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Abstract: Forest plantations in South Africa impose genus-specific demands on limited soil moisture.
Hence, plantation composition and distribution mapping is critical for water conservation planning.
Genus maps are used to quantify the impact of post-harvest genus-exchange activities in the forestry
sector. Collecting genus data using in situ methods is costly and time-consuming, especially when
performed at regional or national scales. Although remotely sensed data and machine learning show
potential for mapping genera at regional scales, the efficacy of such methods is highly dependent on
the size and quality of the training data used to build the models. However, it is not known what
sampling scheme (e.g., sample size, proportion per genus, and spatial distribution) is most effective
to map forest genera over large and complex areas. Using Sentinel-2 imagery as inputs, this study
evaluated the effects of different sampling strategies (e.g., even, uneven, and area-proportionate) for
training the random forests machine learning classifier to differentiate between Acacia, Eucalyptus,
and Pinus trees in South Africa. Sample size (s) was related to the number of input features (n) to
better understand the potential impact of sample sparseness. The results show that an even sample
with maximum size (100%, s~91n) produced the highest overall accuracy (76.3%). Although larger
training set sizes (s > n) resulted in higher OAs, a saturation point was reached at s~64n.

Keywords: plantation genera classification; uneven training samples; area-proportionate training
samples; even training samples; random forests

1. Introduction

Forest plantations are generally grown in areas with mean annual precipitation of
750 mm or more [1]. With a mean annual precipitation of 500 mm, only 1.2% of South
Africa’s land surface is used for forestry [2]. Despite the dry climate and relatively small
land area allocated for forestry, South Africa is the world’s 15th-largest producer of wood
pulp [3], used in the production of paper. The plantations that support this industry occur in
localized areas where the rainfall is sufficient, resulting in compartments (i.e., plots within
a plantation) being sparsely distributed in the landscape (Figure 1). The deep-rooted, tall,
dense, evergreen physiology of tree plantations contrasts strongly with the typically short,
seasonally dormant vegetation (e.g., grassland/shrubs) with shallow root systems that they
typically replace. This is concerning from a water resource management perspective, as
South Africa’s scarce water resources are unevenly distributed, with more than 60% of river
flow arising from 20% of the land area [4]. Although differences in evapotranspiration rates,
and resultant impacts on water resources, have been quantified through forest hydrology
research using paired-catchment experiments [5,6], in situ field measurements [7] and
genus-specific modelling at a watershed scale [8], very little is known about how much
water is used for commercial forestry at regional and national scales.
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Figure 1. Distribution of South African forest plantations (DAFF 2008). 

To manage the competition for limited water resources, policy introduced in 1972 
initiated regulation of the commercial forestry industry [9]. In 1998, new legislation de-
clared the forest industry a streamflow reduction activity (SFRA), i.e., land use that may 
reduce the amount of water in rivers [4,10]. In the current SFRA water-use licensing sys-
tem, allocation is made for differences in consumptive water use between the principal 
commercial forestry genera, namely, Pinus, Eucalyptus, and Acacia. It is roughly estimated 
that about 50% of plantations are planted with Pinus, 43% with Eucalyptus, and 7% with 
Acacia trees [9]. Post-harvest changes from one genus to another (e.g., Pinus to Eucalyptus) 
constitute a change in water use and, consequently, imply a change in streamflow im-
pacts [6,11]. Given that such genus-exchange (GE) activities can have significant impacts 
on water resources and biodiversity [12], up-to-date genus maps are needed to monitor 
SFRAs and to model the forestry industry’s impact on streamflow reduction over time 
[10]. Although commercial forestry companies keep records of plantings, such data are 
not in the public domain, and are often difficult to obtain. In addition, many plantations 
are owned by small growers who are unlikely to keep plantation records [13] and/or may 
not inform authorities of GEs. A methodology whereby forest plantation genera can be 
cost-effectively mapped and frequently updated at regional/national scales would sup-
port regional monitoring of SFRAs, GE, water use and biodiversity. 

Earth observation (EO) and remote sensing (RS) offer a potential forest genus map-
ping solution, as satellite images are captured over vast areas (global coverage) at regular 
(up to 15 min) intervals, e.g., EUMESAT [14]. Although RS is often used for regional 
land-cover mapping [15], land-cover maps tend to only differentiate forests from other 
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To manage the competition for limited water resources, policy introduced in 1972 initi-
ated regulation of the commercial forestry industry [9]. In 1998, new legislation declared
the forest industry a streamflow reduction activity (SFRA), i.e., land use that may reduce the
amount of water in rivers [4,10]. In the current SFRA water-use licensing system, allocation
is made for differences in consumptive water use between the principal commercial forestry
genera, namely, Pinus, Eucalyptus, and Acacia. It is roughly estimated that about 50% of
plantations are planted with Pinus, 43% with Eucalyptus, and 7% with Acacia trees [9]. Post-
harvest changes from one genus to another (e.g., Pinus to Eucalyptus) constitute a change
in water use and, consequently, imply a change in streamflow impacts [6,11]. Given that
such genus-exchange (GE) activities can have significant impacts on water resources and
biodiversity [12], up-to-date genus maps are needed to monitor SFRAs and to model the
forestry industry’s impact on streamflow reduction over time [10]. Although commercial
forestry companies keep records of plantings, such data are not in the public domain, and
are often difficult to obtain. In addition, many plantations are owned by small growers
who are unlikely to keep plantation records [13] and/or may not inform authorities of
GEs. A methodology whereby forest plantation genera can be cost-effectively mapped
and frequently updated at regional/national scales would support regional monitoring of
SFRAs, GE, water use and biodiversity.
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Earth observation (EO) and remote sensing (RS) offer a potential forest genus mapping
solution, as satellite images are captured over vast areas (global coverage) at regular (up to
15 min) intervals, e.g., EUMESAT [14]. Although RS is often used for regional land-cover
mapping [15], land-cover maps tend to only differentiate forests from other types of land
cover (e.g., water, built-up, crops). Some land-cover maps differentiate between indigenous
and plantation forests [16,17], but do not disaggregate these land covers into types or genera.

