 × 1013 1.187 × 1014 9.499 × 1014

MOMP-STAP 1.296 × 107 5.206 × 107 2.111 × 108

MFOCUSS-STAP 4.861 × 109 3.884 × 1010 3.105 × 1011

MIAA-STAP 1.107 × 109 8.791 × 109 7.006 × 1010

MSBL-STAP 1.802 × 1010 1.441 × 1011 1.152 × 1012

MFCSBL-STAP 9.962 × 109 7.964 × 1010 6.369 × 1011

IR`2,1-MSBL-STAP 1.828 × 1010 1.462 × 1011 1.169 × 1012

GS-MSBL-STAP 1.619 × 109 7.072 × 109 3.070 × 1010

GS-MFCSBL-STAP 2.424 × 109 1.351 × 1010 8.223 × 1010

GS-IR`2,1-MSBL-STAP 1.888 × 109 9.220 × 109 4.788 × 1010

The cost function C = ln|Rc+n|+ Tr
Ä

R−1
c+nRideal

ä
can be used to evaluate the conver-

gence performance of different SR-STAP algorithms [45]. Figure 2 plots the value of cost
function versus the number of iterations curves of different SR-STAP algorithms. We find
that the IR`2,1-MSBL-STAP algorithm and the GS-IR`2,1-MSBL-STAP algorithm converge
to their steady-state values after about 12 iterations, and the MFCSBL-STAP algorithm and
the GS-MFCSBL-STAP algorithm converge to their steady-state values after about 15 itera-
tions. The MIAA-STAP algorithm and the MFOCUSS-STAP algorithm converge to their
steady-state values after about 20 iterations and 50 iterations, respectively. The MSBL-STAP
algorithm and the GS-MSBL-STAP algorithm converge very slowly, requiring more than
200 iterations to reach their steady-state values. We also find that the proposed computa-
tionally efficiently GS-based MSBL-STAP algorithms do not change the convergence of the
original MSBL-STAP algorithms. In Table 6, the average running times of different SR-STAP
algorithms are compared. The results were obtained using MATLAB 2018b and a computer
with Intel(R) Xeon(R) E5-2620 CPU @ 2.40GHz 2.39 GHz. According to Figure 2, we set
the number of iterations of the MFOCUSS-STAP algorithm, the MIAA-STAP algorithm,
the MSBL-STAP algorithm, the MFCSBL-STAP, the IR`2,1-MSBL-STAP algorithm, the GS-
MSBL-STAP algorithm, the GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP
algorithm as 50, 20, 200, 15, 12, 200, 15 and 12, respectively. From Table 6, it can be deter-
mined that the average running times of the proposed computationally efficient GS-based
MSBL-STAP algorithms are far shorter than the original MSBL-STAP algorithms, thus
validating the computational efficiency of our proposed algorithms.
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Table 6. Average running time comparison.

