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Abstract: Understanding the mechanisms, intensity, and spatio-temporal heterogeneity of the impacts
of urbanization and eco-environmental quality on carbon storage is crucial for achieving carbon
neutrality goals. This study constructed a multiscale spatio-temporal analysis framework using
multi-source remote sensing data, the InVEST model, and the multiscale geographically weighted
regression (MGWR) model. Then, the effects of multiple factors on regional carbon storage were
assessed in an empirical study involving 199 counties in Beijing-Tianjin-Hebei. The results showed
that the carbon storage loss in the Beijing-Tianjin-Hebei region from 2010 to 2018 was 58.87 Tg C,
with an annual relative loss rate of 0.16%. The MGWR model used in this study explained more
than 98% of the spatial variation in regional carbon storage. In contrast, the impacts of various
urbanization and eco-environmental indicators on regional carbon storage varied with the spatial and
temporal variation. Overall, urban land structure and vegetation growth strongly influenced regional
carbon storage resulting from urbanization and eco-environmental quality, respectively. In addition,
based on an analysis of spatial context, MGWR suggests that the northwestern mountains in the
Beijing-Tianjin-Hebei region have a greater potential to store more carbon than the other regions. This
study also details the impact of future sustainable land use on regional carbon storage. Our findings
can provide a scientific reference for formulating relevant carbon storage conservation policies.

Keywords: remote sensing; carbon storage; spatial analysis; land use; urbanization; eco-environmental
quality

1. Introduction

Cities worldwide have experienced rapid urbanization since the advent of the An-
thropocene [1]. Globally, urbanized areas are expected to grow by more than 180%, from
65,000 km2 in 2000 to 186,000 km2 in 2030 [2]. A shift to an urbanization-oriented de-
velopment strategy has created spectacular results in the past decade. Nonetheless, it
has also resulted in a few significant challenges, such as resource scarcity [3], population
growth [4], and eco-environmental deterioration [5]. Urbanization and eco-environmental
changes have resulted in several undesirable phenomena, including urban heat islands [6,7]
and soil erosion [8]. However, a critical phenomenon—the loss of carbon storage—is
often overlooked.

Carbon is absorbed and accumulated in terrestrial and marine ecosystems, which is
beneficial for mitigating climate change and improving ecosystem services [9,10]. One
of the most significant impacts of urbanization and its resulting environmental change
is the loss of carbon storage [11]. Therefore, assessing how the mechanisms, intensity,
and spatial heterogeneity of urbanization and eco-environmental quality impacts regional
carbon storage is highly important in providing sustainable land management.

Estimating carbon storage has long been an important issue of common concern
for ecology, climate change, and other disciplines. Numerical modeling, field surveys,
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and remote sensing data have garnered considerable attention in estimating carbon
storage [12–14]. Researchers have developed various process-based models that incor-
porate the direct effects of socioeconomic and climate systems on carbon emissions [15–17].
However, these process-based approaches often fail to capture the relationship between
changes in land use and carbon storage [11,18]. According to studies on various geograph-
ical scales [19–21], land use changes (LUC) pose severe threats to ecosystems [22,23]. From
this perspective, LUC can be aligned with carbon storage changes using the Integrated
Valuation of Ecosystem Services and Tradeoff (InVEST) model [24]. Based on the carbon
density distribution at global and regional levels, various vegetation and soil types can
be used to estimate carbon storage [25]. Another benefit of the InVEST model is that it
combines the advantages of the model and field surveys to effectively estimate the spatial
distribution of carbon storage by creating a carbon storage table.