Medium-resolution (30–250 m) imagery has been combined with machine learning
algorithms to map forest genera/species, with varying success. For example, Landsat (30 m)
and Spot (20 m) imagery were used by Franco-Lopez, Ek, and Bauer [18] to generate a
3-class species map with an accuracy of 47%, and by Stabach et al. [19] to generate a 13-class
species map with a 63% accuracy. Higher accuracies have been achieved using very-high-
resolution (VHR) satellite imagery [20–24], while UAV data [25,26] and/or hyperspectral
imagery [27–31] have also been used for this purpose.

Nomura and Mitchard [32] used Sentinel-2 data with supervised classification to map
seven commercial forest plantation species/genera in Myanmar. They achieved a 95%
overall accuracy using an unbalanced training dataset. Mngadi et al. [33] classified seven
species in the Clan forest plantation (located in South Africa) using Sentinel-2 bands in
a linear discriminative analysis, and achieved an 84% overall accuracy. When adding
Sentinel-1 VV and VH features, the accuracy increased to 87%.

Vegetation indices and textural measures, derived from the original bands, are fre-
quently used to improve forest plantation species/genus classification accuracy [32,34].
Per-pixel spectral information causes confusion between spectrally similar classes (i.e.,
forest plantation genera), whereas texture represents patterns in pixels, improving the dif-
ferentiation between pixels [35]. Vegetation indices (VIs) such as NDVI and EVI are linear
combinations or ratios using two or more spectral bands [36]. VIs are used to enhance the
vegetation properties, enabling interpreters to better study variations in vegetation’s vigour
and biomass [37]. However, such image transformations increase the dimensionality of
input data, which is problematic for many supervised classification algorithms—especially
parametric classifiers such as maximum likelihood [38]. High dimensionality can lead to
the so-called s << n problem, where s is the number of training samples per class and n is the
number of input features (i.e., variables such as image bands). This phenomenon—known
as the Hughes effect—states that, at some point, the increased number of features may result
in lower accuracy unless the number of training samples is increased proportionally [39].

Table 1 summarizes the sample sizes and configurations used by researchers, along
with their effects on the overall accuracy produced by the machine learning algorithms.
Belgiu and Dragut [40] stated that training samples need to be statistically independent and
representative of the class being mapped, while the number of training samples per class
must be balanced and large enough so that s > n. In contrast, Congalton and Green [41]
recommended that s should be equal to 50 when n = 12 (s~4n) and when the area being
mapped is smaller than 1 million hectares, while Mather [42] suggested using 10n to 30n
training samples. Thanh Noi and Kappas [43] found that classification accuracy increases
as sample size increases, but Foody [44] showed that a saturation point exists, where
adding more samples does not significantly increase the classifier performance, and the
addition of samples beyond this point is a waste of resources. To minimize training sample
collection costs, Foody et al. [45] suggested collecting training data that maximize interclass
separability while minimizing intraclass spectral variability. However, such an approach
requires prior knowledge of the spectral variability within and between the target classes.
Congalton and Green [42] suggested collecting more samples for larger areas, as they are
often more complex. They also suggested collecting samples for each class relative to the
importance of those classes for the mapping objective.
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Table 1. Summary of the sample sizes and configurations used, along with their effects on the overall accuracy.

Sample Size Effect on the Overall Accuracy Author

The number of samples must be larger than the number
of features Improves accuracy Belgiu and Dragut [40]

The number of samples must = 50 when the number of
features = 12 and the area is smaller than 1 million

hectares
Improves accuracy Congalton and Green [41]

Must use 10n to 30n training samples, where n is the
number of features Improves accuracy Mather [42]

Increase the number of samples as much as possible Improves accuracy Thanh, Noi and Kappas [43]

Must not increase the samples too much, as a saturation
point exists

No value is added by increasing the
samples beyond the saturation

point
Foody [44]

Must use samples that maximizes interclass and
minimizes intraclass separability Improves accuracy Foody et al. [45]

Unbalanced training sets The class with the most samples is
favoured in the classification Dalponte et al. [46]

Unbalanced training sets The class with the most samples is
favoured in the classification Millard and Richardson [47]

Unbalanced training sets Improves the classification accuracy
of complex classes Mellor [48]

Larger balanced training sets for larger areas Improves accuracy Colditz [49]

Area-proportional samples Improves the accuracy of the
smallest class being mapped Belgiu and Dragut [40]

Dalponte et al. [46] investigated the impact of using unbalanced training sets, and found
that the class with the most samples was favoured in the classification. This is consistent
with the work of Millard and Richardson [47], who found that the dominant class in the
training set resulted in that class being the most accurate. In contrast, Mellor et al. [48]
showed that an imbalance in the training data can improve the accuracy of complex classes,
such as open-canopy woodlands and forests, which occur over diverse ecosystems and
topography. Generally, classes that occupy a larger area require more samples due to a large
spectral variation [49], and when area-proportional samples (s/A) are used, the producer’s
and consumer’s accuracy for the smallest class being mapped increases [40].