Algorithm Running Time

MCVX-STAP 900.4931 s
MOMP-STAP 0.0254 s

MFOCUSS-STAP 3.8556 s
MIAA-STAP 0.7614 s
MSBL-STAP 15.1402 s

MFCSBL-STAP 1.4835 s
IR`2,1-MSBL-STAP 1.8533 s

GS-MSBL-STAP 1.3409 s
GS-MFCSBL-STAP 0.3610 s

GS-IR`2,1-MSBL-STAP 0.1914 s

Next, we compare the clutter suppression performance of different SR-STAP algo-
rithms. The specific simulation parameters of different SR-STAP are set as follows. The
diagonal loading factor for the LSMI-STAP algorithm is 10 dB to the noise power [56].
The iteration termination thresholds of the MOMP-STAP algorithm [12], the MFOCUSS-
STAP algorithm [20], the MIAA-STAP algorithm [58], the MSBL-STAP algorithm [36], the
MFCSBL-STAP algorithm [45], the IR`2,1-MSBL-STAP algorithm [46], the GS-MSBL-STAP
algorithm, the GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP algorithm are
all set to the same value, i.e., δ = 0.0001. The regularization parameter for the MFOCUSS-
STAP algorithm is set as p = 0.8. Figure 3 plots the recovered clutter capon spectrums of
the different SR-STAP algorithms. From Figure 3b–d, it can be observed that the clutter
spectrum of the LSMI-STAP is very poor, the clutter spectrum of the MOMP-STAP is discon-
tinuous, and the clutter spectrum of MFOCUSS-STAP has a slight spectrum expansion. The
reason for this is that the CNCM cannot be well estimated using LSMI-STAP algorithms
when the number of the training samples is small, and the steering vectors selected by
MOMP-STAP and MFOCUSS-STAP cannot precisely span the true clutter subspace due to
the limitations of the algorithm itself. From Figure 3e, it can be observed that the clutter
spectrum of the MIAA-STAP has a high level of noise; this is because the space–time dictio-
nary matrix D is not an orthogonal matrix; rather, the atoms in the space–time dictionary
D are usually highly coherent. From Figure 3f–k, it can also be observed that the recovered
clutter spectrums of the MSBL-STAP, the MFCSBL-STAP, the IR`2,1-MSBL-STAP, the GS-
MSBL-STAP, the GS-MFCSBL-STAP and the GS-IR`2,1-MSBL-STAP are very close to the
optimal spectrum. This shows that the MSBL-STAP algorithms can achieve superior clutter
suppression performance, and the GS-based MSBL-STAP algorithms proposed by us can
still achieve superior clutter suppression performance with less computational complexity.
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Figure 3. Clutter capon spectrums of different SR-STAP algorithms. (a) OPT; (b) LSMI-STAP;
(c) MOMP-STAP; (d) MFCOUSS-STAP; (e) MIAA-STAP; (f) MSBL-STAP; (g) MFCSBL-STAP;
(h) IR`2,1-MSBL-STAP; (i) GS-MSBL-STAP; (j) GS-MFCSBL-STAP; (k) GS-IR`2,1-MSBL-STAP.

Figure 4 depicts the SINR loss curves of different SR-STAP algorithms. All simulation
results for SINR loss are averaged over 100 independent Monte Carlo trails. From Figure 4,
it can be observed that the GS-MSBL-STAP algorithm, the GS-MFCSBL-STAP algorithm,
and the GS-IR`2,1-MSBL-STAP algorithm achieve the same performance as the MSBL-STAP
algorithm, the MFCSBL-STAP algorithm, and the IR`2,1-MSBL-STAP algorithm. This fur-
ther indicates that the proposed computationally efficient GS-based MSBL-STAP algorithms
do not change the clutter suppression performance of the original MSBL-STAP algorithms.
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Then, we evaluate the target detection performance of different SR-STAP algorithms by
the probability of detection probability (PD) versus SNR curves and the receive operating
character (ROC) (i.e., PD versus the probability of false alarm (PFA)) curves, which are
obtained by using the adaptive matched filter (AMF) detector [59]. The detection threshold
and the probability of detection estimates are based on 104 samples. Besides, all the PD versus
SNR curves and ROC curves are acquired based on 1000 independent Monte Carlo trails.