Traditionally, ecosystem services, including carbon storage, have been evaluated
primarily from the standpoint of LUC. These studies have relied heavily on qualitative
analyses and simple mathematical methods [26,27]. Studies of ecosystem drivers typi-
cally overlook two critical aspects: multifactor interactions and the spatial heterogeneity
and scale of impacts. Spatio-temporal pattern analyses based on visualizations of spatial
information cannot accurately identify the intensity of the effects of relevant drivers on
ecosystem services. In contrast, correlation analysis and ordinary least squares regres-
sion (OLSR) ignore the details of the impact mode. Spatial heterogeneity and scale are
two fundamental concepts in geographic research [28,29], and there is now a general con-
sensus that spatial processes (e.g., the weather and tides in a certain area) may differ across
regions and operate at different scales [30]. As exemplified by carbon storage, ecosystem
services are also a complex phenomenon influenced by multiple urbanization and eco-
environmental quality factors. Therefore, theoretically and practically, it is imperative to
assess the impact of urbanization on regional carbon storage and propose localized carbon
storage conservation policies.

Studying the spatial scale and heterogeneity of action mechanisms simultaneously
has been technically challenging in past research, with OLSR, generalized additive mod-
els, machine learning methods, and classical geographically weighted regression (GWR)
models all having different limitations [28]. However, the drivers of carbon storage can be
more accurately detected through multiscale geographically weighted regression (MGWR),
which allows the regression to be performed at multiple bandwidths (instead of only one
for each variable as in the GWR model) [31]. MGWR is considered a significant break-
through in spatial analysis [32], as it is currently the only analytical approach that provides
information on how specific factors influence the dependent variable at both the spatial
scale and heterogeneity levels [33,34]; it also allows for measurements of contextual effects
in determining carbon storage.

In addition to developing a basic theory of ecosystem services, examining the spatial
heterogeneity and scales of carbon storage drivers can provide a valuable reference for
natural resource management. To this end, we used the InVEST model to calculate carbon
storage and then analyzed the multiple associated drivers using the MGWR model to
address the following questions: (i) What are the mechanisms and intensities by which
urbanization and eco-environmental quality affect regional carbon storage? (ii) What novel
insights can MGWR contribute to ensure a better understanding of factors affecting regional
carbon storage? In other words, what are the influencing factors of spatial scale and spatial
heterogeneity? We present a multiscale spatial framework based on remote sensing data
for analyzing carbon storage drivers and critique previous applications for assessing them
in order to facilitate the development of specific carbon conservation policies.
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2. Material and Methods
2.1. Research Design

The methods used in this study are illustrated in Figure 1. Combined with the mul-
tiscale model, we can determine the spatial scale and distribution patterns of the critical
drivers. The study follows three steps:

1. Spatial-temporal change pattern of carbon storage based on the InVEST model;
2. Spatial calculation of multidimensional drivers;
3. Multiscale-driven assessment of spatial-temporal drivers of carbon storage.
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The three following principles were used to select specific indicators for different
types of drivers: interpretability, being mentioned in the relevant literature, and avoid-
ing redundancy. Based on the above principles and the urbanization-eco-environmental
quality ecosystem services analysis framework constructed herein, we selected the four
most important drivers for urbanization and eco-environmental quality and added four
additional indicators related to background topography or climate as control variables
to ensure the comprehensiveness of the MGWR model. For example, variables such as
topographic position index and photosynthetically active radiation were discarded because
they would significantly increase the multicollinearity of the MGWR model (i.e., making
the local collinearity index of the model generally greater than 15). The built-up area
(BUA) [35] represents the scale of urbanization, nighttime light intensity (NTL) represents
the dynamism of economic development [11], the population density (PD) [36] represents
the impact of human activities, and the percentage of impervious surfaces in urban areas
(UISA) [37] represents the structural configuration of land use in urbanization. Regarding
the specific indicators of ecological quality, we selected the four that are most commonly
used to assess ecological quality: normalized difference vegetation index (NDVI) [38] to
characterize the greenness of vegetation in the region, fine particulate matter (PM2.5) [39]
to characterize the level of air pollution in the region, and relative humidity (RH) [40] and
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air temperature. We added four additional control variables to assess the effects of urban-
ization and ecological quality on regional carbon storage, including elevation (DEM) [41],
slope [42], precipitation [43], and wind speed (WS) [44] to minimize errors resulting from
the topography and climate.

