A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Samples and Data
2.2. Spectral Transformation Approach
- (1)
- Step 1 Intensity Unit Transformation
- (2)
- Step 2 Wavelength Recalibration
- (3)
- Step 3 Interpolation
- (4)
- Step 4 Energy Density Correction
2.3. Partial Least Squares (PLS) Regression Model
3. Reliability Validation of Spectral Transformation Approach
3.1. Effect of Spectral Transformation Approach
3.2. Effect of PLS Model Prediction
4. Analysis and Discussion of MarSCoDe LIBS Data
4.1. Application of Our Approach to MarSCoDe LIBS Data
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C.; et al. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- Geng, Y.; Zhou, J.; Li, S.; Fu, Z.; Meng, L.; Liu, J.; Wang, H. A brief introduction of the first Mars exploration mission in China. J. Deep Space Explor. 2018, 5, 399. [Google Scholar] [CrossRef]
- Jia, Y.Z.; Fan, Y.; Zou, Y.L. Scientific objectives and payloads of Chinese first Mars exploration. Chin. J. Space Sci. 2018, 38, 650. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Geng, Y.; Cao, J.; Zhang, T.; Fang, G.; Yang, J.; Shu, R.; Zou, Y.; Lin, Y.; et al. Scientific objectives and payload configuration of China’s first Mars exploration mission. J. Deep Space Explor. 2018, 5, 406. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Z.; Huang, J.; Head, J.W.; Wang, J.; Shi, Y.; Wu, B.; Wang, L. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophys. Res. Lett. 2021, 48, e2021GL094903. [Google Scholar] [CrossRef]
- Vanov, M.A.; Hiesinger, H.; Erkeling, G.; Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean. Icarus 2014, 228, 121–140. [Google Scholar] [CrossRef]
- Mills, M.M.; McEwen, A.S.; Okubo, C.H. A Preliminary Regional Geomorphologic Map in Utopia Planitia of the Tianwen-1 Zhurong Landing Region. Geophys. Res. Lett. 2021, 48, e2021GL094629. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, C.; Wu, Y.; Zhang, F.; Du, J.; Liu, Z.; Xing, Y.; Xu, R.; He, Z.; et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 2021, 370, 114657. [Google Scholar] [CrossRef]
- Ye, P.; Sun, Z.; Rao, W.; Meng, L. Mission overview and key technologies of the first Mars probe of China. Sci. China Technol. Sci. 2017, 60, 649–657. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F.; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Liu, C.; Ling, Z.; Zhang, J.; Wu, Z.; Bai, H.; Liu, Y. A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies. Remote Sens. 2021, 13, 4773. [Google Scholar] [CrossRef]
- Wiens, R.C.; Wan, X.; Lasue, J.; Maurice, S. Chapter 20—Laser-induced breakdown spectroscopy in planetary science. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 441–471. [Google Scholar]
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Nelson, T.; Gasnault, O.; Reess, J.M.; Deleuze, M.; Rull, F.; Manrique, J.-A.; Abbaki, S.; Anderson, R.B.; André, Y.; Angel, S.M.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.; Sharma, S.K.; Storms, S.; et al. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2020, 217, 4. [Google Scholar] [CrossRef]
- Xu, W.; Sun, C.; Tan, Y.; Gao, L.; Zhang, Y.; Yue, Z.; Shabbir, S.; Wu, M.; Zou, L.; Chen, F.; et al. Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects. J. Anal. At. Spectrom. 2020, 35, 1641–1653. [Google Scholar] [CrossRef]
- Anderson, R.B.; Clegg, S.M.; Frydenvang, J.; Wiens, R.C.; McLennan, S.; Morris, R.V.; Ehlmann, B.; Dyar, M.D. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 49–57. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; et al. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. Acta Part B At. Spectrosc. 2013, 82, 1–27. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Anderson, R.; Forni, O.; Frydenvang, J.; Lasue, J.; Cousin, A.; Payré, V.; Boucher, T.; Dyar, M.D.; et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 64–85. [Google Scholar] [CrossRef]
- Clark Iii, B.C.; Arvidson, R.E.; Gellert, R.; Morris, R.V.; Ming, D.W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W.H.; Yen, A.; et al. Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. J. Geophys. Res. Planets 2007, 112, E06S01. [Google Scholar] [CrossRef]
