Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America
Abstract
:1. Introduction
2. Motivation for Sequential Land Cover Predictions with Structured Learning
3. Study Area
4. Data
4.1. Satellite Data
4.2. Field Data
5. Methodology
5.1. Image Preprocessing and Time Series Reconstruction
5.2. Land Cover Classification Scheme
5.3. Features Used for Land Cover Predictions
5.4. Land Cover Estimates with Conditional Random Fields
5.5. Land Cover Sample Design
5.6. Temporal Augmentation
5.7. CRF Model Fitting and Land Cover Estimates
5.8. Map Assessment
6. Results
6.1. Accuracy Assessment
6.2. Comparison against Independent Sources of Data
6.3. Spatial and Temporal Trends of Change in the Southern Cone of South America
7. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
LULC | Land use and land cover |
CRF | Conditional random field |
CCDC | Continuous change detection and classification |
EROS | Earth Resources Observation and Science Center |
USGS | US Geological Survey |
ESPA | EROS on-demand Science Processing Architecture |
FAO | UN Food and Agriculture Organization |
GE | Google Earth |
INIA | Instituto Nacional de Investigación Agropecuaria of Uruguay |
INTA | Instituto Nacional de Tecnología Agropecuaria of Argentina |
MAG | Ministerio de Agricultura, Ganadería, y Pesca of Argentina |
DTS | Dynamic temporal smoother |
EVI2 | Two-band enhanced vegetation index |
WI | Woody index |
MRLC | Multi-Resolution Land Characteristics Consortium |
NLCD | US National Land Cover Database |
Appendix A
2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 | |
---|---|---|---|---|
CRF | 90 | 91 | 93 | 79 |
MapBiomas Chaco | 73 | 75 | 74 | 79 |
References
- Schmidt, M.; Klein, D.; Conrad, C.; Dech, S.; Paeth, H. On the relationship between vegetation and climate in tropical and northern Africa. Theor. Appl. Climatol. 2014, 115, 341–353. [Google Scholar] [CrossRef]
- IPCC. Dire Warning; Technical Report; The International Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- World Resources Institute. Global Forest Watch. 2014. Available online: www.globalforestwatch.org (accessed on 1 May 2018). [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
- Gaveau, D.L.A.; Sheil, D.; Husnayaen; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017. [Google Scholar] [CrossRef]
- Hadi, H.; Pfeifer, M.; Korhonen, L.; Wheeler, C.; Rautiainen, M. Forest canopy structure and reflectance in humid tropical Borneo: A physically-based interpretation using spectral invariants. Remote Sens. Environ. 2017, 201, 314–330. [Google Scholar] [CrossRef]
- Evans, M.C. Deforestation in Australia: Drivers, trends and policy responses. Pac. Conserv. Biol. 2016, 22, 130. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef]
- Fehlenberg, V.; Baumann, M.; Gasparri, N.I.; Piquer-Rodriguez, M.; Gavier-Pizarro, G.; Kuemmerle, T. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Chang. 2017, 45, 24–34. [Google Scholar] [CrossRef]
- Hendricks, N.P.; Er, E. Changes in cropland area in the United States and the role of CRP. Food Policy 2018, 75, 15–23. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations. 2012. Available online: https://www.fao.org/faostat/ (accessed on 1 June 2018).
