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Abstract: The current study aimed to determine the spatial transferability of eXtreme Gradient
Boosting (XGBoost) models for estimating biophysical and biochemical variables (BVs), using Sentinel-
2 data. The specific objectives were to: (1) assess the effect of different proportions of training samples
(i.e., 25%, 50%, and 75%) available at the Target site (DT) on the spatial transferability of the XGBoost
models and (2) evaluate the effect of the Source site (DS) (i.e., trained) model accuracy on the Target
site (i.e., unseen) retrieval uncertainty. The results showed that the Bothaville (DS)→ Harrismith
(DT) Leaf Area Index (LAI) models required only fewer proportions, i.e., 25% or 50%, of the training
samples to make optimal retrievals in the DT (i.e., RMSE: 0.61 m2 m−2; R2: 59%), while Harrismith
(DS)→Bothaville (DT) LAI models required up to 75% of training samples in theDT to obtain optimal
LAI retrievals (i.e., RMSE = 0.63 m2 m−2; R2 = 67%). In contrast, the chlorophyll content models
for Bothaville (DS)→ Harrismith (DT) required significant proportions of samples (i.e., 75%) from
the DT to make optimal retrievals of Leaf Chlorophyll Content (LCab) (i.e., RMSE: 7.09 µg cm−2; R2:
58%) and Canopy Chlorophyll Content (CCC) (i.e., RMSE: 36.3 µg cm−2; R2: 61%), while Harrismith
(DS)→Bothaville (DT) models required only 25% of the samples to achieve RMSEs of 8.16 µg cm−2

(R2: 83%) and 40.25 µg cm−2 (R2: 77%), for LCab and CCC, respectively. The results also showed
that the source site model accuracy led to better transferability for LAI retrievals. In contrast, the
accuracy of LCab and CCC source site models did not necessarily improve their transferability.
Overall, the results elucidate the potential of transferable Machine Learning Regression Algorithms
and are significant for the rapid retrieval of important crop BVs in data-scarce areas, thus facilitating
spatially-explicit information for site-specific farm management.

Keywords: spatial transferability; machine learning; leaf area index; precision agriculture; chlorophyll
content; Sentinel-2; eXtreme Gradient Boosting Bothaville (DS)→ Harrismith (DT)

1. Introduction

Accurate and reliable estimation of foliar crop biophysical and biochemical variables
(BVs), such as Leaf Chlorophyll Content (LCab), Canopy Chlorophyll Content (CCC)
and Leaf Area Index (LAI), is critical for facilitating variable rate application (VRA) of
fertilizers and the spraying of disease and fungi preventative treatments [1–3], precision
irrigation [4–6], and for supporting other site-specific farm management effort and crop
monitoring [7,8]. Green leaf area index, known as half of the total photosynthetically-
active plant area (m2) per unit ground surface area (m2), and Chlorophyll-a and b (Cab)—a
critical parameter related to plant photosynthetic processes—are essential for indicating the
plants’ structural and physiological changes throughout the season [9,10]. However, the
direct methods for determining these crop BVs are destructive, spatially limited, and have
high financial implications [11], despite their high accuracy. Therefore, optical handheld
instruments, such as an LI-COR LAI-2200 Plant Canopy Analyzer, commonly used for LAI
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measurements, and chlorophyll meters such as Minolta SPAD-502 and MC-100 Chlorophyll
Concentration Meter, provide rapid and non-destructive assessments of effective Green
LAI and LCab. Combined with satellite imagery, these BVs can be estimated in detail over
large areas, at frequent intervals, suitable for precision agriculture applications and crop
monitoring needs.

Over the years, the capabilities of satellite sensor technology have provided unpar-
alleled opportunities for research and application development. Specifically, heritage
missions such as Landsat and SPOT provided consistent data for agricultural monitoring
at various scales, allowing the advancement of various approaches for the estimation of
crop BVs [12–14]. Unfortunately, earlier parametric approaches, such as spectral vegetation
indices [15,16], suffer from saturation and interferences from background signals [17,18].
More robust red-edge indices emerged with the advent of quasi-hyperspectral sensors
such as Sentinel-2 Multi-Spectral Instrument (MSI) and Worldview-2 and its successors,
which provide an increased number of multispectral and strategically positioned narrow
bands [8,19,20]. These bands were shown to improve relationships with and the accuracy
of crop BVs [17,21–24].

However, vegetation indices are not transferable and may correlate well with multiple
BVs [25]. Generally, previous studies have limitedly explored transferability techniques
for estimating BVs. Although physically-based approaches such as inversion of Radiative
Transfer Models are considered transferable, they require local parameterization to simulate
various canopies accurately [26,27]. Moreover, they are complex, yield inconsistent results,
and are computationally expensive [27,28]. In contrast, Machine Learning Regression
Algorithms (MLRAs) can learn non-linear relationships between multiple variables and
are robust to small and unbalanced sample sizes. Recent studies increasingly show the
potential of MLRAs in accurately and reliably predicting crop BVs [29–31]. To date, the
application of supervised MLRAs in remote sensing of crop BVs has been isolated and
limited to specific geographic areas. Moreover, calibration data for BV models mainly
depends on the crop types and phenology, geographical areas of origin, and prevailing
local environmental and meteorological conditions. Unfortunately, field surveys to keep
up with the precision agriculture and crop monitoring needs would be an expensive,
impractical and labor-intensive exercise. Therefore, the transferability of the models is
essential to reduce the need for extensive training sets, reduce computational costs of
calibrating MLRAs and improve prediction accuracy in data-scarce areas by utilizing the
knowledge learned from data-rich areas.

