Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Methods
2.2.1. Extracting PM2.5-RH Based on Weibo Data
2.2.2. Deriving Associated Factors Based on Multi-Source Data
2.2.3. Geographically Weighted Regression Model
3. Results
3.1. Spatiotemporal Variations in PM2.5-RH
3.2. Performances of the GWR Models
3.3. Spatiotemporal Heterogeneities in the Associated Determinates
4. Discussion
4.1. Analysis on PM2.5-RH Based on Weibo Data
4.2. Relative Importance of the Associated Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, S.; Qian, Z.M.; Xie, X.-H.; Luo, Y.; Han, R.; Hou, J.; Wang, C.; McMillin, S.E.; Wu, S. Short-term effects of air pollution on cause-specific mental disorders in three subtropical Chinese cities. Environ. Res. 2020, 191, 110214. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Yan, Y.; Al-Aly, Z. Burden of Cause-Specific Mortality Associated With PM2.5 Air Pollution in the United States. JAMA Netw. Open 2019, 2, e1915834. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Pereira, G.; Liu, Q.; Chen, W.; Huxley, R. The burden of lung cancer mortality attributable to fine particles in China. Sci. Total Environ. 2017, 579, 1460–1466. [Google Scholar] [CrossRef]
- Liu, J.; Yin, H.; Tang, X.; Zhu, T.; Zhang, Q.; Liu, Z.; Tang, X.; Yi, H. Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure. Environ. Pollut. 2021, 277, 116770. [Google Scholar] [CrossRef]
- Shi, W.; Bi, J.; Liu, R.; Liu, M.; Ma, Z. Decrease in the chronic health effects from PM2.5 during the 13th Five-Year Plan in China: Impacts of air pollution control policies. J. Clean. Prod. 2021, 317, 128433. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.; Niu, T.; Yang, W. PM2.5 prediction and related health effects and economic cost assessments in 2020 and 2021: Case studies in Jing-Jin-Ji, China. Knowl.-Based Syst. 2021, 233, 107487. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Kwan, M.-P.; Huang, B.; Xu, B. How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environ. Pollut. 2018, 238, 874–883. [Google Scholar] [CrossRef]
- Ji, H.; Wang, J.; Meng, B.; Cao, Z.; Yang, T.; Zhi, G.; Chen, S.; Wang, S.; Zhang, J. Research on adaption to air pollution in Chinese cities: Evidence from social media-based health sensing. Environ. Res. 2022, 210, 112762. [Google Scholar] [CrossRef]
- Kuerban, M.; Waili, Y.; Fan, F.; Liu, Y.; Qin, W.; Dore, A.J.; Peng, J.; Xu, W.; Zhang, F. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environ. Pollut. 2020, 258, 113659. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.H.; Xia, X.; Ho, K.-F.; Guo, Y.; Kurmi, O.P.; Du, H.; Bennett, D.A.; Bian, Z.; Kan, H.; McDonnell, J.; et al. Regional and seasonal variations in household and personal exposures to air pollution in one urban and two rural Chinese communities: A pilot study to collect time-resolved data using static and wearable devices. Environ. Int. 2021, 146, 106217. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; He, S.; Zhou, H. Spatio-temporal characteristics and convergence trends of PM2.5 pollution: A case study of cities of air pollution transmission channel in Beijing-Tianjin-Hebei region, China. J. Clean. Prod. 2020, 256, 120631. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Gao, M.; Chan, T.-C.; Gao, Z.; Zhang, M.; Li, Y.; Gu, Y.; Chen, A.; Yang, Y.; et al. Spatiotemporal variability in long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across the Yangtze River Delta (YRD) region over 2010–2016: A multistage approach. Chemosphere 2020, 257, 127153. [Google Scholar] [CrossRef]
- Li, R.; Mei, X.; Chen, L.; Wang, L.; Wang, Z.; Jing, Y. Long-Term (2005–2017) View of Atmospheric Pollutants in Central China Using Multiple Satellite Observations. Remote Sens. 2020, 12, 1041. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619–620, 436–445. [Google Scholar] [CrossRef]