Although some forest species/genus mapping successes have been achieved at local
scales [33], no attempts have been made to map South Africa’s main commercial forest
genera (i.e., Pinus, Eucalyptus, and Acacia) at the regional/national scale. The sparseness
and proportion of South Africa’s main forestry genera pose an unique EO and machine
learning challenge [1]. Using VHR, UAVs, and hyperspectral imagery would be too costly
to acquire and process for such a large area. The employment of high-resolution (10–60 m)
imagery—such as that generated by the Sentinel-2 constellation as part of the Copernicus
Programme [50]—is more viable, as it is freely available, frequently updated, and can be
cost-effectively processed on cloud computing platforms such as Google Earth Engine
(GEE). As with many EO machine learning applications, the main obstacle for producing
a national forest plantation genus map is the absence of suitable in situ data to train and
build a robust model. Collecting in situ data over such a vast area would be very costly,
and there is uncertainty about what sampling scheme (i.e., total sample size, samples per
class, and spatial distribution of samples) would be required.

This study aims to investigate the effectiveness of using Sentinel-2 imagery for plan-
tation forest genus mapping at a regional scale, and to better understand the impact of
employing different training dataset sampling strategies on the performance of the RF
classifier. RF was chosen due to its established track record for forestry and related appli-
cations [17,18], while the motivation for using Sentinel-2 imagery was its relatively high
spatial (up to 10 m), spectral (13 bands), and temporal (5-day revisit time) resolutions
compared to other sensors [51]. Different sampling strategies were used to train the RF
classifier, and the resulting accuracies were compared. The experiments were carried out in
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two very diverse study sites to assess the effects of enlarging the training set size under
balanced (where s/n is constant for all classes), imbalanced (s < 12n for some classes), and
area-proportional (s/A is constant) scenarios. The results were interpreted within the
context of finding the most effective approach to training sample collection, particularly
within the context of regional/national forest genus mapping in semi-arid areas where
plantations are sparsely distributed, and where the genus mix varies dramatically from one
area to another. In contrast to previous studies [13–31], the focus of the present study is on
the relative accuracy achieved by different sampling strategies using a consistent feature
space (a common set of imagery), rather than assessing the viability/suitability of using
machine learning for genus classification.

2. Materials and Methods
2.1. Study Areas

Two study sites (Figure 2) were selected for carrying out the experiments. Study Area 1
(23,117,207; −34,028,904) stretches from the settlements Knysna to Kraanshoek in the
Western Cape (WC) province of South Africa, while Study Area 2 (30,939,643; −29,027,329)
spans the settlements New Hanover to Osborn in KwaZulu-Natal (KZN). These sites were
chosen owing to the diversity of the genera planted and the availability of reference data
(i.e., in situ forest plantation extents and genera). The selected sites are also climatically
representative, as they are located in the winter and summer rainfall regions of South
Africa, respectively.
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Figure 2. Locations of Study Area 1 (a), along the southern coast of the Western Cape (WC) province,
and Study Area 2 (b), in the KwaZulu-Natal (KZN) midlands.

Study Area 1 receives ~875 mm of rainfall per annum, with peak rainfall during July.
The mean temperature in the area is 16.9 ◦C [50]. The annual rainfall in Study Area 2 ranges
from 1400 mm in the southwest to 1570 mm in the northeast (peak rainfall during January),
and has a mean temperature of 17.5 ◦C [52].

Study Area 1 is dominated by Pinus (~3052 ha), followed by Eucalyptus (~145 ha) and
then Acacia (~118 ha), whereas Study Area 2 is planted equally with Acacia (~3869 ha),
Eucalyptus (~3869 ha), and Pinus (~3869 ha).

2.2. Data Collection and Preparation
2.2.1. Imagery

The GEE platform was used to access Sentinel-2 level-2A surface reflectance imagery,
which has a five-day temporal resolution and contains 13 spectral bands, with spatial
resolutions of 10 m (B2, B3, B4, and B8), 20 m (B5, B6, B7, B8A, B11, and B12), and 60 m
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(B1, B9, and B10). A median composite image was generated from images dated from
30 June 2019 to 30 June 2020. The reasoning behind using a composite image was to remove
cloud contamination and to compensate for seasonal variations between the two study
areas. Although it is well known that phenological variations and multi-temporal EO
approaches can aid in genus classifications [33], we purposefully excluded such variations,
as they would introduce uncertainty to our results. For instance, some training sample sets
may benefit more from seasonal variations than others, which would add complexity and
potentially skew the findings.

The normalized differential vegetation index (NDVI), enhanced vegetation index (EVI),
entropy, and grey level co-occurrence matrix (GLCM) measures were derived from the
NIR Sentinel-2 band and added as bands to the composite image, resulting in a total of
33 features (Table 2).

Table 2. Features (bands, indices, and textural measures) used as inputs to the classifications gener-
ated from a composite of individual Sentinel-2 images taken from 30 June 2019 to 30 June 2020.

Bands Textural Measures

B1—coastal aerosol Angular second moment Maximum correlation
coefficient

B2—blue Contrast Cluster prominence
B3—green Correlation Sum average

B4—red Difference entropy Sum entropy
B5, B6, B7, B8A—vegetation

red edge Entropy Cluster shade

B8—NIR Inverse difference moment Sum variance

B9—water vapour Information measure of
correlation 1 Variance

B10—SWIR—cirrus Information measure of
correlation 2

B11, B12—SWIR Inertia

Vegetation Indices

NDVI
EVI

2.2.2. In Situ Data

In situ (ground-truth) data at the plantation compartment level were collated from a
number of South African commercial forestry companies. These data included records of
the species and genera of the trees in each compartment. Table 3 provides an overview of
the collected in situ sample data per genus within each study area.