Transfer learning (or Domain adaptation) aims to adapt existing models in the Source
domain DS, trained to solve a specific source task TS, to a new but related target task TT
in a Target domain DT [32,33]. Each domain DS/TT = {X , P(X)} has a feature space X
and a marginal probability distribution P(X = x1, . . . , xn ∈ X ) over the feature space. On
the other hand, a task TS / TT has a label space Y and a conditional probability P(Y|X)
that is learned from the training data with pairs of xi ∈ X and Y i ∈ Y [33,34]. The type of
transfer learning is determined by whether the labelled training set is available for both the
DS and DT (i.e., Supervised), only a few labelled samples in the DT (i.e., Semi-supervised)
and no labelled samples in both DS and DT (i.e., Unsupervised) [35–37]. In particular, semi-
supervised transfer learning is more attractive for rapid estimation of crop BVs as it requires
only a few labelled samples in the feature space of the Target domain DT to effectively
model the distribution of the response variable [38–41]. Moreover, it does not require
strictly matching feature (X S 6= X T) and label spaces (YS 6= YT) between the Source DS
and Target DT domains, and the marginal and conditional probability distributions may
also differ between domains and tasks, i.e., P(XS) 6= P(XT) and P(YS|XS) 6= P(YT|XT),
respectively. Previous studies mostly explored the transferability of complex, black-box and
computationally expensive deep learning models, e.g., Convolutional Neural Networks
(CNN), in classification problems [36,38–40], while only a few studies [42] were found that
focused on the retrieval of BVs. Therefore, accurate and transferable models based on
intuitive and interpretable MLRAs are highly sought to allow operationalization of BVs
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retrieval across various spatial and temporal scales, hence facilitating precision agriculture
and crop monitoring applications in data-scarce areas such as semi-arid areas in Sub-
Saharan Africa.

Against this background, this study sought to determine the spatial transferability of
machine learning BV retrieval models based on the eXtreme Gradient Boosting (XGBoost)
algorithm and Sentinel-2 Analysis-Ready-Data (ARD), where good spatial transferability is
achieved when a model can reliably predict BVs in the Target site DT (i.e., unseen) with
minimal uncertainty compared to the fully trained model in thatDT . The specific objectives
were to: (1) assess the effect of different proportions of randomly selected training samples
(i.e., 25%, 50%, and 75%) available at the Target site on the spatial transferability of the
XGBoost models and (2) evaluate the effect of the Source site (i.e., trained) model accuracy
on the Target site (i.e., unseen) retrieval uncertainty. To the best of our knowledge, no
study has assessed the spatial transferability of the MLRA models under various transfer
scenarios representing different proportions of training samples available in the Target site
DT and the effect of source model accuracy on its transferability. The DT consisted of the
two experimental sites, i.e., Bothaville and Harrismith.

2. Materials and Methods
2.1. Characteristics of the Experimental Sites

Two experimental sites, i.e., Bothaville (27◦13′0′ ′S to 28◦8′0′ ′S; 26◦0′0′ ′E to 27◦05′0′ ′E),
and Harrismith (28◦0′0′ ′S to 29◦0′0′ ′S; 28◦0′0′ ′E to 29◦8′0′ ′E), located in the Free State
province, South Africa were used in this study (Figure 1). The experimental sites, each with
10,000 km2 area, are situated in the main agricultural production zone of the country. The
two experience wet and warm summers, with mean temperatures of approximately 18 ◦C
and 19.2 ◦C, and annual mean rainfall of approximately 584 mm and 115 mm, respectively.
The summer season represents the main cropping season (i.e., December to May/June),
where primarily commercial farming of main crops such as Maize (Zeal mays L.), Soybeans
(Glycine max), Dry beans (Phaseolus vulgaris), Sunflower (Helianthus annus L.) and Peanuts
(Arachis hypogaea L.) in Bothaville and Maize, Soybeans, Dry beans in Harrismith, occurs.
The soil in Bothaville is characterized by sandy-loamy to sandy soils on visibly flat slopes,
while Harrismith soil is dominantly clay-loamy with higher water-retention capacities on
undulating slopes.
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Figure 1. The location of Bothaville (i.e., Orange square) and Harrismith (i.e., Red square) in Free
State province (Dark grey), South Africa, as well as the broad land cover types and the locations of
the sampling plots. The insert maps for each site (in yellow and blue) are zoomed-in regions.
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2.2. Data
2.2.1. In-Situ Data

The multi-temporal in-situ LAI and LCab data were collected in the two respective
experimental sites in 2019 and 2021 at the peak of the season when crops were in their
physiological maturity. In Bothaville, the data collection occurred from the 8 to 14 of April
and 11 to 23 of April in 2019 and 2021, respectively. In Harrismith, it was collected from the
11 and 15 of March and 15 to 26 of March in 2019 and 2021, respectively. No field campaigns
were conducted in 2020 due to the national lockdown imposed to reduce the spread of
the COVID-19 pandemic, which coincided with the summer growing season. At each
site, LCab and LAI measurements were collected from plots of 40 m × 40 m, which were
selected along a randomly selected transect. The centroids of each plot were Geo-tagged
with a coordinate using a handheld Data Collector (i.e., Trimble® TDC600), which has a
positional accuracy of 1.5 m. LAI measurements were collected with a LiCor 2200c Plant
Canopy Analyzer (Li-Cor, Inc., Lincoln, NE, USA) in both field campaigns. To avoid the
influence of unequal sky conditions and the operator on the measurements, we used a
180◦ view cap. In contrast, LCab measurements of sun-exposed leaves were taken with
Minolta SPAD-502 chlorophyll meter (Minolta, Osaka Co., Ltd., Osaka, Japan) in 2019 and
MC-100 Chlorophyll Concentration Meter (Apogee Instruments, Inc., Logan, UT, USA) in
2021, respectively. MC-100 measures chlorophyll content in absolute units, i.e., µmol m−2,
realized through crop-specific and generic calibration coefficients applied to the measured
transmission ratio at 931 nm to 653 nm [43]. To be consistent with previous studies, we
converted the chlorophyll concentration values from µmol m−2 to µg cm−2. In contrast,
SPAD-502 provides unitless values (i.e., a relative value proportional to Cab based on the
ratio of transmitted and incident radiation at 940 nm and 650 nm). We used relationships
established previously for the same crop types [44–46] to convert the SPAD values to LCab
(µg cm−2; Equation (1)).