The PD versus SNR curves of different SR-STAP algorithms are depicted in Figure 5.
the PFA is set as 10−3, the target is assumed to be in the main beam direction with a
Doppler frequency of 0.1 in Figure 5a and 0.3 in Figure 5b. As depicted in Figure 5a,b,
the target detection performance of the MSBL-STAP algorithm, the MFCSBL-STAP, the
IR`2,1-MSBL-STAP algorithm, the GS-MSBL-STAP algorithm, the GS-MFCSBL-STAP al-
gorithm, and the GS-IR`2,1-MSBL-STAP algorithm are close to the optimal performance,
which indicates that the MSBL-STAP algorithms have superior target detection perfor-
mance whether in the mainlobe region ( fdt = 0.1) or in the sidelobe region ( fdt = 0.3). We
find that the target detection performance of MIAA-STAP algorithm is slightly worse than
the MSBL-STAP algorithms, the reason for this is that the recovered clutter spectrum of the
MIAA-STAP has a relatively high level of noise. By comparing the PD versus SNR curves
of MFCOUSS-STAP algorithm, the MOMP-STAP algorithm, and the LSMI-STAP algorithm
in Figure 5a,b, we find that these algorithms have worse target detection performance in the
mainlobe region ( fdt = 0.1), which indicates that these algorithms have poor ability to de-
tect slow moving targets. From Figure 5a,b, it can also be observed that the GS-MSBL-STAP
algorithm, the GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP algorithm
have the same performance as the MSBL-STAP algorithm, the MFCSBL-STAP algorithm
and the IR`2,1-MSBL-STAP algorithm, which shows that the proposed computationally
efficient GS-based MSBL-STAP algorithms do not change the target detection performance
of the original MSBL-STAP algorithms.

The ROC curves of different SR-STAP algorithms are depicted in Figure 6. The SNR is
set as −10 dB in Figure 6a,c and −2dB in Figure 6b,d. The target is assumed to be in the
main beam direction with a Doppler frequency of 0.1 in Figure 6a,b and 0.3 in Figure 6c,d.
As depicted in Figure 6a–d, the MIAA-STAP algorithm, the MSBL-STAP algorithm, the
MFCSBL-STAP, the IR`2,1-MSBL-STAP algorithm, the GS-MSBL-STAP algorithm, the GS-
MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP algorithm can achieve superior
target detection performance whether for fast moving targets (see Figure 6a,b) or for
slow-moving targets (see Figure 6c,d). It can also be observed that the MFCOUSS-STAP
algorithm, the MOMP-STAP algorithm, and the LSMI-STAP algorithm have worse target
detection performance than other SR-STAP algorithms. Additionally, the target detection
performance increases to various degrees with the improvement of the SNR for all SR-STAP
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algorithms. Similarly, it can be seen from Figure 6 that the proposed computationally
efficient GS-based MSBL-STAP algorithms do not change the target performance of the
original MSBL-STAP algorithms.
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Figure 5. PD versus SNR curves of different SR-STAP algorithms. (a) the normalized target Doppler
frequency fdt = 0.1; (b) the normalized target Doppler frequency fdt = 0.3.
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Figure 6. ROC curves of different SR-STAP algorithms. (a) fdt= 0.1, SNR =− 10 dB; (b) fdt= 0.1,
SNR =− 2 dB; (c) fdt= 0.3, SNR =− 10 dB; (d) fdt= 0.3, SNR =− 2 dB.

Figure 7 depicts the average SINR loss versus the number of training samples. As
shown in Figure 7, when the number of the used training samples is greater than 6,
the MSBL-STAP algorithm, the MFCSBL-STAP, the IR`2,1-MSBL-STAP algorithm, the GS-
MSBL-STAP algorithm, the GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP
algorithm can achieve a near-optimal performance. For the MIAA-STAP algorithm, at
least eight training samples are needed to achieve near-optimal performance. For the
MFCOUSS-STAP algorithm, the MOMP-STAP algorithm, and the LSMI-STAP algorithm,
more training samples are needed to achieve a steady performance.
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Figure 7. Average SINR loss versus the number of training samples.