2.2. Study Area

Beijing-Tianjin-Hebei (i.e., the Jingjinji region) is an essential urban agglomeration
and economic center in China. It is located in the northern part of the North China
Plain (Figure 2), specifically between 36◦05′–42◦40′N and 113◦27′–119◦50′E. This region is
bounded by the Yanshan Mountains to the north, the Taihang Mountains to the west, and
the Bohai Bay to the east. The northwest and northern parts of this region are mountainous.
In contrast, the south and east are relatively flat, making Jingjinji a vital ecological perimeter
of the North China Plain and a key area in the regional environmental security pattern.
Owing to the conflict between urbanization and eco-environmental quality, the regional
ecosystem services are facing critical challenges in this area.
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2.3. Data

Considering that the available data was limited and that MGWR currently handles
only cross-sectional data, data from 2010 and 2018 were used to analyze long-term trends.
The following remote sensing and meteorological data were used in this study:

1. From the annual China Land Cover Dataset (CLCD) [45], land use data for 2010 and
2018 were divided into six primary types (cropland, woodland, grassland, built-up areas,
water, and unused land). The overall accuracy of the CLCD dataset exceeds 80%.

2. The National Geographic Information Resources Catalogue System (NGIRCSS)
provided a comprehensive collection of basic geographic information, primarily based on
vectors and cities (https://www.webmap.cn (accessed on 12 August 2022)).

https://www.webmap.cn
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3. The elevation was determined using Shuttle Radar Topography Mission (SRTM)
data from the year 2000, with a resolution of 90 m.

4. MODIS NDVI products (MYD13A2 v006) were obtained from NASA’s Terra satellite
at a 1-km resolution for 2010 and 2018.

5. High-resolution (1-km) and high-quality fine particulate matter data for China
(ChinaHighPM2.5) were collected using the ChinaHighAirPollutants (CHAP) dataset, which
is a combination of MODIS/Terra + Aqua, Multi-Angle Implementation of Atmospheric
Correction (MAIAC), and a variety of human and natural factors using the Space-Time
Extra Tree (STET) model [46,47].

6. An integrated and consistent annual NTL product was developed for 2010 and 2018
based on a harmonized global nighttime light dataset [48].

7. Meteorological data (i.e., precipitation, relative humidity, air temperature, and wind
speed) was spatially interpolated in accordance with the observed data in 756 Chinese
meteorological stations, which were downloaded from the Resource and Environment
Science and Data Center (www.resdc.cn (accessed on 12 August 2022)).

Table 1 shows a descriptive statistical analysis of all variables used in this study.

Table 1. Descriptive statistics for variables used in this study.

Variable Year N Std. Dev. Mean Max Min Median Data Source

C (Mg/hm2)
2010 199 47.95 182.57 303.85 54.27 182.94

/2018 199 49.19 178.50 302.17 54.29 179.47

BUA (km2)
2010 199 67.10 73.55 414.36 3.06 54.54 China Land Cover Dataset [45]2018 199 77.911 96.02 477.63 5.22 78.75

NTL (DN value) 2010 199 15.27 12.99 63 0.15 7.52 available literature [48]2018 199 15.67 15.99 60.51 0.44 9.44

UISA
2010 199 0.19 0.092 0.88 0 0.02 available literature [49]2018 199 0.19 0.100 0.88 0 0.02

PD (Person/km2)
2010 199 4837 1996 31176 41 630 China City Statistical Yearbook2018 199 5979 2335 38029 42 668

NDVI (1/103)
2010 199 77.93 283.53 492.12 79.21 287.92

MOD13A22018 199 86.57 307.27 508.98 97.81 308.08

PM2.5 (µg/m3) 2010 199 21.08 75.11 113.01 24.27 78.42 CHAP [46]2018 199 13.80 54.19 81.97 20.13 57.01

Temp (◦C) 2010 199 2.01 11.60 14.30 4.73 12.27

Resource and Environment Science and
Data Center (www.resdc.cn (accessed on

12 August 2022))

2018 199 1.971 12.29 14.99 5.57 12.82

RH (%) 2010 199 3.02 57.91 70.17 50.11 57.80
2018 199 3.50 56.99 67.43 46.63 57.46

WS (m/s) 2010 199 0.34 2.22 3.25 1.54 2.17
2018 199 0.304 2.28 3.16 1.62 2.25

Pre (mm) 2010 199 69.53 607.60 797.48 418.89 600.90
2018 199 56.18 596.90 703.19 420.42 613.24

DEM (m) / 199 362.17 227.63 1487.01 2.07 43.88
SRTMSlope (◦) / 199 4.64 3.618 18.76 0.349 0.69

Note: Please see Table S1 for an explanation of each abbreviation in this table.