- Jimenez Celsi, R.B.; Fabian, M.P.; Lane, K.J. Spatiotemporal Trends in Air Pollution and the Built Environment in Urban Areas in Chile 2002–2015. In Proceedings of the ISEE Conference Abstracts, Ottawa, ON, Canada, 26–30 August 2018; ISEE: Herndon, VA, USA, 2018. [Google Scholar]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef]
- Borck, R.; Schrauth, P. Population density and urban air quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [Google Scholar] [CrossRef]
- Ma, T.; Duan, F.; He, K.; Qin, Y.; Tong, D.; Geng, G.; Liu, X.; Li, H.; Yang, S.; Ye, S. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016. J. Environ. Sci. 2019, 83, 8–20. [Google Scholar] [CrossRef]
- Areal, A.T.; Zhao, Q.; Wigmann, C.; Schneider, A.; Schikowski, T. The effect of air pollution when modified by temperature on respiratory health outcomes: A systematic review and meta-analysis. Sci. Total Environ. 2022, 811, 152336. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhan, D.; Jin, F. Spatio-temporal Characteristics and Geographical Determinants of Air Quality in Cities at the Prefecture Level and Above in China. Chin. Geogr. Sci. 2019, 29, 316–324. [Google Scholar] [CrossRef]
- Grzędzicka, E. Is the existing urban greenery enough to cope with current concentrations of PM2.5, PM10 and CO2? Atmos. Pollut. Res. 2019, 10, 219–233. [Google Scholar] [CrossRef]
- Dong, D.; Xu, X.; Xu, W.; Xie, J. The Relationship Between the Actual Level of Air Pollution and Residents’ Concern about Air Pollution: Evidence from Shanghai, China. Int. J. Environ. Res. Public Health 2019, 16, 4784. [Google Scholar] [CrossRef] [PubMed]
- Sider, T.; Alam, A.; Zukari, M.; Dugum, H.; Goldstein, N.; Eluru, N.; Hatzopoulou, M. Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution. J. Transp. Geogr. 2013, 33, 230–239. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Urban park layout and exposure to traffic-derived air pollutants. Landsc. Urban Plan. 2020, 194, 103682. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, J.; Hong, A. Does urban greenway design affect air pollution exposure? A case study of Seoul, South Korea. Sustain. Cities Soc. 2021, 72, 103038. [Google Scholar] [CrossRef]
- Zhang, A.; Xia, C.; Li, W. Relationships between 3D urban form and ground-level fine particulate matter at street block level: Evidence from fifteen metropolises in China. Build. Environ. 2022, 211, 108745. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, J.; Hong, A. Clustering patterns of urban form factors related to particulate matter concentrations in Seoul, South Korea. Sustain. Cities Soc. 2022, 81, 103859. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xiao, X.; Jin, C.; Xia, J.; Li, X. Spatial differentiation of urban wind and thermal environment in different grid sizes. Urban Clim. 2019, 28, 100458. [Google Scholar] [CrossRef]
- Luo, Z.; Wan, G.; Wang, C.; Zhang, X. Urban pollution and road infrastructure: A case study of China. China Econ. Rev. 2018, 49, 171–183. [Google Scholar] [CrossRef]
- Hankey, S.; Lindsey, G.; Marshall, J.D. Population-level exposure to particulate air pollution during active travel: Planning for low-exposure, health-promoting cities. Environ. Health Perspect. 2017, 125, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Zhao, S.; He, L.; Liu, H.; Xu, H. Temporal and spatial trends in air quality in Beijing. Landsc. Urban Plan. 2019, 185, 35–43. [Google Scholar] [CrossRef]
- Cheng, N.; Li, Y.; Cheng, B.; Wang, X.; Meng, F.; Wang, Q.; Qiu, Q. Comparisons of two serious air pollution episodes in winter and summer in Beijing. J. Environ. Sci. 2018, 69, 141–154. [Google Scholar] [CrossRef] [PubMed]
- EEA. Air Quality in Europe—2019 Report; Technical Report; EEA: Copenhagen, Denmark, 2019. [Google Scholar]
- Lu, P.; Zhang, Y.; Lin, J.; Xia, G.; Zhang, W.; Knibbs, L.D.; Morgan, G.G.; Jalaludin, B.; Marks, G.; Abramson, M.; et al. Multi-city study on air pollution and hospital outpatient visits for asthma in China. Environ. Pollut. 2020, 257, 113638. [Google Scholar] [CrossRef] [PubMed]