Table 3. Summary of in situ data (forest compartment information) collated, including tree genus,
age (mean and standard deviation), and planted area per study area.

Study Area 1 (WC) Study Area 2 (KZN)

Genus Age (Mean) Age (Std Dev) Area (ha) Area
(%) # Age (Mean) Age (Std Dev) Area (ha) Area

(%) #

Acacia 35.94 12.61 118.14 3.56 40 8.75 7.10 3869.7 33.33 406
Eucalyptus 43.18 20.49 145.79 4.40 50 6.52 4.57 3869.4 33.33 718

Pinus 9.97 11.08 3052.81 92.04 940 8.78 6.50 3869.3 33.33 478

Total 3316.74 1030 11,608.4 1602

Figures 3 and 4 show the geographic distribution of training data within Study Area 1 and
Study Area 2, respectively. Compared to Study Area 1, the samples in Study Area 2 span
a larger area and are more widely distributed. The areas covered by each genus in Study
Area 1 are unbalanced (dominated by Pinus), while in Study Area 2 the area covered by
each genus is more or less equal.
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2.3. Experimental Design

The in situ data were consolidated into a shapefile and the compartments were dis-
solved to form a single polygon per genus. In total, 3000 random points were generated per
genus (i.e., 9000 in total) in each study area. A maximum of one point per Sentinel-2 pixel
was allowed. The polygons from which the training data were collected contained many
compartments of different tree ages, and some with different species of the same genus. The
variety of age and species per genus, along with the distance between samples produced
by the randomness of the sample selection, minimized the autocorrelation in the training
data. The Sentinel-2 band values were then extracted at each point in SS_0 using GEE. This
initial sample sets were denoted P-3000, E-3000, and A-3000, representing Pinus, Eucalyptus,
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and Acacia species, respectively (with the first letter indicating the genus and the number
indicating the subset size). This initial sample set was randomly subsampled into 60 sub-
sets of decreasing sizes, starting from the full set and randomly removing 50 samples per
iteration. For instance, the first Pinus subset (P-2950) contained 2950 samples, the second
(P-2900) contained 2900 samples, the third (P-2850) contained 2850 samples, etc. A total of
180 sample sets (60 per genus) was generated in this manner.

The experiments (Figure 5) were designed to investigate the combined effect of training
set size and imbalance on the RF classifier.
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Figure 5. Summary of every 10th iteration of how the sample subsets were selected for Experiment A (a),
Experiment B (b), Experiment C (c), and Experiment D (d). Experiment B was run three times for all
iterations, keeping a different class constant at 50 samples. Experiment C was also run three times for
all iterations, keeping two different class combinations constant at 50 samples.

The aim of Experiment A was to quantify the effect of a balanced training sample set
under different sample size scenarios. The experiment started (iteration 1) with using
subsets P-3000, E-3000, and A-3000 to train the RF classifier. This model building process
was repeated for combinations of subsets of equal sizes, e.g., for Experiment A, the following
setup was used:

Experiment A1: P-3000, E-3000, and A-3000
Experiment A2: P-2950, E-2950, and A-2950
. . .

Experiment A60: P-50, E-50, and A-50

Experiments B1, B2, and B3 were similar to Experiment A, except that for all iterations
the smallest subset (either P-50, E-50, or A-50) was used for one of the genera. For instance,
the setup for Experiment B1 was as follows:

Experiment B1.1: P-3000, E-3000, and A-50
Experiment B1.2: P-2950, E-2950, and A-50
. . .
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Experiment B1.3 60: P-50, E-50, and A-50

Similarly, E-50 was used in all iterations of Experiment B2:

Experiment B2.1: P-3000, E-50, and A-3000
Experiment B2.2: P-2950, E-50, and A-2950
. . .

Experiment B2.60: P-50, E-50, and A-50

In Experiment B3, P-50 was reused in all iterations:

Experiment B2.1: P-50, E-3000, and A-3000
Experiment B2.2: P-50, E-2950, and A-2950
. . .

Experiment B2.60: P-50, E-50, and A-50

Experiments B1 to B3 were conducted to assess the effect when one class (genus) is
severely undersampled.

Experiments C1, C2, and C3 were similar to Experiments B1, B2, and B3, except that in all
iterations the smallest subset was reused for two of the genera. For instance, in Experiment
C1 the setup was as follows:

Experiment C1.1: P-3000, E-50, and A-50
Experiment C1.2: P-2950, E-50, and A-50
. . .

Experiment C1.60: P-50, E-50, and A-50

Similarly, for Experiment C2, the following setup was used:

Experiment C2.1: P-50, E-3000, and A-50
Experiment C2.2: P-50, E-2950, and A-50
. . .

Experiment C2.60: P-50, E-50, and A-50

The sample subsets for Experiment C3 were as follows:

Experiment C3.1: P-50, E-50, and A-3000
Experiment C3: P-50, E-50, and A-2950
. . .

Experiment C3.60: P-50, E-50, and A-50

Experiments C1 to C3 were designed to assess the effect when two classes (genera) are
severely undersampled.

The purpose of the final experiment, Experiment D, was to assess the effects of area-
proportional training datasets on classification accuracy. In contrast to the other experi-
ments, Experiment D did not start with the full sample set. Instead, subsample sets were
selected based on the relative area planted with a particular genus. Study Area 1 (WC) is
dominated (92%) by Pinus compartments, while Eucalyptus (4.4%) and Acacia (3.6%) are not
commonly planted. Consequently, the setup for Experiment D was as follows:

Experiment D1: P-3000, E-240, and A-180
Experiment D2: P-2950, E-236, and A-177
. . .

