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Abstract: Space-time adaptive processing (STAP) is a fundamental topic in airborne radar applications
due to its clutter suppression ability. Reduced-dimension (RD)-STAP can release the requirement
of the number of training samples and reduce the computational load from traditional STAP, which
attracts much attention. However, under the situation that training samples are severely deficient,
RD-STAP will become poor like the traditional STAP. To enhance RD-STAP performance in such cases,
this paper develops a novel RD-STAP algorithm using random matrix theory (RMT), RMT-RD-STAP.
By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise
covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, thus
producing the optimal STAP weight vector. Specifically, the clutter-related eigenvalues are estimated
according to the clutter-related sample eigenvalues via RMT, and the noise-related eigenvalue
is optimally selected from the noise-related sample eigenvalues. It is found that RMT-RD-STAP
significantly outperforms the RD-STAP algorithm when the RMB rule cannot be satisfied. Theoretical
analyses and numerical results demonstrate the effectiveness and the performance advantages of the
proposed RMT-RD-STAP algorithm.

Keywords: space-time adaptive processing; reduced-dimension; finite training samples; random
matrix theory

1. Introduction

Space-time adaptive processing (STAP) was first proposed almost 50 years ago [1],
and since then it has been actively investigated by the radar community due to its strong
capability in suppressing clutter and enhancing target [2–6]. The optimal STAP can maxi-
mize the output signal-to-interference plus noise ratio (SINR) and provide reliable target
detection. However, the optimal STAP involves an ideal clutter plus noise covariance ma-
trix (CNCM), which generally cannot be attained and must be estimated with independent
identical distributed (IID) training samples, called sample covariance matrix (SCM). Once
the number of training samples for SCM is insufficient, STAP would severely suffer from
performance deterioration. Particularly, the famous Reed, Mallet, and Brennan (RMB)
rule [4] provides an explicit theoretical guide for the requirement on the number of training
samples, i.e., to limit the SINR loss to 3 dB, the number of training samples must be not
less than two times the system degrees of freedom (DoFs). However, in practice, the RMB
rule is commonly hard to satisfy. In addition, the computational load in optimal STAP is
extremely huge owing to high-dimensional matrix inversion. Therefore, the traditional
STAP needs to be improved.

With the development of STAP, a great number of methods have been developed to
confront the performance deterioration stemming from finite training samples. Sparsity-
recovery (SR)-STAP [7–10] can greatly improve the SCM with only a few or even one
training sample, however, the computational load involved in SR is unbearable. Knowledge-
aided (KA)-STAP [11–14] uses the prior knowledge to improve SCM, i.e., covariance matrix
and terrain data, but its performance will severely deteriorate once the prior knowledge
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deviates from the actual one. Recently, deep convolutional neural networks (CNNs) [15–17]
have been used for STAP also with few training samples, but it usually needs a lot of
sampling data as the training set for network learning, which is unavailable in many radar
scenarios. Moreover, it is hard to obtain the ground truth in actual clutter scenarios, which
is necessarily required as a label for supervised learning.

Reduced-dimension (RD)-STAP [18–23] is one of the most popular methods due to its
fast convergence, simple structure, and a low requirement for training samples, which has
been widely used in engineering applications. RD-STAP algorithms reduce the system DoFs
through linear transformation on training samples to satisfy the RMB rule. Meanwhile, the
lower system DoFs cause lower computational load, which significantly boosts real-time
processing for airborne radar. In terms of different principles, several linear transformations
have been constructed, such as the extended factored approach (EFA) [18] and joint domain
localized (JDL) [23]. However, in a radar system, the linear transformation is often fixed
in a predesigned clutter scenario. When the scenarios deviate from the predesigned ones,
the RMB rule may not be satisfied and the RD-STAP performance becomes poor like the
traditional STAP. Therefore, it is greatly meaningful to resort to other techniques to enhance
RD-STAP performance.

It could be noticed that CNCM is composed of eigenvalues and eigenvectors, and
a lot of works have demonstrated that the SCM can be improved by adjusting the sample
eigenvalues while maintaining the sample eigenvectors [24–27]. Currently, random matrix
theory (RMT), originating from quantum mechanics [28] and mainly used to study the
asymptotic behavior of the empirical spectral distribution of different random matrix
models as their dimensions go into infinity [29–32], has been applied to estimate the
eigenvalues and eigenvectors of the SCM constructed from the finite observations [33–36].
It is found that the estimation is consistent, not only when the sample size increases
without bound for a fixed observation dimension but also when the observation dimension
increases to infinity at the same rate as the sample size increases [37–39]. Particularly,
the spiked covariance model, defined as a low-rank perturbation of an identity matrix in
RMT [40], attracts much attention since it is similar to the classical signal-plus-noise model
in signal processing. It is shown in [40–43] that for such a model, consistent estimation
of its eigenvalues can be obtained with small-size samples. Recently, ref. [27] applies the
theory to directly estimate the inverse covariance matrix for spatial beamforming and
shows superior performance under high dimension and finite training samples. Aiming at
the STAP problem, some works, like [44,45], use RMT to enhance the performance under
finite training samples. However, these methods are implemented in full-dimension STAP,
which leads to a huge computational load and is not applicable to RD-STAP. Based on this
consideration, we try to improve the performance of RD-STAP by using RMT.