LCab = 10SPAD0.264−4 ×M, (1)

where SPAD is the value read from SPAD-502Plus and M means the chlorophyll molar
mass set at 907 g/mol [47].

For each plot, the canopy chlorophyll content (CCC) was calculated by multiplying
LCab by LAI (LCab × LAI) [48]. Since intercropping and mixed crop management practices
dominate African agriculture, our interest was to develop generic BV retrieval models (i.e.,
with a potential for wide application, especially in semi-arid African contexts). Therefore,
the multi-temporal in-situ data for all crops found at both sites, i.e., Maize (Zea mays L.),
Soybeans (Glycine max), Dry beans (Phaseolus vulgaris) in Harrismith, and Maize, Soybeans,
Dry beans, Sunflower (Helianthus annuus L.) and Peanuts (Arachis hypogaea L.) in Bothaville,
were combined and used to extract intersecting surface reflectance values from respective
image dates (see Section 2.2.2) within 40 m× 40 m pixel-blocks. Since they have contrasting
physiological pathways, leaf and canopy structures and architectures, these crop types
represent anatomical and physiological traits of many other crop types [49]. Therefore, we
hypothesize that the BV models calibrated using these crops will likely be transferable and
widely applicable.

2.2.2. Remotely Sensing Data

Sentinel-2 MSI Analysis-ready-data (ARD, i.e., Level-2A) close to the dates of the
fieldwork (see Section 2.2.1) were retrieved from Sentinel Hub (Sinergise Laboratory for
geographical information systems, Ltd., Ljubljana, Slovenia) using the Request-Builder
for Process API (https://apps.sentinel-hub.com/requests-builder/, accessed on 15 June
2021). The ARD refers to harmonized, standardized, interoperable, and radiometrically and
geometrically consistent data that eliminates the pre-processing burden to allow immediate
analysis (Dwyer et al., 2018). The retrieved ARD images were acquired on 15 April 2019
(cloud cover: 0.64%) and 14 April 2021 (cloud cover: 0.29%) for Bothaville (35JMK) and
18 March 2019 (cloud cover: 51.47%) and 22 March 2021 (cloud cover: 6.11%) for Harrismith

https://apps.sentinel-hub.com/requests-builder/
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(35JPJ). We used spectral bands centered at 490 nm (B2), 560 nm (B3), 665 nm (B4), and
842 nm (B8) acquired at 10 m resolution, and 705 nm (B5), 740 nm (B6), 783 nm (B7), 865 nm
(B8A), 1610 nm (B11), and 2190 nm (B12) at 20 m resolution. To match the resolutions
between all bands, we resampled the bands with 10 m resolution to 20 m using the nearest
neighbor resampling in SNAP v8.0 (Sentinel Application Platform, http://step.esa.int,
accessed on 15 June 2021). Nearest neighbor resampling was chosen due to its ability to
retain the spectral fidelity of the data. The systematic ARD data processing is achieved
with Sen2Cor by the ESA (European Space Agency) ground segment [50–52].

Further analyses were restricted to areas covered by a crop mask which was obtained
from the National Crop Boundaries Dataset (CropEstimatesConsortium, 2017), and a
vegetation mask created from NDVI was used to mask values < 0.2 following [53].

2.3. eXtreme Gradient Boosting

Extreme Gradient Boosting (XGBoost), proposed by [54], is an improved implemen-
tation of Gradient Boosted Regression Trees (GBRT), also known as Gradient Boosting
Machines (GBM) [55], bringing several additional features and advantages. Like GBM, the
XGBoost is an ensemble of classification and regression trees (CART); where, regression
trees are computed sequentially, and new weak learners are included iteratively in the
model using additive functions to correct errors from the previous learner. The final model
is an ensemble of several weak learners, and final predictions are the sum of the predictions
at each iteration. Generally, given the training dataset with predictor and response variables,
the XGBoost algorithm first sorts the predictors and searches for the optimal splits. Then, an
optimal split is chosen from the predictor that optimizes the objective function, i.e., Squared
Error. The above steps are repeated until the most extreme tree depth is achieved. Then,
the prediction scores are assigned to the leaves, and any negative nodes are pruned using a
bottom-up approach. Until the predetermined number of rounds is reached, the above steps
are repeated in a value-adding manner. Mathematical descriptions of XGBoost can be found
in [56,57]. The algorithm has several advantages over GBM, which include: (1) it can effi-
ciently handle sparse data or missing values; (2) it uses distributed and parallel computing
to construct trees and build large models rapidly; (3) it avoids over-fitting by using a more
regularized formalization and gradient boosted decision trees; and (4) the trained model
can be used to predict the unseen (i.e., new) data. Thus, XGBoost often outperforms other
algorithms, and it is scalable, sparsity-aware, and computationally efficient [54,58]. XG-
Boost has several hyperparameters which can be tuned. In this study, the hyper-parameters
were tuned using the random search strategy [59], over a predefined search space consisting
of general, booster-specific and learning task parameters in ‘xgboost’ R package [60]. The
optimal hyper-parameters were selected using the lowest Root Mean Squared Error of
cross-validation (RMSECV) based on the 10-fold Cross Validation (CV) resampling strategy.
The open-source XGBoost library for different programming languages and documentation
can be found online (https://xgboost.readthedocs.io/en/stable/index.html, accessed on
24 July 2022).