Experiment D60: P-50, E-4, and A-3

Experiment D was not implemented for Study Area 2 (KZN), given that the planted
areas per genus are more or less equal, which equates to Experiment A.

2.4. Classifier Setup

RF, developed by Breiman [53], is an ensemble classifier, as it combines the results of
multiple DT models. It uses 2/3 of the sample data, known as subset R1, for training the
model. The remaining 1/3 of the samples, known as the out-of-bag (OOB) sample subset,
are used to estimate the variable importance and the classification error. At each node
within each DT, the algorithm selects a random subset of input features (bands), known as
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F1. It then uses subset R1 to identify the feature in F1 that best splits the data for a class
and creates new nodes. This process is repeated at each node. Once all nodes are split
for each tree, the majority vote among trees decides the final classification output [54]. All
experiments were run using the default parameters of the RF algorithm to fairly compare the
experiments. Each iteration (i.e., sample size change) was repeated 100 times, and the mean
accuracy over all iterations was calculated to mitigate the stochastic nature of the RF algorithm.

2.5. Accuracy Assessment

An independent test sample set of 100 points per genus was used to calculate the
overall accuracy (OA), kappa statistic (KS), consumer’s accuracy (CA), producer’s accuracy
(PA), indices of disagreement [55], and McNemar’s test. The OA measures the percentage
of pixels that are correctly classified, while the kappa statistic measures the chance of
agreement between the reference and classified maps. The PA and CA are used to quantify
the performance of each class. The PA shows the occurrence of features on the ground that
are correctly shown on the classified map. The error of omission (EoO) can be calculated by
1-PA. The CA shows the occurrence of the class on the map that will actually be present on
the ground. The error of commission can be calculated by 1-CA [56].

The RF algorithm was run 100 times per iteration (i.e., an experiment with a specific
set of training data) to mitigate its stochastic nature (e.g., the accuracy of subsequent
runs may differ substantially based on the internal random selection of the model for
building samples and feature sets), and the mean OA, KS, CA, and PA were calculated
from confusion matrices. The standard deviations of the 100 iterations of the OA and KS
were also calculated to assess to what extent the calculated means were representative of
the 100 iterations [57].

Indices of disagreement were analysed to validate the statistics derived from the
confusion matrix, and McNemar’s test was used to analyse whether the differences be-
tween the OAs were statistically significant. To reduce computational expense, indices of
disagreement and McNemar’s statistical test were calculated for only 7 of the 60 models,
namely, Experiments A60, A50, A40, A30, A20, A10, and A1.

2.6. Spectral Analysis

The reflectance values of the samples (SS_0) were used to develop a spectral profile of
each genus within each study area to assist with the interpretation of the results. A pairwise
Jeffries–Matusita (J–M) distance separability analysis was carried out to better understand
the interclass variations. The J–M distance quantifies the average distance between two
classes in feature space based on a density function (i.e., probability distribution) of each
class [58]. Both the mean and the variance are considered in the distance calculations. The
J–M distances range from 0 to 2, where 0 represents a low separability between classes and
2 represents a high separability between classes.

3. Results
3.1. Genus Spectral Profiles

The spectral properties of the genera, as extracted from the S2 imagery and all SS_0
samples, are shown in Figure 6 for Study Area 1 and Figure 7 for Study Area 2. The spectral
properties of trees are dependent on many factors, including age, specie composition, and
location. The spectral signatures of the Acacia and Pinus classes were very similar, especially
in Study Area 2 (KZN). Although it seemed that there were some differences in the mean
values in bands B4, B6 to B8, and B11 to B12, there was a large spectral overlap between
the classes (indicated by the error bars), suggesting that the genera are spectrally similar.
This was confirmed by the J–M distance scores for the spectral bands (shown as bars in
Figures 6 and 7), where Eucalyptus and Pinus were the most separable, followed by Acacia
and Eucalyptus, and to a lesser degree Acacia and Pinus. The highest separability (0.8)
in Study Area 1 (WC) was between Eucalyptus and Pinus in B12 (Figure 6). These two
genera were consistently the most separable in this region, which corresponds well with the
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spectral profiles (i.e., the mean reflectance values of Eucalyptus and Pinus are most distinct
in almost all bands).
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In Study Area 1 (WC), the visible (B2, B3, and B4) and SWIR (B11 and B12) regions
of the EMS had a higher separability (0.4–0.7) than the red-edge region (0–0.3) of the EMS
(Figure 6). The SWIR wavelengths are known to be absorbed by vegetation with high
moisture content [59]. This suggests that the water content varies between the plantation
genera in Study Area 1.

In contrast, all three genera in Study Area 2 (KZN) had low separability in the visible
and SWIR regions of the EMS, suggesting that the genera have similar water contents
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(Figure 7). The strongest separability scores (0–0.33) were recorded in the red-edge (B6 and
B7), near-infrared (B8 and B8A), and water vapour (B9) bands (Figure 7). Eucalyptus and
Pinus trees were the most separable, followed by Acacia and Eucalyptus.

When the spectral profiles are compared, it is clear that Pinus and Acacia trees have
very similar spectral responses, while those of Eucalyptus trees are more distinct. Table 4
shows the total J–M separability scores using just the Sentinel-2 bands; the Sentinel-2 bands
and vegetation indices; and the Sentinel-2 bands, vegetation indices, and textural measures,
which also suggests that Eucalyptus trees are more dissimilar than Pinus and Acacia trees.

Table 4. Jefferies–Matusita difference scores between Acacia and Eucalyptus, Acacia and Pinus, and Eucalyptus
and Pinus using Sentinel-2 bands; Sentinel-2 bands and vegetation indices; and Sentinel-2 bands,
vegetation indices, and textural features for both study areas.