- Graesser, J.; Aide, T.M.; Grau, H.R.; Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 2015, 10, 034017. [Google Scholar] [CrossRef]
- Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 2018, 13, 084021. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.P.; Adusei, B.; Okpa, C.; Aguilar, R.; et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl. Acad. Sci. USA 2019, 116, 428–435. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.P.; Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021, 7, eabg1620. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta, R.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Vallejos, M.; Volante, J.N.; Mosciaro, M.J.; Vale, L.M.; Bustamante, M.L.; Paruelo, J.M. Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. J. Arid Environ. 2015, 123, 3–11. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Grau, H.R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 2009, 258, 913–921. [Google Scholar] [CrossRef]
- Gasparri, N.; Grau, H.; Gutiérrez Angonese, J. Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multi-decadal analysis. Glob. Environ. Chang. 2013, 23, 1605–1614. [Google Scholar] [CrossRef]
- Grau, H.R.; Gasparri, N.I.; Aide, T.M. Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ. Conserv. 2005, 32, 140–148. [Google Scholar] [CrossRef]
- Banchero, S.; de Abelleyra, D.; Veron, S.; Mosciaro, M.J.; Arevalos, F.; Volante, J.N. Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano. In Proceedings of the Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS -IEEE), Santiago, Chile, 22–26 March 2020; pp. 511–514. [Google Scholar]
- Buchadas, A.; Baumann, M.; Meyfroidt, P.; Kuemmerle, T. Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands. Nat. Sustain. 2022, 5, 619–627. [Google Scholar] [CrossRef]
- Vega, E.; Baldi, G.; Jobbágy, E.G.; Paruelo, J. Land use change patterns in the Río de la Plata grasslands: The influence of phytogeographic and political boundaries. Agric. Ecosyst. Environ. 2009, 134, 287–292. [Google Scholar] [CrossRef]
- Verón, S.R.; Paruelo, J.M. Desertification alters the response of vegetation to changes in precipitation: Desertification in Patagonia. J. Appl. Ecol. 2010, 47, 1233–1241. [Google Scholar] [CrossRef]
- Villagra, P.; Defossé, G.; del Valle, H.; Tabeni, S.; Rostagno, M.; Cesca, E.; Abraham, E. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: Implications for their management. J. Arid Environ. 2009, 73, 202–211. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Friedl, M.; McIver, D.; Hodges, J.; Zhang, X.; Muchoney, D.; Strahler, A.; Woodcock, C.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- De Waroux, Y.l.P.; Garrett, R.D.; Heilmayr, R.; Lambin, E.F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl. Acad. Sci. USA 2016, 113, 4021–4026. [Google Scholar] [CrossRef]
- De Waroux, Y.l.P.; Baumann, M.; Gasparri, N.I.; Gavier-Pizarro, G.; Godar, J.; Kuemmerle, T.; Müller, R.; Vázquez, F.; Volante, J.N.; Meyfroidt, P. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 2018, 108, 204–225. [Google Scholar]
- Richards, P.D.; Myers, R.J.; Swinton, S.M.; Walker, R.T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Chang. 2012, 22, 454–462. [Google Scholar] [CrossRef]
- Izquierdo, A.E.; De Angelo, C.D.; Aide, T.M. Thirty Years of Human Demography and Land-Use Change in the Atlantic Forest of Misiones, Argentina: An Evaluation of the Forest Transition Model. Ecol. Soc. 2008, 13, art3. [Google Scholar] [CrossRef]
- Aide, T.M.; Grau, H.R.; Graesser, J.; Andrade-Nuñez, M.J.; Aráoz, E.; Barros, A.P.; Campos-Cerqueira, M.; Chacon-Moreno, E.; Cuesta, F.; Espinoza, R.; et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Glob. Chang. Biol. 2019, 25, 2112–2126. [Google Scholar] [CrossRef] [PubMed]
- Gavier-Pizarro, G.I.; Calamari, N.C.; Thompson, J.J.; Canavelli, S.B.; Solari, L.M.; Decarre, J.; Goijman, A.P.; Suarez, R.P.; Bernardos, J.N.; Zaccagnini, M.E. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric. Ecosyst. Environ. 2012, 154, 44–55. [Google Scholar] [CrossRef]
- Guida-Johnson, B.; Zuleta, G.A. Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric. Ecosyst. Environ. 2013, 181, 31–40. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide: Addendum 2000; Technical Report; European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s National Land Cover Data Set for the Conterminous United States From LandSat Thematic Mapper Data and Ancillary Data Sources. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Gutman, G.; Byrnes, R.; Masek, J.; Covington, S. Towards monitoring land-cover and land-use changes at a global scale: The global land survey 2005. Photogramm. Eng. Remote Sens. 2008, 74, 6–10. [Google Scholar]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Blanco, P.D.; Colditz, R.R.; López Saldaña, G.; Hardtke, L.A.; Llamas, R.M.; Mari, N.A.; Fischer, A.; Caride, C.; Aceñolaza, P.G.; del Valle, H.F.; et al. A land cover map of Latin America and the Caribbean in the framework of the SERENA project. Remote Sens. Environ. 2013, 132, 13–31. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hostert, P.; Griffiths, P.; van der Linden, S.; Pflugmacher, D. Time series analyses in a new era of optical satellite data. In Remote Sensing Time Series; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–41. [Google Scholar]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Dwyer, J.; Roy, D.; Sauer, B.; Jenkerson, C.; Zhang, H.; Lymburner, L. Analysis ready data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens. 2019, 11, 51. [Google Scholar] [CrossRef]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Tindall, D. A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sens. 2016, 8, 312. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern US by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11. [Google Scholar]
- Roy, D.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2018, 238, 110810. [Google Scholar] [CrossRef]
- Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of moderate resolution earth observations for operational crop type mapping. Remote Sens. 2018, 10, 1058. [Google Scholar] [CrossRef]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A. Automatic canola mapping using time series of sentinel 2 images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 63–76. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sens. 2019, 11, 232. [Google Scholar] [CrossRef]
- De Abelleyra, D.; Banchero, S.; Verón, S.; Mosciaro, J. Mapa Nacional de Cultivos campaña 2018/2019. Collección 1. Versión 1; Technical Report; Instituto Nacional de Tecnología Agropecuaria (INTA): Buenos Aires, Argentina, 2019.