Inspired by [27], this paper proposes a new RD-STAP algorithm using RMT, called
RMT-RD-STAP. Like the CNCM’s eigenvalues, the RD CNCM’s eigenvalues consist of two
parts, the noise-related part, and the clutter-related part. The noise-related part contains
the large portion of the RD CNCM’s eigenvalues and their values are determined by the
noise power, whereas the clutter-related part takes up the small portion of the RD CNCM’s
eigenvalues and their values depend on the clutter power. The eigenvalues belonging to
the clutter-related part are commonly much larger than those belonging to the noise-related
part. Such eigenvalue distribution is similar to that of a spiked covariance model. The main
difference is that the noise covariance matrix in RD CNCM is not strictly a scaled identity
matrix which is required in the spiked covariance model. If the noise covariance matrix
in RD CNCM can be considered a scaled identity matrix, the RMT-based technique in [27]
is applicable to RD STAP with finite training samples and the performance of clutter
suppression will be enhanced. In this paper, we deal with the noise covariance matrix in
RD CNCM as a scaled identity matrix, and fortunately, we find that the spiked covariance
model can effectively work for RD-STAP with finite training samples. We first construct
a new estimate on the inverse RD CNCM by employing the eigenvectors of the RD SCM
and then estimate the clutter-related eigenvalues by using the RMT. Meanwhile, we provide
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the estimate on the scaled factor of the scaled identity matrix according to the eigenvalues of
the RD SCM. With the proposed estimate on the inverse RD CNCM, we can directly obtain
the space-time adaptive weight vector of RMT-RD-STAP in terms of the linear constraint
minimum variance (LCMV) criterion. We conduct extensive numerical experiments to
verify the effectiveness of the RMT-RD-STAP, and we find that the proposed RMT-RD-STAP
greatly outperforms the conventional RD-STAP in the case of finite training samples.

The rest of this paper is organized as follows. Section 2 introduces the echo model
for airborne radar and the fundamentals of STAP and RD-STAP. Section 3 presents the
proposed RMT-RD-STAP algorithm in detail. Numerical experiments are performed in
Section 4 and the conclusions of this work are drawn in Section 5.

Notation: IN denotes the N× N identity matrix. Boldface uppercase letters denote the
matrices, and boldface lowercase letters denote the vectors. j =

√
−1. The ⊗ represents

the Kronecker product. The (·)T and (·)H represent the transpose and Hermitian trans-
pose, respectively. The C represents the sets of complex values. The E{·} denotes the
statistical expectation.

2. Background
2.1. Echo Model of Airborne Radar and Optimal STAP

As shown in Figure 1, consider a side-looking airborne pulse-Doppler radar system
equipped with a uniform linear array (ULA) of N array elements with the inter-element
spacing ∆ = λ/2 and the wavelength λ. Let H and V denote the height and velocity
of the platform, respectively, and ψ, θ, and ϕ denote the cone, azimuth, and elevation
angle, respectively. Assume that the radar transmits K pulses at a constant pulse repetition
frequency (PRF) fr during a coherent processing interval (CPI). Then under the assumption
of no range ambiguity and no internal clutter motion, the received signal xl ∈ CNK of the
l-th range cell or the range cell under test (CUT) can be represented as

xl = s + cl + n, (1)

where s ∈ CNK denotes target echo, n ∼ CN
(
0, σ2

nINK
)

denotes the complex white Gaus-
sian noise with the noise power σ2

n , and cl ∈ CNK denotes the clutter echo,

cl =
Nc

∑
i=1

Γia
(

f t
ci, f s

ci
)
. (2)

Figure 1. Side-looking airborne radar geometry relationship.

In (2), Nc is the number of clutter patches evenly divided in azimuth, Γi denotes
the complex amplitude of the i-th clutter patch, and a

(
f t
ci, f s

ci
)
= at

(
f t
ci
)
⊗ as

(
f s
ci
)
∈ CNK

denotes the normalized spatial-temporal steering vector of the i-th clutter patch where



Remote Sens. 2022, 14, 3959 4 of 20

at
(

f t
ci
)
∈ CK, and as

(
f s
ci
)
∈ CN respectively denote the temporal and spatial steering

vectors as
at
(

f t
ci
)
=
[
1, ej2π f t

ci , · · · , ej2π f t
ci(K−1)

]T

as
(

f s
ci
)
=
[
1, ej2π f s

ci , · · · , ej2π f s
ci(N−1)

]T (3)

In (3), f t
ci and f s

ci denote the normalized temporal and spatial frequency, respectively,

f t
ci =

2V
λ fr

cos ψi =
2V
λ fr

cos θi cos ϕl

f s
ci =

∆
λ cos ψi =

∆
λ cos θi cos ϕl

(4)

Then the CNCM R of the l-th range cell can be expressed from (1) as

R = E
(

xlx
H
l

)
=

Nc

∑
i=1
|Γi|2a

(
f t
ci, f s

ci
)
aH( f t

ci, f s
ci
)
+ σ2

nINK. (5)

Under the LCMV criterion [2], the optimal STAP is defined as{
min P(w) = wHRw
s.t. wHa

(
f t
0, f s

0
)
= 1

, (6)

where P(w) denotes the output clutter-plus-noise power, a
(

f t
0, f s

0
)
∈ CNK denotes the

spatial-temporal steering vector of the target with f t
0 and f s

0 as the normalized temporal
and spatial frequency. The optimal STAP weight vector w ∈ CNK can be derived as

wopt =
R−1a

(
f t
0, f s

0
)

aH
(

f t
0, f s

0
)
R−1a

(
f t
0, f s

0
) , (7)

from which, the minimal clutter-plus-noise power is given by

P
(
wopt) = 1

aH
(

f t
0, f s

0
)
R−1a

(
f t
0, f s

0
) . (8)

2.2. Sample-Based STAP and RD-STAP

For the implementation of (7), it is fundamental to know the CNCM R and its inversion.
However, it is not practical to obtain the matrix R. In practice, the matrix R is estimated
from finite echo samples or training samples,