- Rapin, W.; Meslin, P.Y.; Maurice, S.; Vaniman, D.; Nachon, M.; Mangold, N.; Schröder, S.; Gasnault, O.; Forni, O.; Wiens, R.C.; et al. Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth Planet. Sci. Lett. 2016, 452, 197–205. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R.C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.Y.; Lasue, J.; et al. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. J. Geophys. Res. Planets 2017, 122, 650–679. [Google Scholar] [CrossRef]
- Mangold, N.; Dehouck, E.; Fedo, C.; Forni, O.; Achilles, C.; Bristow, T.; Downs, R.T.; Frydenvang, J.; Gasnault, O.; L’Haridon, J.; et al. Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 2019, 321, 619–631. [Google Scholar] [CrossRef]
- Bedford, C.C.; Bridges, J.C.; Schwenzer, S.P.; Wiens, R.C.; Rampe, E.B.; Frydenvang, J.; Gasda, P.J. Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. Geochim. Cosmochim. Acta 2019, 246, 234–266. [Google Scholar] [CrossRef]
- Ollila, A.M.; Newsom, H.E.; Clark Iii, B.; Wiens, R.C.; Cousin, A.; Blank, J.G.; Mangold, N.; Sautter, V.; Maurice, S.; Clegg, S.M.; et al. Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. J. Geophys. Res. Planets 2014, 119, 255–285. [Google Scholar] [CrossRef]
- Mangold, N.; Forni, O.; Dromart, G.; Stack, K.; Wiens, R.C.; Gasnault, O.; Sumner, D.Y.; Nachon, M.; Meslin, P.Y.; Anderson, R.B.; et al. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. J. Geophys. Res. Planets 2015, 120, 452–482. [Google Scholar] [CrossRef]
- Frydenvang, J.; Mangold, N.; Wiens, R.C.; Fraeman, A.A.; Edgar, L.A.; Fedo, C.M.; L’Haridon, J.; Bedford, C.C.; Gupta, S.; Grotzinger, J.P.; et al. The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument. J. Geophys. Res. Planets 2020, 125, e2019JE006320. [Google Scholar] [CrossRef]
- McLennan, S.M.; Anderson, R.B.; Bell, J.F.; Bridges, J.C.; Calef, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1244734. [Google Scholar] [CrossRef]
- Rosipal, R.; Krämer, N. Overview and Recent Advances in Partial Least Squares. In Subspace, Latent Structure and Feature Selection, Proceedings of the International Statistical and Optimization Perspectives Workshop SLSFS 2005, Bohinj, Slovenia, 23–25 February 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 34–51. [Google Scholar]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Zhang, R.; Rao, W.; Cui, X.; Geng, Y.; Jia, Y.; Huang, H.; Ren, X.; Yan, W.; et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat. Astron. 2022, 6, 65–71. [Google Scholar] [CrossRef]
- Wan, X.; Yuan, R.; Wang, H.; Cheng, Y.; Jia, J.; Shu, R.; Xu, W.; Li, C.; Xin, Y.; Ma, H.; et al. Elastic Particle Swarm Optimization for MarSCoDe Spectral Calibration on Tianwen-1 Mars Rover. Anal. Chem. 2021, 93, 7970–7977. [Google Scholar] [CrossRef]
- Bin, J.; Li, X.; Fan, W.; Zhou, J.-H.; Wang, C.-W. Calibration transfer of near-infrared spectroscopy by canonical correlation analysis coupled with wavelet transform. Analyst 2017, 142, 2229–2238. [Google Scholar] [CrossRef]
- Workman, J.J. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl. Spectrosc. 2017, 72, 340–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-y.; Wang, Z.-b. Cross components calibration transfer of NIR spectroscopy model through PCA and weighted ELM-based TrAdaBoost algorithm. Chemom. Intell. Lab. Syst. 2019, 192, 103824. [Google Scholar] [CrossRef]
- Wu, Z.; Ling, Z.; Zhang, J.; Fu, X.; Liu, C.; Xin, Y.; Li, B.; Qiao, L. A Mars Environment Chamber Coupled with Multiple In Situ Spectral Sensors for Mars Exploration. Sensors 2021, 21, 2519. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, Z.; Fu, X.; Liu, P.; Xin, Y.; Xiao, A.; Bai, H.; Tian, S.; Wan, S.; Liu, Y.; et al. A Martian Analogues Library (MAL) Applicable for Tianwen-1 MarSCoDe-LIBS Data Interpretation. Remote Sens. 2022, 14, 2937. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.8). 2021. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 October 2021).