5.2. Measured Data

In this section, we apply the proposed GS-MSBL-STAP algorithm, the GS-MFCSBL-
STAP algorithm, and the GS-IR`2,1-MSBL-STAP algorithm to the publicly available Mountain-
Top set, i.e., t38pre01v1 CPI6 [60]. For this data set, the received antenna array consists of
14 elements and 16 coherent pulses are transmitted in a CPI. The PRF is 625 Hz and a 500 kHz
linear frequency modulated pulse is used for transmitting. There are 403 range cells in this
data file and the clutter is located around 245

◦
relative to true north, and the target is located

at 275
◦

relative to true north. The target is located in the 147th range cell, with a normalized
Doppler frequency of 0.25. The estimated clutter capon spectrum using all 403 training
samples is given in Figure 8. Specifically, firstly, we use all 403 range cells to estimate the
clutter-plus-noise covariance matrix; then, utilizing the general formula for capon spectrum
estimation, the estimated capon spectrum of the mountain-top data can be obtained. From
Figure 8, it can be observed that the mountain-top data have serious heterogeneity.
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Table 7 shows the average running time of different SR-STAP methods with the mea-
sured data. From Table 7, it can be observed that, compared with the original MSBL-STAP
algorithms, the average running time of the proposed GS-based MSBL-STAP algorithms
is significantly reduced when processing the measured data. Figure 9 depicts the STAP
output for the EFA algorithm, and different SR-STAP algorithms in range cells from 130
to 165, where the curves of the MSBL-STAP algorithm, the MFCSBL-STAP algorithm, the
IR`2,1-MSBL-STAP algorithm are omitted, since they are visually identical to those of the
GS-MSBL-STAP algorithm, the GS-MFCSBL-STAP algorithm, and the GS-IR`2,1-MSBL-STAP
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algorithm, respectively. Ten snapshots out of 20 snapshots located next to the CUT are selected
as the training data. From Figure 9, it can be observed that the target (located at 147th range
cell) can be detected by all the SR-STAP algorithms even though only 10 snapshots are selected
as training samples. However, since the CNCM cannot be accurately estimated, the traditional
EFA algorithm cannot find the target. By comparing the STAP output of different SR-STAP
algorithms, it can be observed that the proposed GS-MSBL-STAP algorithm, GS-MFCSBL-
STAP algorithm, and GS-IR`2,1-MSBL-STAP algorithm have better detection performance
than the other SR-STAP algorithms. Moreover, since the proposed algorithms greatly reduce
the computational complexity, they are more favorable for practical applications.

Table 7. Average running time of different SR-STAP methods with measured data.

Algorithm Running Time

MFOCUSS-STAP 41.9740 s
MIAA-STAP 2.3135 s
MSBL-STAP 43.8430 s

MFCSBL-STAP 4.7761 s
IR`2,1-MSBL-STAP 6.7693 s

GS-MSBL-STAP 2.3971 s
GS-MFCSBL-STAP 0.8380 s

GS-IR`2,1-MSBL-STAP 0.4277 s

Remote Sens. 2022, 14, 3931 23 of 26 
 

 

 

Figure 9. STAP output power against the range cell for different algorithms. 

6. Conclusions 

In this work, we developed several computationally efficient GS-based MSBL-STAP 

algorithms. Since the covariance matrix to be updated in the iterative process of the orig-

inal MSBL-STAP algorithms is an HTBT matrix, the inverse of the covariance matrix can 

be decomposed using G-S factorization. Then, by exploiting the TBT/Toeplitz structural 

characteristics and the property whereby the space–time dictionary matrix D  is the 

Kronecker product of two Fourier matrices, the computational complexity of the original 

MSBL-STAP algorithms can be significantly reduced by using the 2D-FFT/IFFT. The sim-

ulation results validate that the proposed efficient MSBL-STAP algorithms can signifi-

cantly reduce the computational complexity while obtain superior clutter suppression 

performance and target detection performance. However, the efficient algorithms we pro-

posed are only suitable for the case of ULA and a constant PRF with uniformly sampled 

spatial frequencies and Doppler frequencies. When these conditions are not met, the 

space–time dictionary matrix D  is no longer the Kronecker product of two Fourier ma-

trices, and the estimated covariance matrix in each iteration of the MSBL-STAP algorithms 

will not be an HTBT matrix; as a result, the efficient MSBL-STAP algorithms proposed in 

this article will no longer be applicable. Thus, in our future work, extending the proposed 

efficient implementation of the original MSBL-STAP algorithms under other conditions is 

worthy of research. 