2.4. Spatial Transfer Scenarios

The Source site, i.e., DS =
{(
X s

i ,Y s
i
)}ns

i=1, refers to the study site where modelling was

performed with all training samples ns, and the Target site DT =
{(
X l

i ,Y l
i

)}nl

i=1
is the des-

tination study site where the trained models were transferred with limited training samples
nl , where nl � ns. In this regard, three spatial transfer scenarios were assessed, i.e., Base
DS + 25%, BaseDS + 50%, and BaseDS + 75%, where BaseDS is the pre-trained model with
multi-temporal data for two spatial transferability cases: Bothaville (DS)→ Harrismith
(DT) and Harrismith (DS)→ Bothaville (DT), i.e., when either Bothaville or Harrismith is
the Source site. The percentages represent the proportion of available training samples used
for re-training the Base DS model at the Target site DT . For example, trained BV models in
the Source site DS (e.g., Harrismith) were transferred to the Target site DT (e.g., Bothaville)
and vice versa. Alternating the two sites as DS and DT provided an opportunity to assess

http://step.esa.int
https://xgboost.readthedocs.io/en/stable/index.html
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the impact of site characteristics and acquisition conditions on model transferability. The
flow chart summarizing the methodology is shown in Figure 2.
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2.5. Model Training and Evaluation

Multi-temporal in-situ data from each respective Source site DS were used to train
and evaluate the transferability of the LAI, LCab, and CCC models. Specifically, the
Source site DS data were split into training (i.e., 70%) and validation (i.e., 30%) using
a stratified random sampling approach and used for training and validating the Base
DS models, respectively. Then, for re-training transferred models, the Target site DT
training data (i.e., 70%) were randomly split into 25%, 50%, and 75% of samples used
in training the Base DS models (see Table 1), and 30% of DT samples were held-out for
evaluating the transferability of the model (i.e., its performance in a new (unseen) site)
(see Figure 2). The prediction accuracies of each BV model in the Source and Target sites
were assessed with the measures recommended by Richter et al. (2012), i.e., Root Mean
Squared Error (RMSE), Coefficient of determination (R2), Relative Root Mean Squared Error
(RRMSE), Mean Absolute Error (MAE), and Percent Bias (%Bias) (Equations (2)–(6)). The
modelling, validation and mapping were performed using the R-Statistics package: mlr
v2.19 (Available online: https://mlr.mlr-org.com/, accessed on 5 March 2022) [61].

RMSE =

√√√√ 1
n

N

∑
i=1

(xi × yi)
2 (2)

R2 =
∑ (yN

i − yi)
2

∑ (yi − yi)
2 (3)

RRMSE =
RMSE

xi
(4)

https://mlr.mlr-org.com/
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MAE =
1
n

n

∑
i=1
|xi − yi| (5)

%BIAS = ∑n
i=1(xi − yi)/ ∑n

i=1(xi), (6)

where xi is the observed BV (e.g., LAI), and yi is the predicted biophysical parameter (e.g.,
LAI), xi, and yi are the mean of observed and predicted BV, respectively; n is the sample
size, and N is the number of errors.

Table 1. Descriptive statistics of LAI (m2 m−2), LCab (µg cm−2) and CCC (µg cm−2) training samples
for Source site (i.e., Base DS) different transfer scenarios, i.e., Base DS + 25%, Base DS + 50%, and
Base DS + 75%.

Bothaville Harrismith

LAI LCab CCC LAI LCab CCC

Base DS

n 166 166 166 147 147 147
Min 1.54 3.70 11.86 1.16 10.77 20.44

Mean 3.62 34.53 126.98 3.45 26.83 92.56
Max 5.90 74.02 288.22 6.32 56.82 333.63
SD 1.04 15.57 66.99 0.94 10.89 51.25

Base DS + 25%

n 202 202 202 188 188 188
Min 1.54 3.71 11.86 1.16 3.71 11.86

Mean 3.57 33.07 120.18 3.53 28.35 102.25
Max 6.35 74.02 288.22 6.32 71.35 333.63
SD 1.01 15.06 65.33 0.98 12.33 59.63

Base DS + 50%

n 239 239 239 229 229 229
Min 1.54 3.71 11.86 1.16 3.71 11.86

Mean 3.56 32.04 115.80 3.51 29.97 106.89
Max 6.35 74.02 288.22 6.32 74.01 333.63
SD 0.99 14.65 63.66 0.98 13.82 62.47

Base DS + 75%

n 276 276 276 270 270 270
Min 1.54 3.71 11.86 1.16 3.71 11.86

Mean 3.55 31.36 113.41 3.55 30.58 110.48
Max 6.35 74.01 333.63 6.32 74.01 333.63
SD 1.00 14.30 63.31 1.01 14.06 63.15