2.4. Carbon Storage Estimation

There are several factors that affect the carbon storage capabilities of each land cover
type, including the densities of above-ground carbon (AGC), below-ground carbon (BGC),
soil organic carbon (SOC), and dead organic carbon (DOC) [50]. Based on land use mapping
and the parameters of carbon density, the InVEST model calculates the regional carbon
storage at the following rate:

Cpik = A× (DAGC + DBGC + DSOC + DDOC) (1)

where Cp,k (unit: Mg/hm2) refers to carbon storage in the specific cell p associated with
the land use type k. A (unit: hm2) refers to the cell area. The densities of AGC, BGC, SOC,
and DOC are indicated by DAGC, DBGC, DSOC, and DDOC (unit: Mg/hm2), respectively,
according to land use types. The four carbon density types in each land cover were
estimated for use in the InVEST model based on past studies [37,51–58] (Table 2). The
data in the above literature include both model estimates and field surveys, and this study
especially focuses on the carbon storage data in North China to better fit the Beijing-Tianjin-
Hebei region.

www.resdc.cn
www.resdc.cn
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Table 2. Carbon density of each land use type in the InVEST model (unit: Mg/hm2).

Types AGC BGC SOC DOC

Cultivated land 17 87.7 92.9 9.82
Woodland 42.4 115.9 158.8 14.11
Grassland 35.3 86.5 99.9 7.28

Water 2.29 0 17.16 0
Urban 7.61 4.51 42.17 0

Bare land 9.1 14.2 22.63 0
Note: Please see Table S1 for an explanation of each abbreviation in this table.

2.5. MGWR Model

The spatial autocorrelation observed in previous ecosystem services research may
be a result of the following reasons: (i) the high level of regional heterogeneity; (ii) when
comparing with neighboring regions, the difference in urbanization and eco-environmental
quality may be highly significant in investigating the relationship between carbon storage
and several driving factors using MGWR, which is an improved version of the GWR tradi-
tionally used by researchers to analyze these issues. In MGWR, different bandwidths can
be assigned to other variables rather than a single global bandwidth [30]. Each observation
is associated with estimates of the parameters of MGWR, thus providing a more compre-
hensive and intuitive understanding of the spatially varying correlation between carbon
storage and associated drivers.

A linear regression model for spatial data assumes that the response to stimuli is
relatively stationary. Specifically, when the stimuli are the same or similar, they will affect
all components of the study area in the same manner. Despite this assumption, there
remains data that must be processed according to spatially variant methods, where spatial
non-stationarity is manifest. It is possible to address this problem using the GWR, which is
formulated as follows:

Yi = α0(i)+∑ p
k=1αk(i)Xik + εi, i = 1, . . . , n (2)

Given that the parameters of the model are different across locations I, the GWR can
be estimated as follows:

α′(i) = (XTWX(i))
−1

XTW(i)Y (3)

Considering that observations located closer to i (latitude and longitude) should be
given greater weight than those farther from it, the matrix W(i) can be thought of as a
matrix of weights that is subject to changes in i.