RL =
L

∑
l=1

xlx
H
l , (9)

where RL is called the SCM with L training samples. In such case, the optimal weight
vector (7) is approximated as

wopt
L =

R−1
L a

(
f t
0, f s

0
)

aH
(

f t
0, f s

0
)
R−1

L a
(

f t
0, f s

0
) , (10)

where wopt
L is called the adaptive weight vector of the traditional STAP. The output clutter-

plus-noise power by the weight vector (10) is given by

P
(

wopt
L

)
=

aH( f t
0, f s

0
)
R−1

L RR−1
L a

(
f t
0, f s

0
)[

aH
(

f t
0, f s

0
)
R−1

L a
(

f t
0, f s

0
)]2 . (11)
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It is seen from (11) that the traditional STAP will have good performance if R−1
L well

approximates R−1. However, R−1
L is estimated from finite training samples and deviates

from R−1 if the number of the training samples decreases. This deviation will result in
a higher output clutter-plus-noise power by (11) than the theoretical one by (8). Define
a constant c ∈ (0, 1). Then from [46,47], it is known that P

(
wopt

L

)
/P
(
wopt)→ 1/(1− c)

as NK, L→ ∞ with cN = NK/L→ c , which coincides with the RMB rule [4], i.e., the
sample-based STAP performance by (10) has less than 3 dB loss when the number of
training samples is not less than two times the system DoFs, L ≥ 2NK. However, in real
radar scenarios, it is a common case that L < NK [2]. The sample-based STAP by (10) will
have much poorer performance than the optimal STAP by (7).

To reduce the requirement of (10) on the number of training samples, RD-STAP [18–23]
is developed, which produces a secondary data by projecting the NK-dimensional signal
vector xl into a M-dimensional one via linear transformation matrix T ∈ CNK×M, namely

x̃l = THxl ∈ CM, (12)

where M denotes the reduced-dimensional system DoFs and is much smaller than the
original system DoFs, M� NK. Then, it can be predicted that the STAP with the data in
(12) will have good performance when L ≥ 2M in terms of the RMB rule.

The RD CNCM and the corresponding target spatial-temporal steering vector are
given as

Rrd = E
(

x̃l x̃
H
l

)
= THRT ∈ CM×M, (13)

and
ard
(

f t
0, f s

0
)
= THa

(
f t
0, f s

0
)
∈ CM. (14)

Under the LCMV criterion, the RD-STAP is defined as{
min Prd(wrd) = wH

rdRrdwrd
s.t. wH

rdard
(

f t
0, f s

0
)
= 1

, (15)

where wrd ∈ CM denotes the RD-STAP weight vector. Then the optimal RD-STAP weight
vector is given as

wopt
rd =

R−1
rd ard

(
f t
0, f s

0
)

aH
rd
(

f t
0, f s

0
)
R−1

rd ard
(

f t
0, f s

0
) . (16)

When the Rrd is generated from the finite samples, the adaptive weight vector of the
sample-based RD-STAP is

wopt
Lrd =

R−1
Lrdard

(
f t
0, f s

0
)

aH
rd
(

f t
0, f s

0
)
RL
−1
rd ard

(
f t
0, f s

0
) , (17)

where RLrd = THRLT ∈ CM×M is the RD SCM. Similar to (11), the output clutter-plus-noise
power associated with the weight vector (17) is given as

Prd

(
wopt

Lrd

)
=

aH
rd
(

f t
0, f s

0
)
R−1

LrdRrdR−1
Lrdard

(
f t
0, f s

0
)[

aH
rd
(

f t
0, f s

0
)
R−1

Lrdard
(

f t
0, f s

0
)]2 . (18)

2.3. Motivation by Introducing RMT in RD-STAP

Although RD-STAP can release the requirement on the number of training samples,
the RD processing structure is commonly fixed for a radar system, then the RD-STAP
performance becomes poor like the traditional STAP once the number of training samples
is small. Therefore, it is greatly necessary to resort to other techniques to improve the
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RD-STAP performance. In this paper, we study the consistent estimate of R−1
rd from the

finite training samples, especially in the case of L ≤ 2M.
For the inverse matrix R−1

rd , let us consider the eigen-decomposition of the matrix Rrd as

Rrd = σ̃2
n

M

∑
i=1

γieieH
i = σ̃2

n

Qrd

∑
i=1

γieieH
i + σ̃2

n

M

∑
i=Qrd+1

γieieH
i , (19)

where Qrd denotes the local clutter DoFs, which can be calculated by the method in [48],
ei is the i-th eigenvector with the corresponding eigenvalue σ̃2

nγi and γ1 ≥ γ2 ≥ · · · ≥
γQrd � γQrd+1 ≥ · · · ≥ γM. The leading eigenvalues γi (i = 1, · · · , Qrd) are related to the
clutter, whereas the others are related to the noise.

Notice that Qrd is generally far less than the RD system DoFs M in practice [48], and
the clutter-related eigenvalues are much larger than the noise-related ones. Such eigenvalue
distribution is like that of a spiked covariance model although it is not strict. In the area of
RMT, this model has acquired extensive study on its statistical behaviors and the consistent
estimation theory has been established on estimating the isolated eigenvalues of the spiked
covariance model from finite training samples [38–41]. In particular, the spike covariance
matrix estimation can be improved by managing the sample eigenvalues while keeping the
sample eigenvectors [24–27]. Then, this theory can be leveraged to improve the estimation
of R−1

rd and in turn enhance the RD-STAP performance.

3. RD-STAP Using RMT

In this section, we propose a novel RD-STAP algorithm by using the RMT, called
RMT-RD-STAP. Firstly, the RMT-RD-STAP problem with the spiked covariance model is
defined. Then, its asymptotic deterministic equivalence is given and the optimal solution is
derived; ultimately an estimated adaptive weight vector is optimized.