- De Abelleyra, D.; Veron, S.; Banchero, S.; Mosciaro, M.; Propato, T.; Ferraina, A.; Taffarel, M.G.; Dacunto, L.; Franzoni, A.; Volante, J. First large extent and high resolution cropland and crop type map of Argentina. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 392–396. [Google Scholar]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Disturbance-Informed Annual Land Cover Classification Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Can. J. Remote Sens. 2018, 44, 67–87. [Google Scholar] [CrossRef]
- Arévalo, P.; Olofsson, P.; Woodcock, C.E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. 2019, 238, 111051. [Google Scholar] [CrossRef]
- Graesser, J.; Stanimirova, R.; Friedl, M.A. Reconstruction of Satellite Time Series With a Dynamic Smoother. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1803–1813. [Google Scholar] [CrossRef]
- Lafferty, J.; McCallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 282–289. [Google Scholar]
- Sutton, C. An Introduction to Conditional Random Fields. Found. Trends® Mach. Learn. 2011, 4, 267–373. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States–Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar] [CrossRef]
- Abercrombie, S.P.; Friedl, M.A. Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans. Geosci. Remote Sens. 2015, 54, 703–713. [Google Scholar] [CrossRef]
- Cardille, J.A.; Fortin, J.A. Bayesian updating of land-cover estimates in a data-rich environment. Remote Sens. Environ. 2016, 186, 234–249. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Wang, J.A.; Sulla-Menashe, D.; Woodcock, C.E.; Sonnentag, O.; Keeling, R.F.; Friedl, M.A. Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Glob. Chang. Biol. 2019, 26, 807–822. [Google Scholar] [CrossRef]
- Jiminez, N.; Oliver, J.E. Climate of South America. In Encyclopedia of World Climatology; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K.; Epstein, H.E.; Burke, I.C.; Aguiar, M.R.; Sala, O.E. Regional Climatic Similarities in the Temperate Zones of North and South America. J. Biogeogr. 1995, 22, 915. [Google Scholar] [CrossRef]
- FAOSTAT Remote Sensing Portal. Food and Agriculture Organization of the United Nations. 2012. Available online: https://www.fao.org/forestry/fra/remotesensing/grid/ (accessed on 1 June 2018).