3. Results

The evaluation of the spatial transferability of the Machine Learning Regression
(MLR) models for estimating crop biophysical and biochemical variables (BVs) is critical
for determining their utility in different geographical areas, with a few training samples,
different spatial distributions, and spectral shifts due to acquisition conditions and crop
types. In this study, we evaluated the spatial transferability of generic BV models based on
XGBoost by applying them to different target experimental sites, under different transfer
scenarios, designed based on the proportion of the training data available in the Target
sites, i.e., 25%, 50%, and 75%. Specifically, we applied pre-trained Source site models (from
Bothaville and Harrismith), i.e., Base DS, to Target sites (i.e., Harrismith and Bothaville)
with 25%, 50%, and 75% available, randomly selected training samples, yielding BV models
with Base DS + 25%, Base DS + 50%, and Base DS + 75%. The performances of the Base
DS and transferred models to different Target sites DT (i.e., Bothaville and Harrismith) are
presented in Figures 3–5 for LAI, LCab, and CCC, respectively. As shown in Figure 3a,e,
Bothaville Base DS LAI model had better performance (i.e., RMSE: 0.61 m2 m−2, R2: 0.71)
than the Harrismith Base DS LAI model (i.e., RMSE: 0.66 m2 m−2, R2: 56). The Bothaville
Base DS LAI models with 25% (i.e., Base DS + 25%) and 50% (i.e., Base DS + 50%) training
samples in the Target site DT (i.e., Harrismith) have a better RMSE of 0.61 m2 m−2 (R:
0.59) compared to the Harrismith Base DS LAI model, but exhibited relatively higher
underestimations, i.e., percent bias of 5% (see Figure 3b,c). In contrast, when the Bothaville
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Base DS LAI model was re-trained with 75% of the samples in the DT (i.e, Harrismith,
Figure 3d), the results maintained a better RMSE of 0.64 m2 m−2 when compared to the
Harrismith Base DS LAI model (i.e., RMSE: 0.66 m2 m−2), but the differences were not
significant. Moreover, the transferred model explained only 52% of LAI variability in the
Target site DT (i.e., Harrismith).
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Figure 3. Scatterplots for Leaf Area Index (LAI, m2 m−2) indicating the performance of the
XGBoost models in the Source DS and Target DT sites considering scenarios where only 25%
(Base DS + 25%, (b,f)), 50% (Base DS + 50%, (c,g)), and 75% (Base DS + 75%, (d,h)) of the training
data are available in the TargetDT site. BaseDS models for cases where Bothaville and Harrismith are
the Source sites DS are shown in panels (a,e), respectively. The 1:1 and the regression lines between
the observed and predicted values are shown in red and blue, respectively.
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Figure 4. Scatterplots for Leaf Chlorophyll Content (LCab, µg cm−2) indicating the performance of
the XGBoost models in the SourceDS and TargetDT sites considering scenarios where only 25% (Base
DS + 25%, (b,f)), 50% (Base DS + 50%, (c,g)), and 75% (Base DS + 75%, (d,h)) of the training samples
are available in the Target DT site. Base DS models for cases where Bothaville and Harrismith are the
Source sites DS are shown in panels (a,e), respectively. The 1:1 and the regression lines between the
observed and predicted values are shown in red and blue, respectively.
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Figure 5. Scatterplots for Canopy Chlorophyll Content (CCC, µg cm−2) indicating the performance
of the XGBoost models in the Source DS and Target DT sites considering scenarios where only 25%
(BaseDS + 25%, (b,f)), 50% (BaseDS + 50%, (c,g)), and 75% (BaseDS + 75%, (d,h)) of the training data
are available in the Target DT site. Base DS models for cases where Bothaville and Harrismith are the
Source sites DS are shown in panels (a,e), respectively. The 1:1 and the regression lines between the
observed and predicted values are shown in red and blue, respectively.
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When considering Harrismith as the Source site DS and Bothaville as the Target site
DT , the results using Base DS + 25% LAI model (Figure 3f) showed an inferior RMSE
of 0.67 m2 m−2 relative to the Bothaville Base DS LAI model, i.e., RMSE:0.61 m2 m−2

(Figure 3a). Similarly, the transferred model (BaseDS + 25%) explained relatively lower LAI
variability in the Target site DT (Figure 3f), i.e., 64%, and marginally high underestimations,
i.e., by 1%. The higher proportions of training samples in DT (i.e, Bothaville) seems to have
benefited model accuracy, with Base DS + 50% (Figure 3g) and Base DS + 75% (Figure 3h)
achieving relatively better RMSEs of 0.65 m2 m−2 and 0.63 m2 m−2, respectively, and
explaining higher LAI variability, i.e., 66% and 67%, respectively, when compared to Base
DS + 25% model (Figure 3f). While underestimations for Base DS + 50% (Figure 3g) were
similar to Base DS + 25% (i.e., %Bias: 2%, Figure 3f), a 0% percent bias was found for Base
DS + 75% (Figure 3h).

Leaf Chlorophyll Content (LCab) Base DS models in Bothaville and Harrismith also
had different performances. The Bothaville Base DS LCab model (Figure 4a) explained the
greatest variability, i.e., 83% compared to only 58% achieved by the Harrismith Base DS
LCab model (Figure 4e). However, the RMSE of the Bothaville Base DS LCab model was
higher, i.e., 8.1 µg cm−2, than that of Harrismith Base DS LCab model, which achieved a
relatively lower RMSE of 7.06 µg cm−2. When the Bothaville Base DS LCab model was
transferred to Harrismith (i.e., Bothaville (DS)→ Harrismith (DT)) with 25% training sam-
ples in DT(i.e., Base DS + 25%), the results (Figure 4b) indicate an RMSE, i.e., 8.41 µg cm−2

and explained 46% of LCab variability in Harrismith. The Base DS + 25% also led to an
overestimation of 4% when compared to validation data. When the proportion of training
samples in the Target site DT (i.e., Harrismith) were increased to 50%, i.e., Base DS + 50%
(Figure 4c), the RMSE and R2 improved slightly to 8.18 and 0.49, respectively. Similarly, an
increase in the Target site DT samples to 75%, i.e., Base DS + 75% (Figure 4d), improved
the RMSE to 7.09 (i.e., equivalent to the one achieved by the fully trained model) and 58%
of LCab variability was explained in the Target site DT (i.e., Harrismith).

In contrast, the Harrismith Base DS LCab model transferred to Bothaville (i.e., Harri-
smith (DS)→ Bothaville (DT)) showed improvements in RMSE, even with the smallest
proportion of samples, i.e., 25%, in DT(Base DS + 25%), explaining 83% of LCab variability
in DT (i.e., Bothaville) and RMSE of 8.16 µg cm−2 (Figure 4f), which was equivalent to
the Bothaville Base DS LCab model (Figure 4a). The addition of 50% (Figure 4g) and 75%
(Figure 4h) of DT (i.e., Bothaville) training samples resulted in relatively worse LCab re-
trievals, with the former (i.e., BaseDS + 50%) yielding RMSE of 8.68 µg cm−2 and R2 of 0.81
(Figure 4g), while the latter (i.e., Base DS + 75%) achieving inferior RMSE of 8.96 µg cm−2,
R2 of 0.79 and higher underestimations of 4%. Nonetheless, all the transferred models
had RRMSE of <5% in both cases, i.e., Bothaville (DS)→ Harrismith (DT) and Harrismith
(DS)→ Bothaville (DT).

