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Abstract: This paper proposes an endmember matrix constraint unmixing method for ZY-1 02D
hyperspectral imagery (HSI) super-resolution reconstruction (SRR) to overcome the low resolution
of ZY-1 02D HSI. The proposed method combines spectral unmixing and adds novel smoothing
constraints to traditional non-negative matrix factorization to improve details and preserve the
spectral information of traditional SRR methods. The full utilization of the endmember spectral
matrix and endmember abundance matrix of HSI and multispectral imagery (MSI) reconstructs
the high spatial resolution and high spectral fidelity HSI. Furthermore, given the ZY-1 02D HSI
infrared bands are seriously corrupted by noise, the influence of denoising on the SRR accuracy is
also discussed. Experiments show that the proposed method restores spatial details and spectral
information and is robust for noise, preserving more spectral information. Therefore, the proposed
method is a ZY-1 02D HSI SRR method with high spatial resolution and high spectral fidelity, which
improves the spatial resolution while simultaneously solving spectral mixing and provides the
possibility for the data further expansion.

Keywords: ZY-1 02D satellite; super-resolution reconstruction; spectral unmixing; non-negative
matrix factorization

1. Introduction

The ZY-1 02D Satellite, a 5 m optical satellite, is the first Chinese operational civil
hyperspectral satellite [1]. It can effectively obtain MSI and HSI concurrently, meeting the
needs for natural resource management, ecological monitoring, urban and rural construc-
tion, emergency management, and other related applications [2]. However, the current
payload scale and development costs limit the high spatial resolution of the ZY-1 02D
HSI, leading to spectral mixing and limiting the resolvability and quantitative analysis of
complex ground objects. The applicability of ZY-1 02D HSI may be further expanded by
enhancing its spatial resolution [3].

Present techniques for improving HSI spatial resolution can be categorized as: hardware-
based, software-based, and methods combining hardware and software. Hardware-based
methods improve the spatial resolution of HSI by directly reducing the pixel size, increasing
the number of pixels per unit area by sensor manufacturing techniques [4], or implementing
hardware accelerators in field-programmable gate array (FPGA) devices [5–7]. Concerning the
high cost and limitations of resolution enhancement through hardware-based techniques [8],
scholars have undertaken a great deal of research concerning the combination of hardware
and software approaches, which generally enhances the HSI spatial resolution by changing
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the angle of the Charge Coupled Device (CCD) and joint image processing algorithm [9–11].
However, these methods can only be used for specific imagery due to the sensor’s sampling
method. Furthermore, the high cost of improving the HSI spatial resolution using hardware
has made lower-cost software-based techniques more popular with scholars, among which
SRR is widely used [12].

Image SRR is a signal processing technology that reconstructs high-resolution images
from low-resolution images suffering from noise, blurring, and aliasing effects [4,13].
Over the past several decades, many SRR methods have been proposed under different
frameworks, including component substitution (CS), Bayesian, deep learning (DL), and
sparse representation (SR) [14]. CS includes such methods as Gram–Schmidt and principal
component analysis (PCA). Although promoting the SRR efficiency, Gram–Schmidt results
highly depend on the simulated HSI [15]. PCA-based methods have been popular for
spectral transformation because the first principal component consists of the most variance,
making it a suitable choice to replace the panchromatic component [16]. However, this
method creates more spectral artifacts for imageries consisting of vegetation [17]. Gonzalez-
Audicana et al. proposed a pan-sharpening method based on a merger of a wavelet–PCA to
overcome this issue. However, their approach only utilizes the details of the first principal
component replaced by the details of the PAN imagery [18] while ignoring the relationship
between variance and correlation. Shah et al. overcome this limitation with an adaptive
PCA-contourlet approach for pan-sharpening [17]. PCA-contourlet provides more effective
spatial transformation than wavelet during pan-sharpening. However, such CS-based
approaches often introduce spectral distortions in the SRR [19].

Bayesian-based SRR often finds the maximization posteriori estimator by combin-
ing the likelihood function and the defined appropriate image prior; for example, Zou
et al. developed a Bayesian dictionary learning method for HSI SRR in the presence of
mixed Poisson-Gaussian noise [20]. Vella et al. improved imagery quality by integrating
learning and model-based methods to fuse the HSI and MSI, guaranteeing consistency in
the spatial and spectral measurements [21]. Bungert et al. presented a novel model for
simultaneous imagery fusion and blind deblurring of HSI based on the total directional
variation, achieving good results on real remote sensing data from plant sciences and urban
monitoring [22]. Akhtar et al. proposed an HSI SRR approach that fuses high-resolution
imagery with low-resolution HSI using non-parametric Bayesian sparse representation [23].
However, these methods require prior knowledge depending on assumptions, so they are
not always flexible to adapt to different HSI structures [24].