- Roy, D.P.; Zhang, H.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series Landsat data for the Australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Bates, M. Models of natural language understanding. Proc. Natl. Acad. Sci. USA 1995, 92, 9977–9982. [Google Scholar] [CrossRef] [PubMed]
- Hoberg, T.; Rottensteiner, F.; Queiroz Feitosa, R.; Heipke, C. Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 659–673. [Google Scholar] [CrossRef]
- Albert, L.; Rottensteiner, F.; Heipke, C. A higher order conditional random field model for simultaneous classification of land cover and land use. ISPRS J. Photogramm. Remote Sens. 2017, 130, 63–80. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo-Inf. 2018, 7, 129. [Google Scholar] [CrossRef]
- Müller, R.; Müller, D.; Schierhorn, F.; Gerold, G.; Pacheco, P. Proximate causes of deforestation in the Bolivian lowlands: An analysis of spatial dynamics. Reg. Environ. Chang. 2012, 12, 445–459. [Google Scholar] [CrossRef]
- Huang, C.; Kim, S.; Altstatt, A.; Townshend, J.R.G.; Davis, P.; Song, K.; Tucker, C.J.; Rodas, O.; Yanosky, A.; Clay, R.; et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—A Landsat assessment. Remote Sens. Environ. 2007, 106, 460–466. [Google Scholar] [CrossRef]
- Huang, C.; Kim, S.; Song, K.; Townshend, J.R.G.; Davis, P.; Altstatt, A.; Rodas, O.; Yanosky, A.; Clay, R.; Tucker, C.J.; et al. Assessment of Paraguay’s forest cover change using Landsat observations. Glob. Planet. Chang. 2009, 67, 1–12. [Google Scholar] [CrossRef]
- Da Ponte, E.; Roch, M.; Leinenkugel, P.; Dech, S.; Kuenzer, C. Paraguay’s Atlantic Forest cover loss–Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 2017, 79, 37–49. [Google Scholar] [CrossRef]
- Redo, D.J.; Aide, T.M.; Clark, M.L.; Andrade-Núñez, M.J. Impacts of internal and external policies on land change in Uruguay, 2001–2009. Environ. Conserv. 2012, 39, 122–131. [Google Scholar] [CrossRef]
- Altamirano, A.; Miranda, A.; Aplin, P.; Carrasco, J.; Catalán, G.; Cayuela, L.; Fuentes-Castillo, T.; Hernández, A.; Martínez-Harms, M.J.; Peluso, F.; et al. Natural forests loss and tree plantations: Large-scale tree cover loss differentiation in a threatened biodiversity hotspots. Environ. Res. Lett. 2020, 15, 124055. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Malouf, R. A comparison of algorithms for maximum entropy parameter estimation. In Proceedings of the 6th Conference on Natural Language Learning-COLING-02, Stroudsburg, PA, USA, 2002; Association for Computational Linguistics: Stroudsburg, PA, USA; Volume 20, pp. 1–7. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization; ACM: New York, NY, USA, 2000. [Google Scholar]
- Peng, T.; Korobov, M.; Okazaki, N. crfsuite: Conditional Random Fields for Labelling Sequential Data in Natural Language Processing Based on CRFsuite: A Fast Implementation of Conditional Random Fields (CRFs); Python package; Python Software Foundation: Wilmington, DE, USA, 2018. [Google Scholar]
- Okazaki, N. CRFsuite: A Fast Implementation of Conditional Random Fields (CRFs). 2007. Available online: http://www.chokkan.org/software/crfsuite (accessed on 1 May 2018).
- Stehman, S.V. Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment. Remote Sens. Environ. 2000, 72, 35–45. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- GFOI. Integrating Remote-Sensing and Ground-Based Observations for Estimation of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from Global Forest Observation Initiative; Technical Report; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Ganadería y Pesca Argentina. Estimaciones Agrícolas; 2018. Available online: https://datosestimaciones.magyp.gob.ar/ (accessed on 1 May 2018).
- MapBiomas Chaco Project-Collection v2.0 of Annual Land Cover and Land Use Maps. The MapBiomas Chaco Project-Is a Multi-Institutional Initiative to Generate Annual Land Use Maps Based on Automatic Classification Processes Applied to Satellite Imagery. The Full Description of the Project Can Be Found. 2022. Available online: https://chaco.mapbiomas.org/ (accessed on 1 July 2022).
- MapBiomas Pampa Project-Collection v1.0 of annual land cover and land use maps. The MapBiomas Pampa Project-Is a Multi-Institutional Initiative to Generate Annual Land Use Maps Based on Automatic Classification Processes Applied to Satellite Imagery. The Full Description of the Project Can Be Found. 2022. Available online: https://pampa.mapbiomas.org/ (accessed on 1 July 2022).