3.1. RD-STAP Problem under the Spiked Covariance Model

It is seen from (18) that the Rrd does not have the spiked structure as R because the noise
covariance matrix is not a scaled identity one [48]. Then the RMT-based technique in [27]
cannot be directly applicable to the estimate of the inverse CNCM R−1

rd . Note that the
optimal RD-STAP is to minimize the output clutter-plus-noise power. Then the essence
of the sample-based RD-STAP is to find the estimate of R−1

rd which can reduce the output
clutter-plus-noise power (17). We will find that the output clutter-plus-noise power in
(17) can be reduced if the noise-related covariance matrix is replaced by a scaled identity
matrix. Although there are no theoretical guarantees, a number of numerical experiments
in Section 4 have confirmed the assertion. Then we make Assumption 1 as follows.

Assumption 1. The noise component in (12) is taken to be the complex white Gaussian noise with
zero mean and covariance σIM.

Define βi = γi − 1. Then under Assumption 1, the RD CNCM Rrd in (19) can be
approximated as

Rrd ≈ σ

(
Qrd

∑
i=1

βieieH
i + IM

)
, (20)

where the noise power σ can be cosidered as the scaled factor of the identity matrix in the
spiked covariance model. With the eigen-decomposition of the RD SCM RLrd as

RLrd = σ
M

∑
i=1

αidid
H
i , (21)
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in which di is the i-th eigenvector with the corresponding eigenvalue σαi and α1 ≥ · · · ≥ αM,
according to the spike covariance matrix estimation principle [25], an inverse RD CNCM
R−1

rd can be constructed as

R−1
rd =

1
σ

M

∑
i=1

ςidid
H
i , (22)

where 1/σςi are the eigenvalues of R−1
rd and the parameters ςi need to be determined. By

using Assumption 1, setting ςQrd+1 = · · · = ςM = 1, and letting gi = ςi − 1, (22) can be
re-expressed as

R−1
rd (g) =

1
σ

(
Qrd

∑
i=1

gidid
H
i + IM

)
, (23)

where the inverse matrix R−1
rd is implicitly expressed as a function of the vector

g = [g1 · · · gQrd ]
T. Correspondingly, the adaptive weight vector wopt

rd is given as

wopt
rd (g) =

R−1
rd (g)ard

(
f t
0, f s

0
)

aH
rd
(

f t
0, f s

0
)
R−1

rd (g)ard
(

f t
0, f s

0
) . (24)

Then the RD-STAP problem under the spiked covariance model can be defined as

g∗ = argmin
g

Prd

(
wopt

rd (g)
)

, (25)

where

Prd

(
wopt

rd (g)
)

=
aH

rd( f t
0, f s

0)R−1
rd (g)RrdR−1

rd (g)ard( f t
0, f s

0)[
aH

rd( f t
0, f s

0)R−1
rd (g)ard( f t

0, f s
0)
]2

= σ
aH

rd( f t
0, f s

0)

(
IM+

Qrd
∑

q=1
gqdqdH

q

)(
IM+

Qrd
∑

j=1
β jejeH

j

)(
IM+

Qrd
∑

i=1
gidid

H
i

)
ard( f t

0, f s
0)[

aH
rd( f t

0, f s
0)

(
IM+

Qrd
∑

i=1
gidid

H
i

)
ard( f t

0, f s
0)

]2

(26)

The optimal RMT-RD-STAP is equivalent to finding the optimal g∗.

3.2. Asymptotic Deterministic Equivalent P̃rd

(
wopt

rd (g)
)

and the Optimal g̃∗

Note that it is difficult to give a closed solution of (25). To address the issue, the
asymptotic properties of (26) under M, L→ ∞ are considered. To conduct such an analysis,
three assumptions are made as follows:

Assumption 2. As M, L→ ∞ , M/L = cNrd → c for a certain c > 0.

Assumption 3. The number of Qrd is fixed and smaller than M.

Assumption 4. β1 ≥ · · · ≥ βQrd >
√

c and α1 ≥ · · · ≥ αQed >
(
1 +
√

c
)2.

For Assumption 2, both M and L are assumed to be reasonably large. When c > 1/2,
the number of training samples is less than the system DoFs, i.e., L ≤ 2M, the case
considered in this paper. Assumption 3 is often taken in the airborne phased-array radar
system and Qrd < M [2,4]. The assumption β1 ≥ · · · ≥ βQrd >

√
c in Assumption 4 is

easily satisfied in practice because the clutter power is far higher than the noise power [2,4].
For α1 ≥ · · · ≥ αQrd >

(
1 +
√

c
)2, the number L of the training samples is not less than the

local clutter DoFs, L ≥ Qrd. Otherwise α1 = · · · = αQrd = 0 <
(
1 +
√

c
)2, and βi cannot

be uniquely determined from αi [40–43], leading to the impossibility of recovering the
matrix Rrd.
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The three assumptions follow [49,50], which are fundamental to deriving the asymp-
totic properties of (26), as discussed in [27,51]. Then it can be shown that∣∣∣eH

i djd
H
j ei − srdiδij

∣∣∣ a.s.→ 0 i, j = 1, . . . , Qrd∣∣∣aH
rd
(

f t
0, f s

0
)
did

H
i ard

(
f t
0, f s

0
)
− srdikrdi

∣∣∣ a.s.→ 0∣∣∣aH
rd
(

f t
0, f s

0
)
did

H
i eieH

i ard
(

f t
0, f s

0
)
− srdikrdi

∣∣∣ a.s.→ 0∣∣∣aH
rd
(

f t
0, f s

0
)
did

H
i eieH

i did
H
i ard

(
f t
0, f s

0
)
− s2

rdikrdi

∣∣∣ a.s.→ 0

(27)