Since DL has been demonstrated to be very effective in object detection [25–28], clas-
sification [29–31], and natural image super-resolution [32–34], many researchers have
introduced DL into HSI SRR. Using a deep HSI denoiser to leverage both domain knowl-
edge likelihood and deep image prior, Dong et al. designed an iterative HSI SRR algorithm
with excellent generalization [35]. Wei et al. introduced a novel deep recursive network
for HSI SRR, with a fully end-to-end HSI structure with improved spectral reconstruction
results [36]. Zheng et al. enhanced the computation of prior point spread function (PSF)
and spectral response function (SRF) in SRR by using an unsupervised DL-based fusion
method HyCoNet [37]. Yao et al. enhanced HSI spatial resolution through high spatial reso-
lution MSI by cross-attention mechanism-based coupled unmixing network CUCaNet [38].
Inspired by the non-negative matrix factorization, Liu et al. designed an unsupervised
MIAE network for HIS SRR [39]. Admittedly, these methods need an auxiliary higher
resolution co-registered imagery, which is sometimes unavailable [40]. For this reason,
Wang et al. proposed a novel dilated projection correction network aeDPCN using single
low-resolution HIS for SRR [41]. However, DL-based methods often require many samples
to train deep neural networks, which limits their application in specific scenarios. Training
an excellent deep neural network also takes a lot of time [24].

Combined with matrix decomposition and spectral unmixing, SR-based methods
have been widely used for HSI SRR in recent years, which have improved the spatial
resolution and solved the spectral mixing of HSI [19,42]. Dong et al. proposed a non-
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negative structured sparse representation (NSSR) approach for HSI SRR [43]. However, the
structured SR is only used to estimate the coefficient matrix, not for the spectral dictionary
learning. To improve accuracy, Guo et al. proposed a non-negative clustering-based sparse
representation (NNCSR) model [44], which jointly estimates hyperspectral dictionary and
the sparse coefficients based on the spatial-spectral sparsity of the HSI. Yet they often
ignore the original structure of HSI [45]. To fully consider the spatial/spectral subspace
low rank relationships between available HSI/MSI and latent HSI, Xue et al. presented
a novel structured sparse low-rank representation (SSLRR) method for HSI SRR [46].
Zhang et al. proposed an HSI and MSI fusion framework based on a novel group spectral
embedding by exploring the multiple manifold structures of spectral bands and the low-
rank structure of HSI [47]. Yokoya et al. used coupled non-negative matrix factorization
(CNMF) to obtain high-resolution HSI, using non-negative matrix factorization to obtain
the endmember spectral matrix and the endmember abundance matrix of HSI and MSI [48].
Borsoi et al. proposed an HSI and MSI fusion algorithm with spectral variability (FuVar) to
reconstruct high-resolution HSI, employing an unmixing-based formulation and accounting
for spectral mismatches between the two imageries [49]. Lanaras et al. presented an SRR
method (ICCV15) using joint unmixing of the input HSI and MSI into the pure reflectance
spectra of the observed materials and the associated mixing coefficients [50]. However,
using only a spectral dictionary is insufficient for preserving spatial information and vice
versa [14]. Therefore, Han et al. addressed the problem by fusing HSI and MSI-based
optimized dictionaries [51]. Akhtar et al. proposed an SR-based approach (ECCV14) for
HSI SRR [52]. Li et al. introduced a spatial group sparsity regularization unmixing-based
method for HSI SRR, which obtained high-resolution imagery by entirely using the sparsity
and deconvolution matrix of HSI [53].

This study aims to enhance the spatial resolution of ZY-1 02D HSI using the SRR
method. Although most SRR methods have realized high reconstruction accuracy previ-
ously, they were usually applied in the simulated data, in which the proportion among
the fusing imageries is an integer. Unfortunately, the ZY-1 02D imageries lack this integer
proportion characteristic due to the inherent limitations during acquisition. Consequently,
these methods perform poorly when applied to such data. In addition, ZY-1 02D HSI
includes substantial noise in the infrared bands leading to poor data quality.

To overcome these difficulties, we propose an endmember matrix constraint unmixing
SRR method in this research. Firstly, the proposed method reconstructs ZY-1 02D HSI with
high spatial resolution and high spectral fidelity by adding novel smoothing constraint
terms in non-negative matrix factorization. Thus, preserving more information on the
endmember matrices. Secondly, the unmixing-based theory makes the proposed method
remove noise available while improving the resolution.

2. Materials and Methods

This section presents the data, the proposed SRR methods, and the quality measures
used in the research.

2.1. Data

Two datasets are used in the approach: Hyperspec-VNIR Chikusei and ZY-1 02D.
Hyperspec Chikusei is an airborne HSI dataset acquired by Headwall Hyperspec-

VNIR-C imaging sensor (Headwall Photonics Inc., located in Bolton, MA, USA) over
agricultural and urban areas in Chikusei, Ibaraki, Japan, on 29 July 2014. It comprises
128 bands in the spectral range from 363 to 1018 nm and 2517 × 2335 pixels with a GSD
of 2.5 m [54]. We selected an image of the dimension 540 × 420 pixels for this experiment
(Figure 1a).
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Figure 1. RGB color composite imagery of (a) Hyperspec Chikusei HSI, (b) ZY-1 02D MSI, and
(c) ZY-1 02D HSI.