- Wiens, R.C.; Blazon-Brown, A.J.; Melikechi, N.; Frydenvang, J.; Dehouck, E.; Clegg, S.M.; Delapp, D.; Anderson, R.B.; Cousin, A.; Maurice, S. Improving ChemCam LIBS long-distance elemental compositions using empirical abundance trends. Spectrochim. Acta Part B At. Spectrosc. 2021, 182, 106247. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Ling, Z. Particle Swarm Optimization (PSO) for improving the accuracy of ChemCam LIBS sub-model quantitative method. Earth Sci. Inform. 2020, 13, 1485–1497. [Google Scholar] [CrossRef]
- Schröder, S.; Rammelkamp, K.; Vogt, D.S.; Gasnault, O.; Hübers, H.W. Contribution of a martian atmosphere to laser-induced breakdown spectroscopy (LIBS) data and testing its emission characteristics for normalization applications. Icarus 2019, 325, 1–15. [Google Scholar] [CrossRef]
- Boynton, W.V.; Taylor, G.J.; Evans, L.G.; Reedy, R.C.; Starr, R.; Janes, D.M.; Kerry, K.E.; Drake, D.M.; Kim, K.J.; Williams, R.M.S.; et al. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. Planets 2007, 112, E12S99. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In situ evidence for continental crust on early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S. Planetary Crusts: Their Composition, Origin and Evolution; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
No. | Sample Name | Reference ID | Rock Type | Abundance of Major Elements (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MgO | CaO | Na2O | K2O | ||||
01 | Andesite | AGV2 | Igneous | 44.64 | 2.37 | 13.83 | 12.06 | 7.77 | 8.81 | 3.38 | 2.32 |
02 | Basalt | BHVO2 | Igneous | 60.62 | 0.52 | 16.17 | 4.41 | 1.72 | 5.20 | 3.86 | 1.89 |
03 | Basalt | BIR1 | Igneous | 46.85 | 1.62 | 17.06 | 9.76 | 8.05 | 9.60 | 3.00 | 0.46 |
04 | Andesite | GBW07104 | Igneous | 56.42 | 0.66 | 15.41 | 5.63 | 7.60 | 6.29 | 3.11 | 1.80 |
05 | Basalt | GBW07105 | Igneous | 62.26 | 0.68 | 15.57 | 5.93 | 3.65 | 6.28 | 3.17 | 1.41 |
06 | Limestone | GBW07108 | Sedimentary | 40.79 | 3.39 | 17.60 | 11.12 | 6.46 | 14.62 | 2.05 | 0.75 |
07 | Gypsum | GYPD | Sedimentary | 49.90 | 2.73 | 13.50 | 11.07 | 7.23 | 11.40 | 2.22 | 0.52 |
08 | Andesite | JA2 | Igneous | 47.70 | 0.97 | 15.40 | 10.19 | 9.70 | 13.40 | 1.81 | 0.03 |
09 | Andesite | JA3 | Igneous | 59.30 | 1.05 | 16.91 | 6.02 | 1.79 | 5.20 | 4.19 | 2.88 |
10 | Basalt (Olivine) | MO14 | Igneous | 8.70 | 0.08 | 2.03 | 0.97 | 1.73 | 28.20 | 0.07 | 0.54 |
11 | Sediments/shale (kerogen, carbonate) | SGR1 | Sedimentary | 15.60 | 0.33 | 5.03 | 2.27 | 5.19 | 35.67 | 0.08 | 0.78 |
Element | Ionization Degree | Wavelength (nm) |
---|---|---|
Fe | II | 275.013 |