The Bothaville Base DS CCC model had better RMSE, i.e., 37.12 µg cm−2, and ex-
plained greater variability, i.e., 79%, (Figure 5a) than the Harrismith Base DS CCC model,
which achieved RMSE of 38.57 µg cm−2 and R2 of 0.56 (Figure 5e). Similar to LCab models,
Bothaville CCC models, i.e., Bothaville (DS)→ Harrismith (DT), resulted in poor retrieval
when only 25% ofDT samples were used, i.e., RMSE: 40.43 µg cm−2, R2: 0.52 (see Figure 5b).
While proportions, i.e., 50% (i.e., BaseDS + 50%) and 75% (i.e., BaseDS + 75%), led to better
retrieval accuracies, i.e., RMSE: 40.18 µg cm−2 (Figure 5c) and 36.3 µg cm−2 (Figure 5d),
respectively. The Base DS + 50% model explained 52% of CCC variability in the Target site
DT (i.e., Harrismith), while Base DS + 75% explained 61% of CCC variability. Moreover,
the DS + 25% model also had higher underestimations of CCC, i.e., %Bias of 4%, than other
transferred models, which had a %Bias of only 1%. The Harrismith (DS)→ Bothaville (DT)
model, re-trained with 25% of the samples in the Target site DT (i.e., Bothaville) (Figure 5f),
showed better CCC retrieval accuracy, i.e., RMSE: 40.25 µg cm−2, R2: 0.77, than other
transfer scenarios, i.e., Base DS + 50% (RMSE: 41.39 µg cm−2, R2: 0.76) and Base DS + 75%
(RMSE: 42 µg cm−2, R2: 0.74). The Base DS + 25% model (Figure 5f) and Base DS + 75%
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model (Figure 5h) had underestimations of 3%, while the Base DS + 50% had a %Bias of
0%. All the transferred models were significant (p < 2.2 × 10−16).

The spatial distribution maps of biophysical and biochemical variables retrieved with
Source (i.e., Base DS) and best transferred models (DT) are presented in Figures 6 and 7.
Figure 6 shows Bothaville (DS) and Harrismith (DS) → Bothaville (DT) transferred re-
trievals ((d)–(e)), while Figure 7 shows Harrismith (DS, (a)–(c)) and Bothaville (DS) →
Harrismith (DT) transferred retrievals ((d)–(e)). As shown, the retrievals from transferred
models show underestimations of all BVs in Bothaville when compared to the Source site
(i.e., Base DS) spatial distribution maps. On the other hand, Bothaville (DS)→ Harrismith
(DT) maps (Figure 7) show relatively similar spatial distributions for all BVs.
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Figure 6. Spatial distribution maps of LAI (i.e., (a,d)), LCab (i.e., (b,e)), and CCC (i.e., (c,f)) retrieved
using XGBoost and Sentinel-2. (a–c) were retrieved with Bothaville Source (i.e., Base DS) models,
while (d–f) were retrieved with transferred models to Bothaville DT (i.e., Harrismith (DS)→ Bothav-
ille (DT)) that achieved superior transferability, i.e., Base DS + 75% for LAI (d) and Base DS + 25% for
LCab (e) and CCC (f).
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using XGBoost and Sentinel-2. (a–c) were retrieved with Harrismith Source (i.e., Base DS) models,
while (d–f) were retrieved with transferred models to Harrismith DT (i.e., Bothaville (DS)→ Harri-
smith (DT)) that achieved superior transferability, i.e., Base DS + 25% for LAI (d) and Base DS + 75%
for LCab (e) and CCC (f).

4. Discussions

The transferability of retrieval approaches has been a major challenge yet critical for
reducing the need for large training sets, reducing computational costs associated with
calibrating MLRAs and improving the operational access to important crop BVs in data-
scarce areas. For this study, we considered a case of spatial transferability technique, where
a trained Source model (i.e., Base DS) is transferred to a new site (i.e., Target site DT) with
different proportions of training samples available (relative to the ones used in the Base
DS) for re-training the transferred model. Then, the transferred models’ performance was
compared against the fully trained model in the Target site DT to determine the optimal
proportion of samples that delivers comparable results. Moreover, the effect of the Source
site model (i.e., Base DS) accuracy on its transferability was evaluated.

4.1. Effect of Training Samples Available in the Target Site

The assessment of the impact of the available training samples on the Target site DT
on the transferability of the MLRA biophysical variables (BVs) retrieval models is signifi-
cant for determining the optimal proportion of training samples required for successfully
transferring models to new (unseen) areas, critical for operational agronomic applications.
Generally, the results showed that Bothaville (DS)→ Harrismith (DT) models required
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only fewer proportions, i.e., 25% or 50%, of the training samples to make reliable retrievals
of LAI in the Target site DT (Harrismith). However, this was not true for Harrismith
(DS)→ Bothaville (DT) models, where the results show that the transferred models with
higher proportions of training samples, i.e., 75%, were more accurate (see Figure 3h). This
observation implies that the proportion of samples required to make reliable LAI retrievals
depends on the characteristics of the Source site DS. For example, the crop types varied
between Bothaville and Harrismith, where the former is characterized by Maize, Peanuts,
Sunflower, and Beans, while Harrismith was mainly dominated by Maize and Beans.
Therefore, Bothaville (DS)→ Harrismith (DT) models explained the variability caused by
different crop types in the Target site DT (i.e., Harrismith) relatively well, while Harrismith
(DS)→ Bothaville (DT) models required a considerable amount of samples (i.e., up to 75%)
to learn new (i.e., unseen) distributions caused by the new crop types (i.e., Peanuts and
Sunflower) with distinct structural characteristics which were encountered in the Target
site DT (i.e., Bothaville). Besides the different crop types, the different edaphic factors such
as soil types (sandy-loamy soils vs. clay-loamy) and soil moisture between sites—known
to affect surface reflectance and LAI variability (Darvishzadeh et al., 2008)—may have
contributed to the requirement for a large proportion of samples to improve transferability
of the Harrismith (DS)→ Bothaville (DT) LAI model. Although cropping at the two sites
occurs within the same crop calendar and in-situ measurements were collected when plants
were in their physiological maturity, it is anticipated that there were some spectral shifts
caused browning of some leaves in the canopies which may have been pronounced in
Bothaville (fieldwork in April) than in Harrismith (fieldwork in March). Without the addi-
tional samples, the model resulted in relatively higher errors (see Figure 3f,g). However,
the improvements brought by increasing the DT training samples in the case of Harrismith
(DS)→ Bothaville (DT) were incremental but marginal, thus signaling that the contrasting
canopy architectures of Maize and Beans found in Harrismith played a key role in the
model transferability but were not sufficiently representative to explain variability caused
by other crop types present in the DT (i.e., Bothaville). Nonetheless, the transferred LAI
model achieved comparable accuracies (RMSE: 0.63 m2 m−2; R2: 0.61) to a Gradient Boost-
ing Machine model in a related previous study over DT [62]. Moreover, all the transferred
LAI models performed better than the artificial neural networks pre-trained with PROSAIL-
simulated look-up tables (LUTs) which achieved RMSE >1 m2 m–2 in Bothaville [63] and
elsewhere [64,65].