where δij is the Kronecker delta function, srdi =
(
1− cNrd/β2

i
)
/(1 + cNrd/βi), and

krdi = aH
rd
(

f t
0, f s

0
)
eieH

i ard
(

f t
0, f s

0
)
. In terms of (27), Prd

(
wopt

rd (g)
)

has its asymptotic de-

terministic equivalent P̃rd

(
wopt

rd (g)
)

as

P̃rd

(
wopt

rd (g)
)
=

σ

(
aH

rd( f t
0, f s

0)ard( f t
0, f s

0)+2
Qrd
∑

i=1
gisrdikrdi+

Qrd
∑

i=1
krdi βi+2

Qrd
∑

i=1
gi βisrdikrdi+

Qrd
∑

i=1
g2

i srdikrdi+
Qrd
∑

i=1
g2

i βis2
rdikrdi

)
[

aH
rd( f t

0, f s
0)ard( f t

0, f s
0)+

Qrd
∑

i=1
gisrdikrdi

]2 , (28)

and ∣∣∣Prd

(
wopt

rd (g)
)
− P̃rd

(
wopt

rd (g)
)∣∣∣ a.s.→ 0. (29)
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Then the estimated optimal inverse RD CNCM of 1
rd
R  in the asymptotic case can be 

expressed as 

It is seen from (30) that the computation of the optimal values g̃∗i involves the unknown
quantities βi and krdi. Note that under Assumption 4, there exist one-to-one maps between
αi and βi, i = 1, . . . , Qrd. With the maps, the unknown quantities βi and krdi satisfy [39–42],∣∣∣αi − 1− βi −
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Then the consistent estimate of the two unknown quantities βi and krdi can be given as
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With (32), we have the optimal estimate ĝ∗i as
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and
|g̃∗i − ĝ∗i |

a.s.→ 0. (34)

Then the estimated optimal inverse RD CNCM of R−1
rd in the asymptotic case can be

expressed as

R̂−1
rd (ĝ∗) =

1
σ

(
Qrd

∑
i=1

ĝ∗i did
H
i + IM

)
, (35)

and the corresponding RD-STAP weight vector is given as

ŵopt
rd (ĝ∗) =

R−1
rd (ĝ∗)ard

(
f t
0, f s

0
)

aH
rd
(

f t
0, f s

0
)
R−1

rd (ĝ∗)ard
(

f t
0, f s

0
) . (36)

3.4. Determining the Noise Power σ

To obtain the optimal estimate of R̂−1
rd from (33) and (35), we need to know the noise

power σ in advance. If the noise power is not determined, we would have no access to the
optimal RD-STAP weight vector. In this subsection, we provide an estimation method for
the noise power σ.

In terms of [39], under finite training samples, the eigenvalues distribution of the
covariance matrix will be expanded, i.e., the famous M-P law. However, among all the
sample eigenvalues, there must be a sample eigenvalue that can approach the actual one.
For RD CNCM, we assume that the noise-related eigenvalues are all the same. Similarly,
under finite training samples, there must exist a noise-related sample eigenvalue, which
can minimize the output clutter-plus-noise power in (18). Therefore, we can select the
optimal noise-related sample eigenvalue as the noise power σ by minimizing the output
clutter-plus-noise power in (18).

With the estimated R̂−1
rd (ĝ∗), the output clutter-plus-noise power in (18) can be

re-expressed as

Prd

(
ŵopt

rd (ĝ∗)
)
=

aH
rd
(

f t
0, f s

0
)
R−1

rd (ĝ∗)RrdR−1
rd (ĝ∗)ard

(
f t
0, f s

0
)[

aH
rd
(

f t
0, f s

0
)
R−1

rd (ĝ∗)ard
(

f t
0, f s

0
)]2 , (37)

To obtain the optimal noise power σ among all the noise-related sample eigenvalues,
we need to solve the following optimization problem

σ̂ = min
σ

Prd

(
ŵopt

rd (ĝ∗(σ))
)

. (38)

By solving this problem, we have derived the following result.

Proposition 1. If cNrd > 1, the output clutter-plus-noise power Prd in (38) decreases as σ decreases.
If cNrd < 1, the output clutter-plus-noise power Prd in (38) decreases as σ increases.

Proof. See Appendix A. �

According to Proposition 1, we can determine the minimum noise-related sample
eigenvalue as the estimated noise power σ̂ when cNrd > 1, and we can determine the
maximum noise-related sample eigenvalue as the estimated noise power σ̂ when cNrd < 1.

4. Numerical Results

In this section, we conduct several numerical experiments to demonstrate the reason-
ability and accuracy of Assumption 1 and Proposition 1 and evaluate the performance of
the proposed RMT-RD-STAP algorithm. The parameters used in the experiment scenarios
are listed in Table 1. In terms of these parameters, the clutter data used in experiments are
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generated via the Ward model by Lincoln Laboratory at MIT [2]. For comparison, the classi-
cal EFA with three Doppler channels is taken as an example of the RD-STAP algorithm [16]
with M = 3N. In the experiments, the noise power is σ2

n = 1, and the platform velocity V
is set to be different values to reveal the performance of the proposed algorithms under
different local clutter DoFs. STAP is taken in the main lobe of antenna arrays.

Table 1. Parameters used in the experiment scenarios.