GWR estimates the data for the current location based on the data for neighboring
locations. Generally, the weighting matrix of a spatial process can typically be determined
using various strategies. However, they are typically Gaussian in nature and reflect the
types of dependencies that often exist in spatial processes. Weighing methods can be
classified as either adaptive or fixed. Local regression models with a fixed Gaussian kernel
use the parameter Wij to identify a continuous function between the location j of the data
and the regression location i:

Wij = exp[−
(dij/h)2

2
] (4)

where dij represents the distance between i and j, and h indicates the bandwidth; if h is
increased, the steepness of the kernel gradient will diminish, and the local calibration will
include additional data points. During the GWR calibration, it is possible to determine
the optimum value of h. A choice must be made between the variance and bias to select
the most appropriate bandwidth. We have minimized the corrected Akaike Information
Criterion (AIC) value in each GWR calibration by performing an iterative process to obtain
the optimal bandwidth.
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The spatial heterogeneity in a relationship can be captured using GWR. However,
there is a similar spatial scale to these relationships as they change with each covariate.
In addition, as the assumption of the variables with the same spatial scale can be relaxed,
MGWR can significantly improve GWR as it can optimize covariate-specific bandwidths.
The formulation is as follows:

log Yi = βbw(Ui, Vi) + ∑ jβbw(Ui, Vi) log Xij + εi (5)

where bw* refers to the specific bandwidth that will be used to estimate the corresponding
expression for the *th conditional regression equation; several processes can be applied
to different spatial scales using MGWR to find the corresponding bandwidths for other
dependent relationships involving the response variables and different predictor variables.

The MGWR can be calibrated using Fotheringham et al.’s back-fitting algorithm [30].
Calibration was performed using MGWR 2.2.1 (more information can be found at https:
//github.com/pysal/mgwr (accessed on 12 August 2022)).

3. Results
3.1. Patterns of Carbon Storage in Space and Time

The spatial pattern of carbon storage and land use from 2010–2018 is shown in Figure 3
and Figure S1. Between 2010 and 2018, the urban land area in the Jingjinji region increased
from 18,144 km2 (8.5% of the total area) to 27,284 km2 (12.7%). On average, the urban land
area expanded by 6.2% annually. Concurrently, water and the woodland regions increased,
whereas the rest of the land use types decreased. According to the spatial distribution of
land use, most of the new urban lands are situated in the Beijing city center and the Tianjin
city center. Similarly, regional carbon storage shows similar spatial and temporal variation
characteristics. From 2010 to 2018, carbon storage loss in the Beijing-Tianjin-Hebei region
was 58.87 Tg, representing a loss of 0.16%. It is worth noting that since the InVEST model
assumes that carbon storage is the same within the same land use type, the maps of carbon
storage change in this paper only show areas of carbon storage growth or loss rather than
specific values (Figure 3c).
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Further, to validate the existence of spatial autocorrelation in carbon storage, Moran’s
criterion was applied for both periods (see Table 3). Based on these test results, storage
had a probability of occurrence greater than 1% (p-value of 0.001) in all the studied years,
showing a significant spatial correlation between carbon storage and global warming. In
combination with the maps of residual distribution (Figures S2 and S3), we concluded that
clustered patterns may have been caused by random processes, which strongly indicates
spatial heterogeneity in the model.

Table 3. Spatial autocorrelation statistics results for the carbon storage in each of the two time periods.

2010 2018

Moran’s Index 0.563 0.561
Z-score 19.51 19.47
p-value <0.001 <0.001

3.2. MGWR Results

Tables 4 and 5 show the coefficient statistic values with diagnostic information for
the MGWR model results in 2010 and 2018, respectively. Both years of the MGWR in
this study show an outstanding performance with very high coefficients of determination
(0.980–0.983), indicating that the drivers employed and evaluated in this research can
explain more than 98% of the spatial variation in regional carbon storage. Additionally, the
adjusted coefficients of determination were not significantly lower, which indicates that the
MGWR does not contain redundant independent variables. Furthermore, the MGWR can
allocate variable bandwidths; thus, the bandwidths are adapted based on the variables (see
Tables 4 and 5 for more information).

Table 4. Result of the MGWR model between carbon storage and drivers in 2010.