Al | II | 280.200 |
Si | I | 288.242 |
Al | I | 394.512 |
Ca | II | 396.959 |
K | II | 422.686 |
Na | I | 589.158 |
K | I | 766.701 |
K | I | 770.108 |
O | I | 777.631 |
Element | Latent Variables | Train Set Samples | Train Set Spectra | Test Set Samples | Test Set Spectra |
---|---|---|---|---|---|
SiO2 | 5 | 303 | 1459 | 27 | 80 |
TiO2 | 3 | 295 | 1439 | 23 | 80 |
Al2O3 | 5 | 303 | 1459 | 27 | 80 |
FeOT | 4 | 301 | 1444 | 28 | 80 |
MgO | 11 | 303 | 1459 | 27 | 80 |
CaO | 5 | 298 | 1459 | 22 | 80 |
Na2O | 4 | 300 | 1444 | 27 | 80 |
K2O | 7 | 298 | 1439 | 26 | 80 |
Instrument | Step Size (nm) |
---|---|
ChemCam | ~0.0488@ 240–335 nm |
~0.0425@ 385–465 nm | |
~0.2112@ 510–800 nm | |
MarSCoDe | ~0.0667@ 240–340 nm |
~0.1324@ 340–540 nm | |
~0.2033@ 540–850 nm | |
SDU-LIBS | ~0.0494@ 230–339 nm |
~0.1040@ 330–549 nm | |
~0.2141@ 539–1000 nm |
Channel | Peak Wavelength (nm) | SDU-LIBS Wavelength before Recalibration (nm) | SDU-LIBS Wavelength after Recalibration (nm) | ChemCam Calibration Wavelength (nm) |
---|---|---|---|---|
UV | 275.013 (Fe II) | 274.8712 | 275.0100 | 275.0100 |
280.200 (Al II) | 280.2208 | 280.3450 | 280.3450 | |
288.242 (Si I) | 288.0923 | 288.2490 | 288.2000 | |
VIS | 394.512 (Al I) | 394.3501 | 394.4910 | 394.4910 |
396.959 (Ca II) | 396.7482 | 396.9580 | 396.9580 | |
422.686 (K II) | 422.5475 | 422.8070 | 422.8070 | |
VNIR | 589.158 (Na I) | 588.7606 | 589.1616 | 589.1616 |
766.701 (K I) | 766.1542 | 766.6873 | 766.6567 | |
770.108 (K I) | 769.5841 | 770.1238 | 770.1676 | |
777.631 (O I) | 777.0451 | 777.5995 | 777.5863 |
No. | A | B | C | D |
---|---|---|---|---|
01 | 0.0159 | 0.0867 | 0.8641 | 1.7147 |
02 | 0.0137 | 0.0650 | 1.2629 | 1.8941 |
03 | 0.0071 | 0.0683 | 0.9173 | 1.9199 |
04 | 0.0148 | 0.0821 | 0.5750 | 1.5815 |
05 | 0.0160 | 0.0537 | 0.4082 | 1.1852 |
06 | 0.0121 | 0.0719 | 0.7585 | 1.3531 |
07 | 0.0110 | 0.0737 | 1.1101 | 1.3807 |
08 | 0.0054 | 0.0706 | 0.7633 | 1.3905 |
09 | 0.0189 | 0.0508 | 0.7103 | 1.2233 |
10 | 0.0082 | 0.0535 | 0.4071 | 1.0961 |
11 | 0.0095 | 0.0406 | 0.3919 | 1.1575 |
RMSE Average | 0.0121 | 0.0652 | 0.7426 | 1.4451 |
(a) | |||
No. | Spectra No. | A | B |
01 | 01 | 0.0077 | 0.0203 |
02 | 02 | 0.0139 | 0.0228 |
03 | 03 | 0.0048 | 0.0304 |
04 | 04 | 0.0164 | 0.0980 |
05 | 05 | 0.0359 | 0.1726 |
06 | 08 | 0.0087 | 0.0132 |
07 | 09 | 0.0047 | 0.0313 |
08 | 10 | 0.1341 | 0.2221 |
09 | 11 | 0.0032 | 0.0030 |
10 | 12 | 0.0498 | 0.0182 |
11 | 13 | 0.0052 | 0.0289 |
12 | 14 | 0.0241 | 0.1304 |
13 | 15 | 0.0765 | 0.1637 |
14 | 16 | 0.0345 | 0.1146 |
15 | 17 | 0.0472 | 0.0150 |
16 | 19 | 0.1575 | 0.1953 |