Acacia vs. Eucalyptus Acacia vs. Pinus Eucalyptus vs. Pinus

WC KZN WC KZN WC KZ N

Sentinel-2 bands 0.01615204 0.027278119 0.01083795 0.001678353 0.0427256 0.041993623

Sentinel-2 bands and
vegetation indices 0.02963264 0.017471886 0.01521441 0.002094672 0.08139061 0.031343328

Sentinel-2 bands,
vegetation indices, and

textural features
0.1258648 0.2534354 0.2615191 0.0000066 0.578058 0.2554823

Table 4 shows that adding vegetation indices and textural features to the Sentinel-2
bands increased the separability between all classes in Study Area 1 (WC). This suggests that
the machine learning algorithms produce better results using Sentinel-2 bands along with
vegetation indices and textural features as inputs. The separability scores in Study Area 2
(KZN) varied between band combinations and between classes. The addition of vegetation
indices only increased the separability between Acacia and Pinus. The separability between
Eucalyptus and Pinus, and between Acacia and Eucalyptus, increased when textural features
were included, but decreased when vegetation indices were included.

3.2. Classification

Table S1, in the Supplementary Materials, summarizes the classification results. To aid
in the interpretation, important results are shown in bold text; high accuracies are shown
green and lower accuracies in red, while high standard deviations are shown in red and
low standard deviations in blue. When compared to the number of features (n), this initial
subset’s size (s) can be expressed as s~91n (i.e., about two samples per feature/dimension,
per genus). From Experiment A, it is evident that larger training sample set sizes (s > n)
resulted in higher OAs. In Study Area 1 (WC), the highest mean OA (76.3%) and best
individual classification result (Max OA = 81.3%) were achieved when all (100%) of the
available samples (SS_0) were used for training. However, the improvement in accuracy
was not linear (Figure S1: A1), with the OA increasing by only 2% when the sample size
was enlarged from 67% (s~60n) to 100% (s~90n), which is insignificant given that the
standard deviation is about 0.02% for these experiments. The same trend can be observed
in Study Area 2 (KZN) (Figure S1: A4), although fewer (50%) training samples were required
for achieving the maximum OA (70.7%). The mean OA of all experiments in Study Area 1
(79.8%) was significantly (p > 0.001, shown in Table S2) higher than that of Study Area 2 (76.7%).

When the PAs and CAs are considered in Study Area 1 (WC) (Figure S1: A2 and A3),
it is clear that the Eucalyptus class was the most accurately classified, as it had the lowest
errors of omission and commission, followed by Pinus and then Acacia. In Study Area 2
(KZN), the PAs and CAs of the three genera were relatively similar.

The experiments dealing with imbalanced training sets (Experiments B–D) showed
that the OAs and KSs remain relatively constant as sample imbalance increases. The CAs
of the class for which the training subset with 50 samples (either P-50, E-50, or A-50) was
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used in all iterations were generally higher (Figure S1: B2, B5, C2, C5, D2, D5) than those of
the two classes for which the training subsets were systematically enlarged, indicating that
the errors of commission (i.e., false positives) were relatively low for this class. Conversely,
the PAs (Figure S1: B3, B6, C3, C6, D3, D6) of the genus for which the smallest training
set (either P-50, E-50, or A-50) was used were consistently lower compared to those of the
other two genera.

In Experiments C1–C3 (where a pair of P-50, E-50, or A-50 were used in all iterations),
the OA and KS decreased as the sample imbalance increased. The CA of the class for which
the sample size was systematically enlarged was generally lower (Figure S1: C1.2, C1.5,
C2.2, C2.5, C3.2, C3.5) than that of the two classes for which the training subset was kept
constant at 50 samples throughout all iterations. Conversely, the PA (Figure S1: C1.3, C1.6,
C2.3, C2.6, C3.3, C3.6) of the genus for which the training set was enlarged was consistently
higher compared to the other two genera for which the training sets were kept constant at
50 samples.

In Experiment D, Study Area 2 (KZN) had consistently higher OAs and KSs than
Study Area 1 (WC). The OAs and KSs for Study Area 1 (Figure S1: D1) were relatively low
and stable when the sample size was enlarged in proportion to the area being mapped.
Eucalyptus had the highest CA, followed by Acacia and then Pinus (Figure S1: D2). The PA of
Pinus was the highest, followed by Eucalyptus and then Acacia (Figure S1: D3). Conversely,
the increases in OAs and KSs for Study Area 2 (Figure S1: D4) were initially dramatic, but
then moderated to within the 95% confidence level of ~0.05 as the sample size was enlarged.
Additionally, the CAs and PAs among classes were relatively similar in this study area
(Figure S1: D5, D6).

In summary, the results show that the highest accuracy was achieved when an equal
number of training samples per class was used (mean OA of 72.2% for Experiment A).
The OAs generally increased as the training sample sets were enlarged, but only when the
training datasets were balanced. Comparatively low classification accuracy was achieved
when unbalanced training samples were used. A trend of low errors of commission
(i.e., false positives) and high errors of omission (false negatives) was noted for under-
represented classes (i.e., those for which the sample sizes were not systematically enlarged).
The classification accuracy was generally higher (mean OA of 61.8%) in Study Area 2, where
the areas covered by the sampled genera were similar in proportions, while the accuracy
was generally low (mean OA of 53%) when an area-proportional sampling strategy was
used to differentiate the genera in Study Area 1, i.e., where the targeted area of interest (i.e.,
the population from which sampling was done) was dominated by one class (Pinus).