Int. BUA NTL UISA PD NDVI PM2.5 Temp RH Ws Pre DEM Slope

Mean −0.063 −0.055 −0.062 −0.505 0.044 0.143 −0.025 −0.012 −0.002 0.062 −0.019 −0.063 0.453
STD 0.001 0.031 0.002 0.052 0.001 0.115 0.005 0.009 0.001 0.056 0.019 0.001 0.106
Min −0.066 −0.159 −0.065 −0.588 0.043 −0.013 −0.033 −0.027 −0.005 −0.044 −0.093 −0.066 0.31

Median −0.062 −0.045 −0.062 −0.468 0.043 0.112 −0.025 −0.009 −0.002 0.052 −0.015 −0.062 0.424
Max −0.06 −0.02 −0.056 −0.459 0.045 0.368 −0.017 0 0 0.174 −0.001 −0.06 0.642

Bandwidth 196 73 195 129 196 44 176 153 196 63 131 43 43
Diagnostics Info:

R2 0.983
Adj. R2 0.978
AICC −128.138

Residual Sum
of Squares 3.379

Note: Please see Table S1 for an explanation of each abbreviation in this table.

Table 5. Results of the MGWR model between carbon storage and drivers in 2018.

Int. BUA NTL UISA PD NDVI PM2.5 Temp. RH Ws Pre. DEM Slope

Mean −0.074 −0.049 −0.125 −0.346 0.012 0.223 0.073 −0.019 0.024 −0.002 0.034 −0.124 0.51
STD 0.002 0.003 0.002 0.003 0.017 0.105 0.002 0.079 0.002 0.012 0.074 0.138 0.005
Min −0.078 −0.055 −0.128 −0.351 −0.004 −0.077 0.067 −0.154 0.019 −0.019 −0.111 −0.361 0.499

Median −0.074 −0.049 −0.125 −0.345 0.001 0.238 0.073 −0.001 0.025 −0.001 0.065 −0.132 0.513
Max −0.069 −0.042 −0.122 −0.342 0.063 0.381 0.079 0.072 0.026 0.016 0.158 0.094 0.516

Bandwidth 196 186 196 192 143 45 179 119 196 192 43 43 196
Diagnostics Info:

R2 0.980
Adj. R2 0.975
AICC −107.198
RSS 3.983

Note: Please see Table S1 for an explanation of each abbreviation in this table.
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Being global variables (bandwidths ranging from 176–196), NT, PM2.5, and RH impact
carbon storage in a similar manner. The remaining variables, however, show consider-
able spatial variation (bandwidths of 43–143), which further supports the need for using
the MGWR model. In general, indicators related to urbanization affect regional carbon
storage at a more global scale, followed by indicators related to ecological quality; back-
ground topography and climatic factors have the most localized scale of influence. As
the MGWR model can exert a spatially explicit influence on the relationship between the
independent and dependent variables, the coefficient statistics values can only be used as a
preliminary guide.

Figure 4 shows the variations in local determination of the coefficient spatial distri-
bution during the analyzed period. In general, higher determination coefficients indicate
more effective explanations for correlation within a region. According to its spatial distri-
bution pattern, the relatively lower determination coefficient was typically located in the
southern–central region and remained relatively stable from 2010 to 2018. According to the
above results, the strength of the explanation of the MGWR in this study decreased slightly
(about 10%) in individual regions, suggesting that carbon storage changes in these regions
may be affected by other, more specific factors, and therefore merit closer attention.
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Figures 5–7 illustrate the change in local significance and the coefficients of the vari-
ables from 2010 to 2018. We only colored areas with a noteworthy correlation between
carbon storage and the variables (p-value < 0.1). Several patterns and characteristics can be
identified, including the following:
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(a) Except for PD, all four urbanization indicators have a significant impact on regional
carbon storage, and the influence direction is negative overall (Figure 5a–h). Initially, BUA
appeared to affect regional carbon storage only in the northern and eastern regions in 2010,
ultimately extending to the entire study area in 2018 (Figure 5a,e). However, the intensity
of the impact decreased by approximately two-thirds overall. The results suggest that
changes in urbanization patterns in the Beijing-Tianjin-Hebei region from 2010 to 2018
also influenced changes in regional carbon storage. Nonetheless, the effects were the most
substantial along the eastern coast. The impact of UISA (Figure 5b,f) on regional carbon
storage was the strongest of all drivers, which indicated that the optimization of land
use structure configuration in urban areas is an important aspect that requires attention
in future carbon storage conservation efforts. The spatial differences in UISA and NTL
(Figure 5c,g) effects on regional carbon storage are relatively small (only 10–15%), and
the patterns of these effects did not differ significantly between 2010 and 2018, thereby
suggesting that these two factors have a relatively stable impact on regional carbon storage.
In terms of the study area and period, PD (Figure 5d,h) had no significant effect on regional
carbon storage. Although we cannot assume with confidence that human activities do
not impact carbon storage, this result at least suggests that the mode of influence was
indirect. In general, urbanization affects regional carbon storage mainly by the expansion
of the urban area, the increase of impervious surface percentage, and economic vitality. It
shows an apparent spatial heterogeneity, among which the growth of impervious surface
percentage has the most significant impact.