17 | 20 | 0.0130 | 0.0272 |
18 | 21 | 0.1095 | 0.2040 |
19 | 22 | 0.1453 | 0.1355 |
20 | 23 | 0.0544 | 0.2241 |
21 | 24 | 0.0860 | 0.1266 |
22 | 26 | 0.0022 | 0.0296 |
23 | 29 | 0.0927 | 0.1599 |
24 | 30 | 0.0726 | 0.6494 |
25 | 31 | 1.0205 | 1.9738 |
26 | 32 | 0.9340 | 3.7820 |
Average RMSE | 0.1213 | 0.3305 | |
(b) | |||
No. | Sample Name and Spectral No. | C | D |
01 | Andesite 01 | 0.0376 | 0.2439 |
02 | Andesite 02 | 0.0704 | 0.4348 |
03 | Apatite 01 | 0.0096 | 0.0180 |
04 | Basalt 01 | 0.0289 | 0.0242 |
05 | Basalt 03 | 0.0772 | 0.3990 |
06 | Dolomite 01 | 0.9089 | 1.4927 |
07 | Dolomite 02 | 0.9018 | 5.6519 |
08 | Gypsum 02 | 0.1235 | 0.7212 |
09 | Gypsum 03 | 0.1806 | 1.2417 |
10 | Gypsum 05 | 0.1888 | 0.7820 |
11 | Hypersthene 01 | 0.5644 | 5.2427 |
12 | Montmorillonite 01 | 0.1551 | 0.2618 |
13 | Montmorillonite 02 | 2.1844 | 2.1405 |
14 | Nontronite 01 | 3.9996 | 6.0067 |
15 | Nontronite 06 | 1.2730 | 2.3232 |
16 | Norite 02 | 0.0478 | 0.0277 |
17 | Norite 04 | 0.0914 | 2.9192 |
18 | Norite 05 | 0.3781 | 3.6824 |
19 | Olivine 01 | 0.0943 | 0.2231 |
Average RMSE | 0.5955 | 1.7809 |
SiO2 | TiO2 | Al2O3 | FeOT | MgO | CaO | Na2O | K2O | |
---|---|---|---|---|---|---|---|---|
Actual Values | 47.88 | 0.70 | 14.66 | 15.70 | 9.62 | 12.77 | 1.53 | 0.06 |
Norite02 | 47.25 | 0.63 | 17.75 | 5.37 | 7.51 | 11.31 | 2.84 | 1.33 |
Norite04 | 50.04 | 0.47 | 14.44 | 2.54 | 11.80 | 10.84 | 2.19 | 0.67 |
Norite05 | 41.33 | 0.40 | 24.28 | 2.53 | 12.57 | 11.31 | 3.71 | 2.44 |
RMSE | 4.00 | 0.22 | 5.83 | 12.29 | 2.44 | 1.63 | 1.52 | 1.60 |
Database | MarSCoDe | GRS | |
---|---|---|---|
Element | |||
SiO2 | 49.1 ± 4.3 | 42.9 | |
FeOT | 5.4 ± 1.4 | 17.8 | |
K2O | 1.6 ± 0.5 | 0.6 | |
Na2O * | 1.6 ± 0.6 | 0.6 | |
Na2O/K2O * | 1.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, G.; Wu, Z.; Ling, Z.; Liu, C.; Liu, W.; Chen, W.; Zhang, L. A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data. Remote Sens. 2022, 14, 3960. https://doi.org/10.3390/rs14163960
Jin G, Wu Z, Ling Z, Liu C, Liu W, Chen W, Zhang L. A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data. Remote Sensing. 2022; 14(16):3960. https://doi.org/10.3390/rs14163960
Chicago/Turabian StyleJin, Guobin, Zhongchen Wu, Zongcheng Ling, Changqing Liu, Wang Liu, Wenxi Chen, and Li Zhang. 2022. "A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data" Remote Sensing 14, no. 16: 3960. https://doi.org/10.3390/rs14163960
APA StyleJin, G., Wu, Z., Ling, Z., Liu, C., Liu, W., Chen, W., & Zhang, L. (2022). A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data. Remote Sensing, 14(16), 3960. https://doi.org/10.3390/rs14163960