For chlorophyll content models (Figures 4 and 5), the Bothaville (DS)→ Harrismith
(DT) models required a significant proportion of DT training samples to achieve a compa-
rable retrieval accuracy to the model trained with all the training samples in Harrismith. In
contrast, the Base DS model experienced significant accuracy losses when transferred and
re-trained with 25% (i.e., Base DS + 25%) and 50% (Base DS + 50%). This implies that the
smaller training samples (i.e., 25% and 50%) were insignificant to account for the variability
in the Target site DT (i.e., Harrismith), which was probably caused by the different crop
growth stages and plant structural forms present at the two experimental sites. In the
case of Harrismith (DS)→ Bothaville (DT), the lower proportion of DT training samples
(i.e., 25%) were sufficient to achieve the optimal retrieval accuracies while increasing the
proportion of samples caused a decline. Generally, the results showed that the XGBoost
models could be transferred to different areas with various crop types and crop phenology
with minimal losses to the retrieval accuracies; however, the number of samples required
for re-training the source models depended on the BV and the Source siteDS characteristics.
The RRMSEs for all the transferred BV models under all spatial transfer scenarios were 5%
and below, hence below the recommended limits by the Global Climate Observing System
(GCOS) [66].

4.2. Source Model Accuracy and Its Effect on Transferred XGBoost Models

It is crucial to understand the effect of the source model accuracy on its transferability.
Here, we evaluate the magnitude of this effect, if any, under the different transfer scenarios.
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The results indicated that the accuracy of the source model (i.e., Base DS) is important to
ensure lower accuracy losses when the model is transferred to an unseen (i.e., new) site.
For example, when Bothaville Base DS LAI model (with RMSE: 0.61 m2 m−2; R2: 0.71) was
transferred to Harrismith (i.e., Bothaville (DS)→ Harrismith (DT)), only a few training
samples (i.e., 25%) were required in the Target site DT to obtain improved RMSE and R2

by 0.05 m2 m−2 and 3%, respectively, relative to the fully trained model in Harrismith
(Figure 3b,e). Conversely, in the case of Harrismith (DS)→ Bothaville (DT), the Harrismith
Base DS LAI model—with RMSE of 0.66 m2 m−2 and R2 of 0.56—required a significant
proportion of training samples (i.e., 75%) to achieve better accuracy, which remained lower
than the fully trained model in the Source site DS (Figure 3a,h). Therefore, when the
Source model is highly accurate, its likelihood to perform better in the Target site (with few
additional samples) increases. Essentially, the higher the variability explained by the source
model, the lower the proportion of samples needed to account for the new variability in
the target site.

The chlorophyll content is a highly dynamic BV due to its sensitivity to various biotic
(such as pests and diseases) and abiotic factors (such as water, temperature, and nutrients),
hence may vary significantly within and between fields containing similar or different
crop types relative to LAI, which may remain the same despite the minor changes in
chlorophyll content. Interestingly, the lower variability explained by the Harrismith Base
DS LCab and CCC models (Figure 4e) did not negatively impact the transferred models’
performance and required only a few training samples (i.e., 25%) to explain the LCab and
CCC variabilities in the Target siteDT (i.e., Bothaville) (Figures 4f and 5f), and the accuracies
were comparable to the fully trained models (Figures 4a and 5a). While the Bothaville Base
DS LCab and CCC models (Figures 4a and 5a) explained 83% and 79% of LCab and CCC
variability, respectively, they suffered accuracy losses when transferred to the Target siteDT
(i.e., Harrismith), particularly when only 25% and 50% of DT training samples were used
(Figures 4b,c and 5b,c). As a result, a high proportion of samples, i.e., 75%, were required to
achieve comparable or better accuracies to the respective fully trained models in Harrismith
(Figures 4e and 5e). These findings may be attributed to the differences in the ranges of
LCab values; where, in the case of Bothaville (DS)→ Harrismith (DT), the source model
could not explain unseen LCab values below 20 µg cm−2 which were evidently present
in the Target site DT (i.e., Harrismith) but not learned by the Base DS model. Whereas
the Base DS CCC model had a relatively greater range, the values encountered when
transferring the model could not be well interpolated using fewer training samples, i.e.,
25% and 50%. Hence, for both BVs, the source models required a significant amount of
training data to achieve comparable accuracies to the fully trained model in the Target
site DT (i.e., Harrismith). On the other hand, despite a relatively lower LCab range in the
case of Harrismith (DS)→ Bothaville (DT), the values above 50 µg cm−2 were a few and
well accounted for when the model was transferred and re-trained with 25% of the DT
training samples. Moreover, the overestimations of values ~20 µg cm−2 observed in the
scatterplot of the source model from Harrismith (see Figure 5e) seem to have benefitted
the performance of the transferred model since these overestimations were well within
the range in the Target site DT (Bothaville). Because the source model contained values
below ~20 µg cm−2 (i.e., not measured in the DT), the transferred model increased the
range of LCab retrievals, which was beneficial to the transferred model. Similarly, the
saturation of the Base DS CCC model in Harrismith at ~200 µg cm−2 was averted by the
additional re-training with 25% of the Target site DT training samples and benefited the
retrieved CCC range. Overall, the results indicate that the source model (i.e., Base DS)
accuracy is important for BVs that do not vary much at a specific crop phenological stage
such as LAI at physiological maturity, while for rapidly changing BVs such as LCab and
CCC, the source model (i.e., Base DS) accuracy could be averted by re-training with some
proportion of training samples. However, in bothDS andDT , the range of BV values played
a significant role, where ranges are a different significant number of training samples, i.e.,
75%, were required.
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4.3. Sources of Uncertainty