- Deryugina, T.; Heutel, G.; Miller, N.H.; Molitor, D.; Reif, J. The mortality and medical costs of air pollution: Evidence from changes in wind direction. Am. Econ. Rev. 2019, 109, 4178–4219. [Google Scholar] [CrossRef]
- Bansal, S.; Chowell, G.; Simonsen, L.; Vespignani, A.; Viboud, C. Big Data for Infectious Disease Surveillance and Modeling. J. Infect. Dis. 2016, 214, S375–S379. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Royé, D.; Tobías, A.; Figueiras, A.; Gestal, S.; Taracido, M.; Santurtun, A.; Iñiguez, C. Temperature-related effects on respiratory medical prescriptions in Spain. Environ. Res. 2021, 202, 111695. [Google Scholar] [CrossRef]
- Khoury Muin, J.; Ioannidis John, P.A. Big data meets public health. Science 2014, 346, 1054–1055. [Google Scholar] [CrossRef]
- Edo-Osagie, O.; De La Iglesia, B.; Lake, I.; Edeghere, O. A scoping review of the use of Twitter for public health research. Comput. Biol. Med. 2020, 122, 103770. [Google Scholar] [CrossRef] [PubMed]
- Achrekar, H.; Gandhe, A.; Lazarus, R.; Yu, S.-H.; Liu, B. Predicting flu trends using twitter data. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 702–707. [Google Scholar]
- Chen, J.; Chen, H.; Wu, Z.; Hu, D.; Pan, J.Z. Forecasting smog-related health hazard based on social media and physical sensor. Inf. Syst. 2017, 64, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, B.; Pei, T.; Du, Y.; Zhang, J.; Chen, S.; Tian, B.; Zhi, G. Mapping the exposure and sensitivity to heat wave events in China’s megacities. Sci. Total Environ. 2021, 755, 142734. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, Y.; Jie, X.; Luo, A.; Wang, Y. Evaluation of the credibility of multi-source address elements: A case study of road feature. Bull. Surv. Mapp. 2021, 10, 108. (In Chinese) [Google Scholar]
- Liu, Y.; Zhan, Z.; Zhu, D.; Chai, Y.; Ma, X.; Wu, L. Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 327–335. (In Chinese) [Google Scholar] [CrossRef]
- Wu, K.; Wu, J.; Ye, M. A review on the application of social media data in natural disaster emergency management. Prog. Geogr. 2020, 39, 1412–1422. (In Chinese) [Google Scholar] [CrossRef]
- Yang, F.; Wendorf Muhamad, J.; Yang, Q. Exploring Environmental Health on Weibo: A Textual Analysis of Framing Haze-Related Stories on Chinese Social Media. Int. J. Environ. Res. Public Health 2019, 16, 2374. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J. Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack. ISPRS J. Photogramm. Remote Sens. 2022, 185, 201–218. [Google Scholar] [CrossRef]
- Maji, K.J.; Ye, W.-F.; Arora, M.; Nagendra, S.S. PM2. 5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef]
- Huang, H.; Long, R.; Chen, H.; Sun, K.; Li, Q. Exploring public attention about green consumption on Sina Weibo: Using text mining and deep learning. Sustain. Prod. Consum. 2022, 30, 674–685. [Google Scholar] [CrossRef]
- Kay, S.; Zhao, B.; Sui, D. Can social media clear the air? A case study of the air pollution problem in Chinese cities. Prof. Geogr. 2015, 67, 351–363. [Google Scholar] [CrossRef]
- Rabari, C.; Storper, M. The digital skin of cities: Urban theory and research in the age of the sensored and metered city, ubiquitous computing and big data. Camb. J. Reg. Econ. Soc. 2015, 8, 27–42. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Frank, L.D.; Pivo, G. Impacts of mixed use and density on utilization of three modes of travel: Single-occupant vehicle, transit, and walking. Transp. Res. Rec. 1994, 1466, 44–52. [Google Scholar]
- Rimoldi, B.; Urbanke, R. Information theory. In The Communications Handbook; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Zheng, Q.; Zhao, X.; Jin, M.; Liu, X. A Study on Diversity of Physical Activities in Urban Parks Based on POI Mixed-use: A Case Study of Futian District, Shenzhen. Planners 2020, 36, 78–86. (In Chinese) [Google Scholar]
- Environmental Protection Agency. Guideline for Reporting of Daily Air Quality—Air Quality Index (AQI); Environmental Protection Agency, Office of Air Quality Planning and Standards: Washington, DC, USA, 1999.