(b) The four factors of the ecological environment influenced the regional carbon
storage; in order of intensity: NDVI, PM2.5, temperature, and RH (Figure 6a–h). The
power and extent of the impact of NDVI (Figure 6c,g) on regional carbon storage increased
over time, which indicates that vegetation was increasingly critical in the conservation of
carbon storage with the implementation of vegetation protection policies in the Beijing-
Tianjin-Hebei region (e.g., the Three Northern Protected Forest Project). The effect of PM2.5
(Figure 6a,e) on regional carbon storage shifted from negative to positive from 2010–2018,
and the spatial pattern changed significantly. The Chinese government launched an air
pollution prevention and control action plan in 2013, which substantially reduced air
pollution levels. Based on these results and facts, air pollution significantly impacts regional
carbon storage, and temporal changes in air pollution should be incorporated into the
analysis. Regarding temperature (Figure 6b,f) and RH (Figure 6d,h), their influence patterns
differed substantially. Temperature is an essential parameter for measuring climate change,
and, in this study, it was also one of the main factors influencing the impact on regional
carbon storage. The impact of temperature on carbon storage was insignificant in 2010.
However, it displays a clear pattern of latitudinal variation in 2018, specifically, a negative
effect in the north and a positive effect in the south of the Beijing-Tianjin-Hebei region. It
suggests that dramatic land use change during 2010–2018 changes the impact of drivers on
carbon storage and that this change is composed of both direct and indirect components due
to the complex multivariate MGWR model used in this paper. However, it is worth noting
that this variation in drivers over time also represents some uncertainty in the study results
(please see Section 4.3). The impact of RH on regional carbon storage was insignificant.

(c) The control variables of the MGWR model, i.e., the background topographic
and climatic factors in this study, are usually not included in relevant analyses. However,
considering that these factors are also essential aspects of sustainable land use, it is necessary
to explain the main factors involved. The results demonstrate that slope (Figure 7b,f) has
a powerful influence on regional carbon storage, which suggests that this is an issue that
must be considered in the development of carbon storage conservation policies. We also
discuss the future land use and carbon storage relationship based on this important finding,
especially considering slope (see Section 4.2).
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4. Discussion
4.1. Multiscale Extensions of the GWR Model

The geographic scale can be intuitively interpreted by utilizing MGWR’s respective
bandwidths. A combination of global, regional, and local spatial contexts can also enhance
policymaking regarding carbon storage determinants. To compare the differences between
the GWR and MGWR models, we analyzed the same variables utilized in the GWR model
(Table 6).

Table 6. Diagnostic information for the classical GWR model across both periods.

2010 2018

Bandwidth 81 88
R2 0.986 0.985

Adj. R2 0.981 0.978
AICC −129.664 −109.886
RSS 3.739 4.025

The bandwidth of the GWR can be regarded as an intermediate value of the MGWR
bandwidth, which is to say that it ignores the robustness and does not capture the spatial
heterogeneity of some variables. Therefore, GWR models generally have a lower R2, higher
AIC, and residual sum of squares, as well as specific local parameters that are difficult
to interpret. According to the MGWR analysis results, the effect of vegetation on carbon
storage became increasingly localized over time, whereas the impact of built-up areas was
more global, which illustrates that carbon storage conservation policies should focus on
inter-regional factors from both perspectives.