Author Contributions: Conceptualization, K.L. and T.W.; investigation, K.L. and C.L.; methodol-

ogy, K.L. and J.W.; project administration, T.W.; software, K.L.; supervision, J.W.; visualization, 

K.L.; writing—original draft, K.L.; writing—review and editing, W.C. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research was funded by National Key R&D Program of China, grant number 

2021YFA1000400. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 9. STAP output power against the range cell for different algorithms.

6. Conclusions

In this work, we developed several computationally efficient GS-based MSBL-STAP
algorithms. Since the covariance matrix to be updated in the iterative process of the original
MSBL-STAP algorithms is an HTBT matrix, the inverse of the covariance matrix can be
decomposed using G-S factorization. Then, by exploiting the TBT/Toeplitz structural char-
acteristics and the property whereby the space–time dictionary matrix D is the Kronecker
product of two Fourier matrices, the computational complexity of the original MSBL-STAP
algorithms can be significantly reduced by using the 2D-FFT/IFFT. The simulation results
validate that the proposed efficient MSBL-STAP algorithms can significantly reduce the
computational complexity while obtain superior clutter suppression performance and tar-
get detection performance. However, the efficient algorithms we proposed are only suitable
for the case of ULA and a constant PRF with uniformly sampled spatial frequencies and
Doppler frequencies. When these conditions are not met, the space–time dictionary matrix
D is no longer the Kronecker product of two Fourier matrices, and the estimated covariance
matrix in each iteration of the MSBL-STAP algorithms will not be an HTBT matrix; as
a result, the efficient MSBL-STAP algorithms proposed in this article will no longer be
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Appendix A

The proofs of (39)–(41) are given in Appendix A. By utilizing the property S(K−1)NS(K−1)N
= I(K−1)N , we get

R−1
K−1,NS(K−1)N = S(K−1)NS(K−1)NR−1

K−1,NS(K−1)N

= S(K−1)NR−T
K−1,N

= S(K−1)N

Ä
RH

K−1,N

ä−T

= S(K−1)NR−∗K−1,N

(A1)

Substituting (38) and (39) into (35) and (36), we get

B∗K−1 = −R−1
K−1,NR̃∗K−1

= −R−1
K−1,NS(K−1)NR∗K−1SN

= −S(K−1)NR−∗K−1,NR∗K−1SN
= S(K−1)NA∗K−1SN
= Ã∗K−1

(A2)

VN = R0 − R̃T
K−1R−1

K−1,NR̃∗K−1
= R0 − SNRT

K−1S(K−1)NR−1
K−1,NS(K−1)NR∗K−1SN

= SNSNR0SNSN − SNRT
K−1S(K−1)NR−1

K−1,NS(K−1)NR∗K−1SN

= SN
Ä

SNR0SN −RT
K−1R−T

K−1,NR∗K−1

ä
SN

= SNWT
NSN = W̃T

N

(A3)

Appendix B

The proofs of (56)–(58) are given in Appendix B. Given A1 and W(1)
N , according to (33)

and (34), we get

Ak = −
Ä

R−1
K−1,N

ä−1

k
(RK−1)k

= −
{[ Ä

R−1
K−1,N

ä−1
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0

0 0

]
+

ñ
Ã∗k−1

IN

ô(
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)
=

ï
Ak−1

0

ò
−
ñ
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ô(
W̃(k−1)

N

)−T
Hk−1

(A4)
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W(k)
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k
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(RK−1)k + (RK−1)H
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Ä
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k−1
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where
Hk−1 = ÃT

k−1(RK−1)k−1 + Rk (A7)
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