- Brown, C.; Brumby, S.P.; Guzder-Williams, B.P.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World: Near real-time global 10m land use land cover mapping. Sci. Data 2022, 9. [Google Scholar] [CrossRef]
- Wulder, M.A.; Li, Z.; Campbell, E.M.; White, J.C.; Hobart, G.; Hermosilla, T.; Coops, N.C. A National Assessment of Wetland Status and Trends for Canada’s Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sens. 2018, 10, 1623. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
Class Label | Description |
---|---|
Cropland | Managed lands for production of annual and perennial crop species (excluding tree crops); this class represents row-crop agriculture, such as maize, soybeans, wheat, and rice. |
Water | Open-water bodies, such as lakes and rives. |
Developed | Urban areas, built-up structures, and roads. |
Barren | Barren land, snow, or ice. |
Trees | Tree cover with canopy cover (natural or managed); this class includes agroforestry such as pine and eucalyptus plantations. |
Shrubland | Shrubs or cactus cover with canopy cover. |
Grassland | Herbaceous grassland (natural or managed) and savannas with <30% canopy cover; this class includes pastureland used for livestock grazing. |
Wetland | Seasonal wetlands, including prolonged flooding (e.g., Pampas). |
Metric | N | Description |
---|---|---|
60 | * The weekly gap-filled time series | |
4 | Median of time series each quarter | |
1 | Mean of the time series | |
1 | Median of the time series | |
1 | Coefficient of variation with | |
1 | Coefficient of variation with | |
1 | ** Minimum slope | |
1 | ** Maximum slope | |
1 | 5th percentile of the time series | |
1 | 10th percentile of the time series | |
1 | 25th percentile of the time series | |
1 | 75th percentile of the time series | |
1 | 90th percentile of the time series | |
1 | 95th percentile of the time series | |
1 | Date of maximum time series value |
Transition | Land Cover Simulation | Percentage of Sequence |
---|---|---|
Cropland | Stable cover | 100 |
Developed | Stable cover | 100 |
Trees | Stable cover | 100 |
Shrubland | Stable cover | 100 |
Grassland | Stable cover | 100 |
Water | Stable cover | 100 |
Wetland | Stable cover | 100 |
Barren | Stable cover | 100 |
Cropland ↔ Grassland | Agricultural shift | 70/30 |
Cropland ↔ Barren | Fallow | 80/20 |
Trees ↔ Shrubland | Degradation/Regrowth/Greening | 70/30 |
Trees ↔ Grassland | Clearance/Regrowth/greening | 70/30 |
Shrubland ↔ Grassland | Clearance/Abandonment | 70/30 |
Shrubland ↔ Cropland | Clearance/Abandonment | 70/30 |
Trees ↔ Cropland | Clearance/Abandonment | 70/30 |
Wetland ↔ Grassland ↔ Cropland | Seasonal wetlands | 33/33/33 |
2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 | |||||
---|---|---|---|---|---|---|---|---|
Land Cover | Users | Producers | Users | Producers | Users | Producers | Users | Producers |
Stable cropland | 61 | 68 | 66 | 84 | 49 | 89 | 56 | 82 |
Stable other | 70 | 92 | 84 | 91 | 84 | 92 | 76 | 89 |
Stable grassland | 53 | 78 | 46 | 70 | 59 | 81 | 61 | 84 |
Stable trees | 80 | 86 | 76 | 87 | 69 | 77 | 72 | 83 |
Cropland to other | 100 | 6 | 100 | 3 | 100 | 8 | 67 | 3 |
Cropland to grassland | 100 | 14 | 94 | 15 | 90 | 28 | 86 | 15 |
Cropland to trees | 100 | 1 | 100 | 1 | 100 | 4 | 67 | 0 |
Other to cropland | 67 | 5 | 75 | 7 | 100 | 13 | 100 | 6 |