- Miao, L.; Liu, C.; Yang, X.; Kwan, M.-P.; Zhang, K. Spatiotemporal heterogeneity analysis of air quality in the Yangtze River Delta, China. Sustain. Cities Soc. 2022, 78, 103603. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hswen, Y.; Qin, Q.; Brownstein, J.S.; Hawkins, J.B. Feasibility of using social media to monitor outdoor air pollution in London, England. Prev. Med. 2019, 121, 86–93. [Google Scholar] [CrossRef]
- Hargittai, E. Potential Biases in Big Data: Omitted Voices on Social Media. Soc. Sci. Comput. Rev. 2018, 38, 10–24. [Google Scholar] [CrossRef]
- Gu, H.; Cao, Y.; Elahi, E.; Jha, S.K. Human health damages related to air pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 13115–13125. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Dispersion of atmospheric air pollution in summer and winter season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.-Q.; Wang, Y.-J.; Ma, C. National air pollution distribution in China and related geographic, gaseous pollutant, and socio-economic factors. Environ. Pollut. 2019, 250, 998–1009. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Amano, T.; Butt, I.; Peh, K.S.H. The importance of green spaces to public health: A multi-continental analysis. Ecol. Appl. 2018, 28, 1473–1480. [Google Scholar] [CrossRef]
- Lin, B.; Ling, C. Heating price control and air pollution in China: Evidence from heating daily data in autumn and winter. Energy Build. 2021, 250, 111262. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, H. Risk Assessment of Exposure to PM2.5 in Beijing Using Multi-Source Data. Acta Sci. Nat. Univ. Pekin. 2018, 54, 1103–1113. (In Chinese) [Google Scholar] [CrossRef]
Data | Resolution | Time | Usage | |
---|---|---|---|---|
The Weibo data | Vector | 2017 (Daily) | Extracting PM2.5-related health (PM2.5-RH) | |
Remote sensing data | MOD13Q1 | 250 m | 2017 (16-Day) | Extracting Normalized Difference Vegetation Index (NDVI) |
MOD09A1 | 500 m | 2017 (8-Day) | Extracting Normalized Difference Built-up Index (NDBI) | |
MYD11A1 | 1000 m | 2017 (Daily) | Extracting Temperature (T) | |
VIIRS/NPP | 500 m | 2017 (Monthly) | Extracting Nighttime Light (NTL) | |
OpenStreetMap | Vector | 2017 (Annually) | Calculating road network density | |
Point of interest | Vector | 2017 (Annually) | Calculating land use mix | |
World population dataset | 1000 m | 2017 (Annually) | Calculating Population Density (PD) | |
Air quality monitoring station data | Vector | 2017 (Hourly) | Calculating Air Quality Index (AQI) | |
Other basic geographic data | Vector | 2017 | Mapping, drawing boundaries |
Spring | Summer | Autumn | Winter | Annually | |
---|---|---|---|---|---|
Bandwidth | 40 | 26 | 28 | 40 | 28 |
AICc | 2778 | 2628 | 2748 | 2695 | 3588 |
R2 | 0.57 | 0.66 | 0.60 | 0.61 | 0.64 |
Adjusted R2 | 0.51 | 0.59 | 0.53 | 0.55 | 0.57 |