Parameter Value Unit

Height 6000 m
Wavelength 0.3 m

Array number 8 /
Pulse number 8 /

PRF 2000 Hz
CNR 30 dB

4.1. Numerical Validation on Assumption 1 and Proposition 1

Firstly, we make a comparison of the output clutter-plus-noise powers generated by
different STAP weight vectors (7), (17), and (36) for two platform velocities, V = 150 m/s and
V = 300 m/s, corresponding to two local clutter DoFs, QRd = 10 and QRd = 12, respectively.
Figure 2 shows the output clutter-plus-noise power versus the number of training samples
with f t

0 = 0.3. It is obvious that for large L, both RD-STAP and RMT-RD-STAP have close
output power. However, when the number L of training samples becomes small, the output
clutter-plus-noise power by the RD-STAP rapidly increases, whereas the power by the
RMT-RD-STAP is almost kept intact. These results illustrate that the assumption of complex
white Gaussian noise in reduced dimension is reasonable from the viewpoint of reducing
the output clutter-plus-noise power. Comparing Figure 2a with Figure 2b, we find that the
local clutter DoFs have negative effects on the output clutter-plus-noise powers. The larger
the local clutter DoFs are, the larger the optimal output powers are. But the gap between
the output powers produced by RMT-RD-STAP and the optimal STAP changes slightly for
these two local clutter DoFs.

Figure 2. The output clutter-plus-noise power against the number L of the training samples.
(a) V = 150 m/s and (b) V = 300 m/s.

Next, we make a comparison of the output clutter-plus-noise powers under different
platform velocities for RMT-RD-STAP, V = 150 m/s and V = 300 m/s, respectively. Figure 3
shows the output clutter-plus-noise power versus the noise eigenvalues with f t

0 = 0.3,
where L = 20 and L = 30 which correspond to two situations, cNrd = 3N/20 > 1 and
cNrd = 3N/30 < 1. The noise-related eigenvalues are sorted in ascending order in the
figures. It is seen that when cNrd > 1, the output clutter-plus-noise power decreases as the
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noise power σ decreases, and when cNrd < 1, the output clutter-plus-noise power decreases
as the noise power σ increases. These results verify the correctness of Proposition 1. By
comparing the four figures, it is obvious that the above conclusion can still be maintained
when the local clutter DoFs vary.

Figure 3. The output clutter-plus-noise powers versus the noise eigenvalues. (a) V = 150 m/s, L = 20;
(b) V = 150 m/s, L = 30; (c) V = 300 m/s, L = 20; (d) V = 300 m/s, L = 30.

4.2. Performance Comparisons

In this subsection, output SINR loss, the ratio of the output SINR to the SNR achieved
by a matched filter in a clutter-free environment [2], is taken as a performance metric to
measure different STAP algorithms. For RD-STAP, the SINR loss is given as

SINRRD−STAP
Loss =

σ2
n

NK

∣∣∣wopt
Lrd

Hard
(

f t
0, f s

0
)∣∣∣2

wopt
Lrd

HRwopt
Lrd

, (39)

Similar loss functions are given by optimal STAP and RMT-RD-STAP. In the following
experiments, the output SINR losses are presented by averaging 1000 independent runs.

Firstly, we present the variations of the output SINR losses as the normalized Doppler
frequencies for different numbers of training samples. The results are shown in Figure 4
with L = M and L = 2M. In such cases, we choose the maximum noise-related eigenvalue
of RD SCM as the noise power. The airborne platform is assumed to move at the velocity
V = 150 m/s. It is seen that the RMT-RD-STAP algorithm is superior to the RD-STAP
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algorithm for small training samples. In Figure 4a, L = M, it is seen that RMT-RD-STAP
is much superior to RD-STAP, and The SINR loss by RMT-RD-STAP decreases about 8 dB
in comparison with RD-STAP. In Figure 4b, L = 2M, which means that the number of
the training samples is sufficient, and the SINR losses of both two RD-STAP algorithms
decrease in comparison with that in Figure 4a. Although RMT-RD-STAP and RD-STAP
have almost similar performance, RMT-RD-STAP is still slightly superior to RD-STAP.

Figure 4. Output SINR losses versus normalized Doppler frequencies with V = 150 m/s.
(a) L = M training samples and (b) L = 2M training samples.

Figure 5 shows the output SINR losses versus the number of training samples
L with f t

0 = 0.3. It is seen that for large L, RMT-RD-STAP and RD-STAP achieve per-
formance close to each other. However, as the number of training samples decreases,
RMT-RD-STAP has distinct performance advantages over RD-STAP. Along with Figure 4,
Figure 5 further demonstrates the advantages of the proposed RMT-RD-STAP algorithm.

Figure 5. Output SINR losses versus the number L of the training samples.

Next, we present the variations of the output SINR losses as the function of normalized
Doppler frequencies for different numbers of training samples. The results are shown in
Figure 6 with L = M and L = 2M, where the maximum noise-related sample eigenvalue is
selected as the noise power. In the experiments, the platform is assumed to move at the
velocity V = 300 m/s. Comparing Figure 6a,b, it is seen that RMT-RD-STAP is superior
to RD-STAP for small-size training samples. From ref. [48], we know that the local clutter
DoFs increase as the velocity increases. In comparison with Figure 4, we find that the
performance of all the algorithms decreases. However, RMT-RD-STAP is still superior to
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RD-STAP for small-size training samples. The SINR losses of RMT-RD-STAP in L = M and
L = 2M decrease by about 8 dB and 1 dB in comparison with RD-STAP, respectively.

Figure 6. Output SINR losses versus normalized Doppler frequencies with V = 300 m/s.
(a) L = M training samples and (b) L = 2M training samples.