Despite the promising results, there were several potential sources of uncertainty.
The degree of uncertainty observed when the LCab and CCC models were transferred
can be attributed to the use of different chlorophyll instruments, i.e., Minolta SPAD-502
chlorophyll meter and MC-100 Chlorophyll Concentration Meter, between the two periods,
i.e., 2019 and 2021, respectively. While MC-100 measures the absolute chlorophyll values,
the SPAD-502 chlorophyll meter measures an index related to LCab and requires site-
specific calibration using destructive and lab-measured chlorophyll content for different
crop types and leaf structural types. In our study, empirical calibration equations developed
elsewhere were used instead due to a lack of laboratory calibration data. Unfortunately,
such calibration equations may yield inconsistent results since the SPAD values saturate at
LCab > 40 µg cm−2 and vary by species, growth stages and distribution of LCab [45,67,68].
Future studies should consider cross-calibration of the two instruments and attempt a
systematic error adjustment of the field measurements taken by the two instruments. This
may lead to improved accuracy of the transferred model and the replicability of the results.
Moreover, the edaphic factors at each site such as soil types and moisture, as well as
other site characteristics such as differences in planting dates and thus crop phenology
within and between fields, may have affected the measured crop biophysical parameters,
presenting varying BV values to XGBoost per site. One of the known limitations of MLRAs
is that they are not capable of estimating beyond the input values used during training;
therefore, sufficient data covering multiple years, crop phenology and areas are needed to
further calibrate the models. However, there is generally a lack of consistent and dedicated
field campaigns in semi-arid areas of sub-Saharan Africa, thus hindering the development
of crop biophysical variables (BVs) and the adoption of precision farming. Nonetheless,
the results obtained in this study demonstrate that the XGBoost models can be spatially
transferable under the assessed scenarios and are better than those obtained by [42] who
found RMSEs between 0.7 m2 m−2 and 0.9 m2 m−2 when Support Vector Machine and
Random Forest LAI models were transferred. For all the BVs, the image quality, particularly
caused by different atmospheric conditions between the acquisition dates, has affected the
source model (Base DS) accuracies and their spatial transferability. For example, DS and
DT acquisition conditions were different, i.e., >50% clouds in Harrismith for the 2019 image,
which propagated to the BV models and hindered the accuracy of Harrismith source models
and hence their transferability. Although Sen2cor is the Sentinel-2-specific atmospheric
correction technique, its performance has been questionable. The validation and inter-
comparison studies [69–72] show that it performs inconsistently for different spectral bands,
land cover types and environments. For the 2019 image over Harrismith used here, [70]
showed that under such partly-cloud conditions, Sen2Cor performed poorly, i.e., R2 < 20%,
in the visible (VIS) and SWIR bands when validated against field data, while it had better
performance, i.e., R2 > 60%, in the red-edge and NIR bands. Previous studies show that
both VIS and SWIR bands are highly influential in LAI, LCab and CCC retrieval [62,73,74].
Therefore, the observed lack of transferability with only 25% of samples for Harrismith
(DS) → Bothaville (DT) LAI models and Bothaville (DS) → Harrismith (DT) LCab and
CCC models could be due to the residual errors after Sen2Cor atmospheric correction and
lower sunlit intensity [29]. In future, predictors should be optimized for various crop BVs
according to their relative influence and quality as it has been recently shown that fewer
input predictors improve spatial transferability in classification problems [75].

5. Conclusions

Evaluating model transferability is critical for determining the utility of the model
in different geographical areas, with a few training samples, different geographical dis-
tributions, and spectral shifts due to acquisition conditions and crop types. In this study,
we evaluated the spatial transferability of the XGBoost BV models by applying them to
different experimental sites under different spatial transfer scenarios, i.e., when 25%, 50%,
and 75% of samples are available in the new (unseen) site. Consequently, the effect of
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different proportions of available training samples in the Target site DT (i.e., 25%, 50%,
and 75%) were assessed, where the DT consisted of the two semi-arid experimental sites,
i.e., Bothaville and Harrismith. Moreover, the effect of the Source site DS (trained) model
accuracy on the Target site DT (unseen) model uncertainty was also evaluated. The results
showed some dependence on the Source siteDS characteristics such as crop types and plant
structural characteristics for LAI retrievals, where models from Bothaville—trained with a
variety of crop types—could be transferred with only a few samples, i.e., 25%, required
in the DT for obtaining reliable LAI retrievals. On the contrary, the Source site DS LAI
models from Harrismith required significantly higher proportions of training samples in
the DT to obtain reliable retrievals. When it comes to chlorophyll content at both leaf and
canopy levels, i.e., LCab and CCC, respectively, the factors determining transferability can
be attributed to its highly dynamic nature, variability within and between fields and crop
types, and due to different field instruments used between the years, i.e., SPAD vs. MC-100.
However, it was established that the data range of the trained source models matters, where
the unseen low or high BV ranges may deter the transferability of the model. Moreover,
the Source site model accuracy has a lesser role when the trained and unseen data ranges
differ. The results obtained in this study are better than those in previous related studies,
thus demonstrating prospects for achieving reliable retrievals of essential crop BV without
requiring many additional samples in the target sites.
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