Other to grassland | 64 | 10 | 65 | 7 | 84 | 21 | 64 | 4 |
Other to trees | 100 | 4 | 0 | 0 | 93 | 15 | 0 | 0 |
Grassland to cropland | 92 | 41 | 76 | 35 | 81 | 31 | 100 | 14 |
Grassland to other | 55 | 6 | 72 | 9 | 69 | 24 | 50 | 7 |
Grassland to trees | 33 | 5 | 94 | 19 | 100 | 19 | 100 | 2 |
Trees to cropland | 100 | 25 | 100 | 28 | 100 | 30 | 100 | 7 |
Trees to other | 71 | 7 | 67 | 21 | 83 | 5 | 100 | 2 |
Trees to grassland | 79 | 18 | 83 | 46 | 100 | 34 | 60 | 7 |
2000–2005 | 2005–2010 | 2010–2015 | 2015–2018 | |||||
---|---|---|---|---|---|---|---|---|
Land Cover | Area (km2) | SE (km2) | Area (km2) | SE (km2) | Area (km2) | SE (km2) | Area (km2) | SE (km2) |
Stable cropland | 153,211 | 47,651 | 179,796 | 47,739 | 148,476 | 45,228 | 198,657 | 59,345 |
Stable other | 1,340,525 | 119,452 | 1,645,780 | 114,346 | 1,620,578 | 110,114 | 1,519,434 | 128,984 |
Stable grassland | 569,891 | 95,466 | 528,926 | 100,957 | 567,818 | 94,171 | 614,316 | 95,434 |
Stable trees | 1,070,482 | 106,175 | 971,476 | 104,825 | 982,111 | 122,832 | 996,839 | 116671 |
Cropland to other | 47,142 | 35,275 | 36,491 | 32,484 | 36,215 | 27,364 | 44,362 | 36,986 |
Cropland to grassland | 39,728 | 29,899 | 62,484 | 35,931 | 67,793 | 36,533 | 65,208 | 40,049 |
Cropland to trees | 58,390 | 38,591 | 36,117 | 30,562 | 10,397 | 14,219 | 48,457 | 40,886 |
Other to cropland | 40,934 | 31,285 | 42,742 | 31,706 | 40,695 | 30,875 | 57,780 | 42,970 |
Other to grassland | 130,780 | 56,644 | 97,214 | 49,063 | 89,557 | 46,749 | 161,125 | 70,127 |
Other to trees | 81,218 | 51,998 | 82,304 | 53,449 | 130,063 | 61,859 | 93,922 | 57,074 |
Grassland to cropland | 135,812 | 44,177 | 114,638 | 44,586 | 71,004 | 36,965 | 54,471 | 36,740 |
Grassland to other | 143,438 | 60,963 | 91,720 | 49,054 | 57,485 | 35,089 | 44,365 | 35,223 |
Grassland to trees | 56,982 | 41,168 | 89,217 | 44,966 | 134,505 | 56,847 | 72,051 | 48,347 |
Trees to cropland | 29,715 | 22,355 | 25,014 | 19,910 | 13,727 | 12,026 | 24,380 | 26,416 |
Trees to other | 125,544 | 57,870 | 27,574 | 26,855 | 49,169 | 40,565 | 48,448 | 40,364 |
Trees to grassland | 69,920 | 40,419 | 64,891 | 31,069 | 77,341 | 40,286 | 55,509 | 41,197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graesser, J.; Stanimirova, R.; Tarrio, K.; Copati, E.J.; Volante, J.N.; Verón, S.R.; Banchero, S.; Elena, H.; Abelleyra, D.d.; Friedl, M.A. Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America. Remote Sens. 2022, 14, 4005. https://doi.org/10.3390/rs14164005
Graesser J, Stanimirova R, Tarrio K, Copati EJ, Volante JN, Verón SR, Banchero S, Elena H, Abelleyra Dd, Friedl MA. Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America. Remote Sensing. 2022; 14(16):4005. https://doi.org/10.3390/rs14164005
Chicago/Turabian StyleGraesser, Jordan, Radost Stanimirova, Katelyn Tarrio, Esteban J. Copati, José N. Volante, Santiago R. Verón, Santiago Banchero, Hernan Elena, Diego de Abelleyra, and Mark A. Friedl. 2022. "Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America" Remote Sensing 14, no. 16: 4005. https://doi.org/10.3390/rs14164005
APA StyleGraesser, J., Stanimirova, R., Tarrio, K., Copati, E. J., Volante, J. N., Verón, S. R., Banchero, S., Elena, H., Abelleyra, D. d., & Friedl, M. A. (2022). Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America. Remote Sensing, 14(16), 4005. https://doi.org/10.3390/rs14164005