In the implementation of the proposed RMT-RD-STAP algorithm, the local clutter
DoFs need to be calculated according to radar parameters and platform parameters [48]. In
a real environment, these parameters often deviate from the designed ones and then the
calculated local clutter DoFs are different from the real local clutter DoFs. To demonstrate
the robustness of the proposed algorithm, we use Figure 7 to show the output SINR losses
versus the clutter of DoF errors with f t

0 = 0.3. In the experiments, the platform velocities
are assumed to be V = 150 m/s and V = 300 m/s, and the calculated local clutter of DoFs
are 10 and 12, respectively. The clutter DoF errors vary from −3 to 3. The numbers of
training samples are set to be L = M and L = 2M, respectively. It is well-known that the
conventional RD-STAP is independent of the local clutter DoFs estimation, whereas the
proposed RMT-RD-STAP is related to the local clutter of DoFs estimation. As observed from
Figure 7, under the predesigned clutter DoF errors scope, the performance of RD-STAP
is stable for all four cases. Surprisingly, we also find that the proposed RMT-RD-STAP is
not sensitive to the local clutter DoFs errors and it always provides stable output SINR
losses. Furthermore, the proposed RMT-RD-STAP has superior performance to RD-STAP.
Specifically, the SINR losses of RMT-RD-STAP in L = M and L = 2M, respectively, decrease
by about 8 dB and 1 dB in comparison with RD-STAP.

Under real clutter circumstance, the internal clutter motion (ICM) unavoidably exists
due to wind and other factors [52], which is reflected by that the increase in clutter band-
width in temporal domain. ICM will result in the RD-STAP performance deterioration. To
illustrate the robustness of the proposed RMT-RD-STAP, we consider 2% ICM, which is
a general situation. Figure 8 presents the output SINR losses versus normalized Doppler
frequencies with 2% ICM. In the experiments, the platform velocities are assumed to be
V = 150 m/s and V = 150 m/s, and the numbers of training samples are set to be L = M and
L = 2M, respectively. We find that, under small training samples size L = M, the proposed
RMT-RD-STAP still has great performance advantage in comparison with RD-STAP. On
the other hand, for large training samples size L = 2M, we find that RMT-RD-STAP and
RD-STAP have almost the same performance, where RD-STAP achieves almost the optimal
performance in this case according to the RMB rule.
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Figure 7. Output SINR losses versus clutter DoF errors. (a) V = 150 m/s, L = M; (b) V = 150 m/s,
L = 2M; (c) V = 300 m/s, L = M and (d) V = 300 m/s, L = 2M.

To demonstrate the effectiveness of the proposed RMT-RD-STAP, we finally apply it to
the available real clutter data, Mountain Top data, i.e., t38pre01v1CPI6 [53]. In this clutter
data, the number K of transmitted pulses and the number N of array elements are 16 and 14,
respectively. The PRF is 625 Hz and the distance resolution is 150 m. In the radar work time,
there exist 403 range cells. We artificially add a target located in the 150-th range cell with
a normalized Doppler frequency of 0.25 and the normalized spatial frequency 0.43 into
the clutter data. In this case, the RD system DoFs is 42, and the local clutter DoFs is 16 in
terms of [48]. Figure 9 presents the STAP output power verse the range cells with L = 45
and L = 95. In these two cases, four range cells adjacent to the CUT are regarded as the
guard cells, and 45 and 95 range cells symmetrically located around the CUT are selected
as training samples, respectively. It is seen that when L = 95, which satisfies the RMB rule,
the proposed RMT-RD-STAP and RD-STAP have similar performance. However, when
L = 45, which cannot satisfy the RMB rule, the RD-STAP will show a severe false alarm
in the 144-th range cell, whereas the proposed RMT-RD-STAP has a distinct performance
advantage and can accurately detect the target.
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Figure 8. Output SINR losses versus normalized Doppler frequencies with 2% ICM. (a) V = 150 m/s,
L = M; (b) V = 150 m/s, L = 2M; (c) V = 300 m/s, L = M and (d) V = 300 m/s, L = 2M.

Figure 9. Output power versus range cell. (a) L = 45 training samples and (b) L = 95 training samples.

5. Conclusions

In this paper, we have proposed the RMT-based RD-STAP algorithm to enhance per-
formance in the case of finite training samples. In terms of the spiked covariance model,
the proposed algorithm estimates the inverse RD CNCM by optimally manipulating its
sample eigenvalues while maintaining its sample eigenvectors. By minimizing the output
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clutter-plus-noise power of RD-STAP, the clutter-related eigenvalues are estimated accord-
ing to the clutter-related sample eigenvalues via RMT, and the noise-related eigenvalue is
optimally selected from the noise-related sample eigenvalues. Benefitted from RMT, the
proposed RMT-RD-STAP greatly outperforms the conventional RD-STAP when the RMB
rule is not satisfied and has superior performance when the number of training samples
satisfies the RMB rule.
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Appendix A

To solve the problem (37), we need to analyze the relationship between Prd

(
ŵopt

rd (ĝ∗)
)

and σ. We consider the partial derivative

∂Prd
∂σ

=
∂Prd
∂ĝ∗i

∂ĝ∗i
∂β̂i

∂β̂i
∂αi

∂αi
∂σ

, (A1)

In the following, we will analyze the right four terms, respectively.
Firstly, σαi is the sample eigenvalue of RD SCM, and αi will increase as σ decreases,

∂αi
∂σ

< 0. (A2)

Secondly, in terms of the relationship β̂i =

[
αi − 1− cNrd +

√
(αi − 1− cNrd)

2 − 4cNrd

]
/2, it is obvious that β̂i will increase as αi increases, then

∂β̂i
∂αi

> 0. (A3)

Thirdly, from (32), we can make a replacement

ε =

Qrd
∑

q=1

cNrd k̂rdq

β̂q

aH
rd
(

f t
0, f s

0
)
ard
(

f t
0, f s

0
)
−

Qrd
∑

q=1
k̂rdq +

Qrd
∑

q=1

cNrd k̂rdq

β̂2
q

, (A4)