4. Discussion

Satellite remote sensing, combined with machine learning, has been shown to be
effective for monitoring plantation forests [17] and for differentiating forest plantation
genera/species [33]. However, machine learning requires labelled (in situ) data for model
training and validation. The cost of collecting large quantities of such data can impede regional
implementations. Given that classification accuracy is strongly related to the size of training
datasets [45], operational solutions should ideally strike a balance between classification
accuracy and training data collection efforts. However, very little is known about how training
set size impacts forest plantation genus classification accuracy. It is also not clear whether the
number of samples per class should be proportional to the targeted populations—as suggested
by Colditz [49], Millard and Richardson [47], and Shetty [60]—or if an equal number of samples
per class would be most effective, as suggested by Mellor et al. [48] and Thanh Noi and
Kappas [43]. A further complication is that the distributions and proportions of genera
vary greatly from region to region—often with one or two dominating genera—meaning
that sampling strategies might have to be region-dependent.

In this study, we investigated the effects of different sampling strategies on the per-
formance of the RF machine learning classifier for differentiating between three genera in
two diverse regions, using 33 features extracted from a cloud-free Sentinel-2 composite
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image as inputs. Our findings are consistent with those of Myburgh and Van Niekerk [61],
who showed that higher (~90%) classification accuracy was achieved when the number of
samples per class was increased from s~0.5n to s~2n, but that the relationship between the
number of samples per class and accuracy was nonlinear. This was attributed to the reduc-
tion in sparsity as samples were added until the training samples sufficiently represented
inter- and intraclass spectral variations. Similarly, Heydari and Mountrakis [62] found that
classification accuracy increased by 2–6% when the training sample size was enlarged from
s~37n to s~370n respectively, but the accuracy tended to flatten out at s = 2218 (s~370n).
Enlarging the training set beyond this saturation point [45] did not add any value to the
classification. Based on our data (Experiment A), a saturation point was reached at s~2100
(s~64n) when the samples per class were balanced. This suggests that collecting more than
64n training samples per class may be superfluous for our particular application.

Our results show that the RF classifier did not handle the unbalanced training datasets
well. Generally, low error of commission (i.e., false positives) and high error of omission (i.e.,
false negatives) were noted for minority (under-represented) classes (i.e., those for which
the sample sizes were not systematically enlarged). Pixels belonging to the majority class
were often erroneously allocated to the minority class. This is consistent with the work of
Mellor et al. [48], who found that majority classes performed well at the expense of minority
classes when the training sets were unbalanced. The RF classifier is an ensemble of tree
classifiers, where each tree makes its decision based on a set of rules derived from labelled
features (i.e., training data) [63], and a majority vote is used to determine the consensus
class [64]. Classes with larger training datasets tend to have fewer false negatives (i.e.,
omission errors), as a larger set of rules (i.e., splitters) can be constructed. In contrast,
classes with limited training data are likely to have fewer false positives (i.e., errors of
commission), as insufficient data are available for constructing splitting rules.

It is clear from our results that spectral separability among classes also played a role in
classification accuracy, with low-separability classes generally requiring a larger proportion
of samples compared to those with high separability [48]. In our application, the spectral
properties of Eucalyptus trees were the most distinct, resulting in larger differences in CAs
between classes when the sample size of Eucalyptus was contained (C2 compared to B2 and
D2 in Figure S1). For Study Area 1 (WC), the separability between classes improved when
vegetation indices and textural measures were included as inputs to the classifier. This is
to be expected, as vegetation indices are known to help differentiate between variations
in vegetation vigour and biomass [37]. Textural measures show the patterns amongst
pixels, which are not represented in the spectral properties of each pixel [35]. However, the
separability results in Study Area 2 (KZN) showed that vegetation indices did not improve
the discrimination of classes. This was attributed to this area containing a larger proportion
of recently planted compartments, where the ratio between bare ground and vegetation
was larger and, thus, reduced the efficiency of the vegetation indices [36].

Colditz [49] and Shetty [60] evaluated the effects of different sampling designs on
ML classifications for land cover, and found that area-proportional samples resulted in
the best accuracy. This is consistent with the findings Millard and Richardson [47], who
recommended randomly selected, area-proportional training sets. In contrast to these
findings, an area-proportional sampling scheme performed poorly in our Study Area 1
(Experiment D). Study Area 1 is dominated by Pinus (ratios of Acacia, Eucalyptus, and
Pinus are about 1:1:26), which resulted in highly skewed training sets in Experiment D.
According to Figure S1 D2 and D3, the Pinus class was overclassified (i.e., low CA, high
error of commission), while the Acacia and Eucalyptus classes were underclassified (i.e.,
low PA, high error of omission). For example, the error of omission (EoO = 1 − PA) of
the Acacia class exceeded 86% throughout the experiment, even when s~3n for this class.
In contrast, in Experiment A (balanced samples), the error of omission for Acacia was
37% when s~2n (initialization of Experiment A). This suggests that an area-proportional
sampling approach is not effective when the populations (i.e., total number of pixels) of
some classes are severely skewed (i.e., where some classes dominate, while others are under-
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represented). Based on our data, it seems that an area-proportional approach to training
sample selection is beneficial only if some classes are not severely under-represented. Based
on Experiments B–D, when three classes are targeted and one class is under-represented,
the ratio of the under-represented class should never be less than 1:50:50. When two classes
are under-represented (or one class dominates), this ratio should preferably not exceed
1:1:50. However, whether these suggested ratios are applicable for other applications
would have to be investigated in future research. Based on our data, a balanced training set
(Experiment A) produced the most consistent (stable) per-class (i.e., PAs and CAs) results
for both the skewed (Study Area 1) and equivalent (Study Area 2) populations. This is
consistent with the findings of Foody and Mathur [45], Mellor et al. [48], and Thanh Noi
and Kappas [43]. A balanced training set is consequently recommended for operational
forest plantation genus mapping in South Africa. Apart from producing the best results in
this study, it is simple to implement, and do not require prior knowledge of the distribution
of classes.