F | 30.42 ** | 39.72 ** | 29.14 ** | 33.76 ** | 36.14 ** |
Season | Temp | NDVI | Road Network | NTL | NDBI | Land Use Mix | AQI | Population Density | |
---|---|---|---|---|---|---|---|---|---|
Mean | Spring | 2.53 | −7.27 | 1.57 | 6.29 | −9.36 | 2.36 | −0.54 | 8.47 |
Summer | 3.88 | −13.72 | 1.82 | 8.88 | −11.66 | 1.74 | 1.86 | 5.86 | |
Autumn | 1.93 | −5.00 | 4.32 | 5.76 | −5.83 | 2.82 | 0.49 | 9.04 | |
Winter | −0.20 | 0.59 | 2.38 | 11.93 | −1.56 | 2.39 | −3.17 | 6.72 | |
Annual | 7.86 | −20.95 | 8.09 | 34.01 | −18.65 | 9.36 | −12.69 | 29.12 | |
Median | Spring | 2.16 | −5.38 | 2.71 | 6.82 | −8.29 | 2.37 | −0.76 | 8.01 |
Summer | 3.24 | −11.91 | 2.49 | 9.52 | −9.94 | 1.71 | 0.46 | 5.72 | |
Autumn | 1.16 | −3.66 | 4.93 | 7.45 | −5.52 | 2.46 | 0.04 | 8.55 | |
Winter | −0.55 | 0.56 | 2.75 | 11.37 | −1.27 | 2.31 | −3.53 | 6.83 | |
Annual | 4.93 | −10.94 | 11.93 | 35.49 | −15.33 | 8.54 | −13.07 | 29.14 | |
Min | Spring | −0.04 | −23.46 | −4.75 | −2.39 | −20.51 | 0.22 | −5.09 | 2.77 |
Summer | −0.42 | −36.49 | −4.86 | 0.80 | −32.69 | −3.30 | −2.85 | 0.92 | |
Autumn | −3.34 | −21.65 | −2.97 | −6.62 | −16.51 | −0.10 | −4.46 | 1.44 | |
Winter | −2.04 | −4.97 | −4.08 | 8.43 | −8.24 | −0.99 | −11.20 | 2.69 | |
Annual | −4.60 | −94.70 | −24.72 | −4.21 | −52.48 | −3.86 | −48.42 | 6.12 | |
Max | Spring | 8.08 | 2.36 | 5.54 | 11.76 | −2.41 | 5.03 | 5.59 | 14.53 |
Summer | 9.98 | −0.30 | 8.50 | 13.90 | −2.06 | 5.03 | 10.96 | 11.90 | |
Autumn | 8.87 | 3.45 | 10.68 | 11.83 | −0.21 | 6.14 | 9.80 | 20.08 | |
Winter | 3.59 | 4.64 | 7.74 | 19.27 | 5.80 | 4.88 | 4.86 | 11.34 | |
Annual | 33.72 | 15.46 | 31.77 | 59.77 | −3.71 | 23.70 | 14.79 | 54.41 | |
Standard Deviation | Spring | 2.10 | 7.05 | 2.99 | 3.13 | 4.96 | 1.32 | 2.81 | 3.60 |
Summer | 2.73 | 9.83 | 3.48 | 2.96 | 6.83 | 1.56 | 3.65 | 2.89 | |
Autumn | 2.83 | 6.56 | 3.29 | 4.42 | 4.16 | 1.48 | 3.04 | 4.64 | |
Winter | 1.15 | 2.09 | 3.12 | 2.50 | 2.56 | 1.22 | 4.33 | 2.01 | |
Annual | 9.63 | 28.15 | 14.27 | 13.62 | 11.41 | 6.31 | 14.90 | 12.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, J.; Meng, B.; Ji, H.; Wang, S.; Zhi, G.; Liu, J.; Shi, C. Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sens. 2022, 14, 4012. https://doi.org/10.3390/rs14164012
Zhu Y, Wang J, Meng B, Ji H, Wang S, Zhi G, Liu J, Shi C. Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sensing. 2022; 14(16):4012. https://doi.org/10.3390/rs14164012
Chicago/Turabian StyleZhu, Yanrong, Juan Wang, Bin Meng, Huimin Ji, Shaohua Wang, Guoqing Zhi, Jian Liu, and Changsheng Shi. 2022. "Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing" Remote Sensing 14, no. 16: 4012. https://doi.org/10.3390/rs14164012
APA StyleZhu, Y., Wang, J., Meng, B., Ji, H., Wang, S., Zhi, G., Liu, J., & Shi, C. (2022). Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sensing, 14(16), 4012. https://doi.org/10.3390/rs14164012