Then

∂ĝ∗i
∂β̂i

=
−
(

β̂2
i + 2cNrd β̂i + cNrd

)(
β̂2

i + β̂i
)2

(
ε− β̂i

)
+

β̂i + cNrd

β̂2
i + β̂i

(
∂ε

∂β̂i
− 1
)

, (A5)

Practically, the clutter power in airborne radar system is generally greatly large, and
the target is commonly not independent with clutter. Therefore, β̂q is generally large, and
k̂rdq ≈ 0. Meanwhile, it is obvious that

aH
rd
(

f t
0, f s

0
)
ard
(

f t
0, f s

0
)
�

Qrd

∑
q=1

cNrd k̂rdq

β̂2
q
−

Qrd

∑
q=1

k̂rdq, (A6)
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Then
ε ≈ 0, (A7)

Let us make a replacement for ε
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Then, we can obtain the partial derivative of (A10) as
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Substituting (A7) and (A11) into (A5), we have
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According to (A12), notice that the relationship between ĝ∗i and β̂i depends upon cNrd.
If cNrd > 1, i.e., L < M, ∂ĝ∗i /∂β̂i > 0, otherwise ∂ĝ∗i /∂β̂i < 0.
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ĝ∗i +

1
srdi

)2

[
aH

rd( f t
0, f s

0)ard( f t
0, f s

0)+
Qrd
∑

i=1
srdi k̂rdi

(
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where



Remote Sens. 2022, 14, 3959 18 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

   

1

H
0 0 0 0 2

ˆ
ˆ

ˆ
, , ˆ

Nrd rdi

i

t s t s Nrd rdi
rd rd

i

c k U

c kf f f f









a a
, (A10)

Then, we can obtain the partial derivative of (A10) as 

 2
2 2 2

1 1

2 4 22

2

ˆ ˆˆ ˆˆ ˆ
ˆ

0ˆ ˆ ˆˆ ˆ

rdi rdi
i Nrd rdi Nrd rdi i

Nrd Nrd rdi Nrd

i i ii
rdi

NrdNrd

k kU c k U c k
c c k c

k cc

 

  

    


    
  

  
 

, (A11)

Substituting (A7) and (A11) into (A5), we have 

   
* 2

2 22

ˆ ˆ ˆˆ 2 1
ˆ ˆ ˆˆ ˆ ˆ1 1
i i Nrd i Nrd i Nrd Nrd

i i ii i i

g c c c c  
    

    
  

  
, (A12)

According to (A12), notice that the relationship between *ˆ ig  and ˆ
i  depends upon 

Nrdc . If 1Nrdc  , i.e., L M , * ˆˆ 0i ig    , otherwise * ˆˆ 0i ig    . 
Finally, we consider that *ˆrd iP g  . rdP  can be approximated as 

   

   

   

H * H * H
0 0 0 0

1 1
2

H * H
0 0 0 0

1

2
H 2 *

0 0 0 0
1

ˆ ˆ, ,

ˆ, ,

1ˆ ˆ ˆ, ,

rd rd

rd

rd

Q Q
t s t s

rd M q q q rd M i i i rd
q i

rd
Q

t s t s
rd M i i i rd

i

Q
t s t s

rd rd rdi i rdi rdi i i
i rdi

f f g g f f
P

f f g f f

f f f f k s k g
s



 


 





   
    

  
  

  
  

 
   

 

 





I d d I d d

I d d

a R a

a a

a a

   

1
2

H *
0 0 0 0

1

2
2 *

1

2

*
2

1ˆ ˆ, ,

1ˆ ˆ

1ˆ ˆ

rd

rd

Q

i

Q
t s t s

rd rd rdi rdi i
i rdi

rdi rdi i i
rdi

rdi rdi i
rdi

f f f f s k g
s

P s k g
s

P s k g
s








  
   

  

 
  

 
  

   
  



a a

, (A13)

where 

   

   

2

H 2 *
1 0 0 0 0

1 1

H *
2 0 0 0 0

1

1ˆ ˆ ˆ, ,

1ˆ ˆ, ,

rd rd

rd

Q Q
t s t s

rd rd rdi i rdq rdq q q
i q rdq

q i

Q
t s t s

rd rd rdq rdq q
q rdq
q i

P f f f f k s k g
s

P f f f f s k g
s

 
 






 
     

 

 
    

 

 



a a

a a

, (A14)

Then, we can obtain the partial derivative of (A13) as 
2

2 * * 2 *
2 1

* 3

*
2

1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ2 2

ˆ 1ˆ ˆ

rdi rdi i i rdi rdi i rdi rdi rdi rdi i i
rdi rdi rdi

i

rdi rdi i
rdi

s k g P s k g s k P s k g
s s sP

g
P s k g

s

 



       
            
         

   
   

  

, (A15)

Then, we can obtain the partial derivative of (A13) as
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As the clutter power is commonly high, we have srdi =
(
1− cNrd/β2

i
)
/(1 + cNrd/βi) ≈

1. Substituting (32) into (A15), we have

∂P
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2]
[P2+k̂rdi(ĝ∗i +1)]
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(A16)

The denominator of (A16) is larger than 0 evidently, then the sign of (A16) completely
depends on the numerator of (A16). Note that

2k̂rdi[βi(ĝ∗i + 1)P2 − P1] ≈ −aH
rd
(

f t
0, f s

0
)
ard
(

f t
0, f s

0
)
cNrd −

Qrd

∑
i=1

k̂rdiβi. (A17)

Therefore, it is obvious that ∂Prd/∂ĝ∗i < 0.
In summary, if cNrd > 1, ∂Prd/∂σ > 0, the output clutter-plus-noise power decreases

as σ decreases; if cNrd < 1, ∂Prd/∂σ < 0, the output clutter-plus-noise power decreases
as σ increases.
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