Our results show that OA was often not a good reflection of overall class performance,
particularly when training data were unbalanced. For instance, it is noticeable that the
mean OA of Experiment D in Study Area 1 was 64%, while it is clear that Pinus had a
low mean PA (29%) and Acacia had a low CA (55%). This demonstrates that OA is an
unreliable measure of accuracy, particularly when the training data are skewed. In contrast
to a previous work by Pontius and Millones [55], the mean KS of Experiment D in Study
Area 1 was low (0.45), better depicting the overall performance of the experiment. Similarly,
the OAs of Experiments B–C were relatively high, while they resulted in varying CAs and
PAs. The relatively low KSs of these experiments are consequently better indicators of the
overall classification performance, and they corresponded to indices of disagreement (see
the Supplementary Materials). This is consistent with the findings of Viera and Garrett [65]
and Thanh Noi and Kappas [43], who observed that OA was often misleading when the
training datasets were unbalanced. We recommend that in future studies OA should be
supplemented by other accuracy metrics, such as kappa and disagreement—especially if
unbalanced datasets are being classified.

Although the purpose of this study was not to assess the efficacy of machine learning
for genus classification, our findings show that accuracy exceeding 80% can be achieved
when a composite S2 image (and its derivatives) is used as an input. Better results are likely
when the methodology is extended to incorporate multi-temporal imagery, data fusion (e.g.,
the combination of SAR data), feature selection/extraction, and alternative machine learning
techniques (e.g., ANNs, SVMs). Operationalizing such approaches will enable more frequent
national forest inventorying at a reduced cost compared to traditional (field survey) methods.
However, this study shows that training sample design significantly affects classification
results, and that it is critical that data collection efforts be carried out accordingly.

Although this study demonstrates potential for classifying the main forest plantation
genera in two very diverse study areas (WC and KZN) with very different rainfall and
temperature regimes, more work is needed to evaluate the transferability of machine
learning models to other regions. Our results show that the sample set should be ~64n
within each area being mapped, but we did not assess whether samples could be extended
to classify genera in other regions where no samples are available. Signature extension and
model transferability should be investigated in future works, as this could reduce the costs
of in situ training data collection.

Another limitation of this study is that the classifications were performed on known
plantation forest compartments (polygons). In reality, such data are often not available for
regional applications. Although plantation forests are usually included in national land-
cover maps (e.g., SANLC), a methodology whereby plantation forests can be separated from
other land-cover types and classified into genera would be of great value for operational
implementations.
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5. Conclusions

Although it is known that the accuracy of machine learning approaches for classifying
remotely sensed imagery is affected by training data size and configuration, little is known
about how different sampling strategies may affect the differentiation of forest plantation
genera. This study evaluated the effects of several training dataset configurations on RF’s
ability to classify Acacia, Eucalyptus, and Pinus trees in two diverse regions within South
Africa. The RF algorithm was implemented using bands, spectral indices, and textural
measures extracted from a Sentinel-2 composite image as input features (n = 33). In situ
forest plantation data were used to generate various sample sets, which were used to train
and assess the ability of the RF classifier to differentiate between genera.

Our findings show that although the spectral separability of classes affected the ability
of RF to accurately differentiate between forest plantation genera, the classification accuracy
was mainly influenced by training sample size and imbalance. Balanced training datasets
produced the most accurate and consistent results, while unbalanced training data did not
work well for differentiating genera using RF. It is clear that sampling scheme design is
critical for regional forest genus mapping implementations, and that a balanced approach is
needed for in situ (labelled) data collection efforts. Although the purpose of this study was
not to assess the value of Sentinel-2 imagery for genus classifications, our results suggest
that such imagery, combined with machine learning, holds much potential for this purpose.
Future research should consider a multi-temporal approach to exploit the phenological
differences between genera. Model transferability and/or sample extension should also be
investigated to minimize sample collection efforts. Answering these questions may lead to
operational solutions for mapping forest plantation genera at regional/national scales, and
for regularly updating forest inventories. Accurate and up-to-date inventories will allow
for improved land and forest management, water-use assessments, carbon stock estimates,
and streamflow reduction modelling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14163992/s1, Figure S1: The overall accuracies, kappa statistics,
one standard deviation of the overall accuracies and kappa statistics, producer accuracies, and
consumer accuracies of Experiments A–D in Study Area 1 and Study Area 2. The y-axes are the
accuracies in percentages and the x-axes are the sample size per genera; Figure S2: A summary
table showing the figures of merit, omission error, commission error, and overall accuracy for
Study Area 1 (WC) and Study Area 2 (KZN). The figure of merit for each class and the overall
accuracy is shown using a colour gradient from red (bad accuracies) to green (good accuracies). The
omission and commission errors are shown using a colour gradient from red (bad accuracies) to green
(good accuracies); Table S1:A summary table showing the overall accuracy, one standard deviation
of the overall accuracy, kappa statistic, the standard deviation of the kappa statistic, consumer’s
and producer’s accuracy, and the maximum OA and KS of the 100 iterations per sample size of
Experiments A–D conducted in Study Area 1 (WC) and Study Area 2 (KZN); Table S2: The normalized
z and chi-squared values derived from McNemar’s statistical test, showing the differences in the
overall accuracies of Study Area 1 (WC) and Study Area 2 (KZN).
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