In addition to the spatial scale, one of the essential features of MGWR is that it
provides information regarding the effect of spatial context on the dependent variable, and
the intercept of the model is considered a spatial effect when all observable, reasonable,
and valuable independent variables are controlled as much as possible [29]. In this study,
12 independent variables were selected from three different levels, and the explanatory
degree of the model was more than 98%. Hence, the intercept term of our MGWR model
has a strong explanatory power. Figure 8 shows that the effect of spatial context on regional
carbon storage was significant throughout the study area during 2010–2018, and the spatial
pattern of impact intensity changes from high in the west to low in the east, to high in the
northwest to low in the south. These findings suggest that the mountainous regions in the
northwest have the strongest potential for carbon storage increase.

4.2. Future Sustainable Land Management and Carbon Storage Change

We conducted a further analysis of the impact of land use on carbon storage by sim-
ulating the land use status under natural development scenarios in 2030 using a cellular
automata–Markov model (referring to Zhao et al. [24]); three different scenarios were
derived from this research (Table 7). The results (Figure 9) show that without the implemen-
tation of any land management policies, the carbon storage in the Beijing-Tianjin-Hebei
region will continue to decline by 112.5 Tg until 2030, whereas the adoption of agricul-
tural expansion policies will decrease this number to 62.2 Tg, and the implementation of
forest buffer zones and forest rehabilitation from slope agriculture will ultimately lead
to a decrease in carbon storage. The implementation of the forest buffer zone and forest
rehabilitation from slope agriculture policies would result in almost no loss of carbon
storage. The above findings are compatible with the findings in Section 3, wherein rapid
urbanization can result in severe losses of carbon storage. The discussion in this section
complements the previous section’s driver analysis by presenting the consequences of
different land management policies via simulations.
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4.3. Limitations and Future Studies

Although this study incorporates innovations in constructing its analytical framework
and valuable new findings, some limitations still exist. First, although the MGWR model
substantially improved the explanatory power and rationality of the existing regression
models, it still cannot process long-time series data and the nonlinear relationships between
variables; the development of new statistical models remains a need for future research.
For example, analyzing the impact of temporal driver changes on carbon storage based
on a long-time series of panel data. Second, there is still some uncertainty regarding
the estimations of carbon storage and drivers. Although the assumption of consistent
carbon storage for the same land use type in the InVEST model is widely accepted, we
must acknowledge that it is based on high-quality land use data and carbon density
tables. Therefore, further land use mapping and carbon density field surveys are needed
to obtain accurate carbon density data, and more accurate measurement of drivers also
helps improve identification. Third, although the current model has a considerably high
degree of explanation, the selection of drivers can be further optimized, such as by adding
additional indicators that are currently difficult to quantify or analyze based on the future
development of accurate remote sensing products. Finally, this study only analyzed carbon
storage in ecosystem services, and a comprehensive assessment of multiple ecosystem
services such as food supplies, soils, and water conservation should be conducted in
the future.

5. Conclusions

Based on the MGWR model and multi-source remote sensing data from the spatial
multiscale and heterogeneity perspectives, this study represents a comprehensive and
in-depth analysis of the impact of urbanization and environmental quality on carbon
storage in the Beijing-Tianjin-Hebei region in 2010 and 2018. Overall, the urban land
use structure, urban land area, vegetation growth, economic vitality, air pollution, and
air temperature are the main factors through which urbanization and eco-environmental
factors affect the regional carbon storage order. Concurrently, the effects of PD and RH were
insignificant. The pattern and scale of influence of the variables also differed significantly
with time and space. The MGWR model revealed the impact of spatial context on regional
carbon storage; specifically, the northwest mountainous region showed a more substantial
potential for carbon storage increase in this study. Finally, based on multi-scenario land-use
simulations, the loss of carbon storage by 2018–2030 could be more than twice as high as
that of 2010–2018 if the current scenario continues. To achieve future carbon neutrality
goals, site-specific carbon storage conservation policies based on the impact of urbanization
and ecological quality should be developed.
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