The ZY-1 02D Satellite contains MSI and HSI in the same time–space. The HSI data
has a spatial resolution of 30 m, 166 spectral bands, and a spectral range of 400~2500 nm.
The MSI data has a spatial resolution of 10 m, eight spectral bands, and a spectral range of
486~959 nm. Therefore, we selected MSI with 600 × 600 pixel size (Figure 1b) and HSI with
178 × 198 pixel size (Figure 1c) for the experiment.

2.2. Methods

This section introduces the proposed method’s theoretical basis and the quality indices
used in SRR.

2.2.1. HSI SRR by Endmember Matrix Constraint Unmixing

The proposed SRR method estimates unobserved high-spatial-resolution HSI (HR-HSI)
Z ∈ RBh×Pm from observable low-spatial-resolution HSI (LR-HSI) X ∈ RBh×Ph and high-
spatial-resolution MSI (HR-MSI) Y ∈ RBm×Pm . Bm and Bh denote the number of spectral
channels of multispectral and hyperspectral sensors and Pm and Ph denote the number of
pixels of HR-MSI and LR-HSI, respectively. Moreover Bm � Bh, Pm � Ph. We assume that
the data has been denoised, radiometrically corrected, and geometrically corrected.

SRR Model

Linear spectral mixture modeling is often used to estimate LR-HSI due to its simplicity
and efficiency. The model considers HSI a linear combination of a certain number of pure
endmembers. Therefore, Z can be formulated as follows:

Z = WH + N (1)

1. W ∈ RBh×D is the spectral signature matrix, with each column vector representing
the endmember spectrum and D being the number of endmembers.

2. H ∈ RD×Pm is the abundance matrix, with each column vector denoting the abundance
fractions of all endmembers at each pixel.

3. D ∈ RBh×Pm is the residual.

In practical applications, HR-HSI can be reconstructed only by solving W and H.
The solution of Equation (1) relies on the original LR-HSI and HR-MSI in the SRR.

However, according to the sensor observation model proposed by Yokoya et al. [48], LR-
HSI can be a degenerate form of HR-MSI in the spatial dimension; and HR-MSI can be
a degenerate form of HR-HSI in the spectral dimension. Consequently, X and Y can be
modeled as:

X = ZS + Es, (2)

Y = MZ + Em, (3)
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1. S ∈ RBm×Bh is the spatial spread transform matrix, with each column vector represent-
ing the transformation of the PSF from the MSI to the HSI.

2. M ∈ RPm×Ph is the spectral response transform matrix, with each row vector represent-
ing the transformation of the SRF from the hyperspectral sensor to the multispectral
for each band.

3. S and M are sparse matrices composed of non-negative components.
4. Em and Es are the residuals.

Putting Equation (1) into (2) and (3), we can get:

X ≈WHh, (4)

Y ≈WmH, (5)

1. Hh ∈ RD×Ph denotes the spatially degraded abundance matrix.
2. Wm ∈ RBm×D denotes the spectrally degraded endmember matrix.

They can be described as:
Hh = HS, (6)

Wm = MW, (7)

Endmember Matrix Constraint Unmixing

Based on the non-negative matrix factorization theory, the proposed method iteratively
updates the endmember spectral matrix and endmember abundance matrix decomposed
from the LR-HSI and HR-MSI until the required HR-HSI is solved. It can be represented by
the Figure 2.
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Figure 2. Illustration of endmember matrix constraint unmixing.

To maintain the spectral information and spatial details of the SRR results in processing
the real data, we add sparse constraint terms based on the CNMF [48]. Consequently, the
proposed SRR model can be expressed using the following formulas:

min
X,Hh

=
{
‖X−WHh‖2

F + αJ1(Hh)
}

, (8)

min
Wm ,Y

=
{
‖Y−Wm H‖2

F + βJ2(Wm)
}

, (9)

1. Wm ≥ 0 and Hh ≥ 0.
2. ‖•‖F denotes F-norm.
3. J1(Hh) and J2(Wm) are penalty terms constraining the solution of the formulas.
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4. α and β are their corresponding Lagrange multipliers, or the regularization parameters.
The solution efficiency of different penalty terms varies from different actual problems.

In addition, according to the research of Pauca et al. [55], in each iteration step, a
small positive number σ is added to the denominator as an adjustment. This study sets
σ= 1× 10−9 in the experiment. Therefore, the final update criterion is as follows:

H(t)
h = H(t−1)

h
WT H − αH(t−1)

h
WTWHh + σ

, (10)

W(t) = W(t−1) XHT
h

WHhHT
h + σ

, (11)

W(t)
m = W(t−1)

m
YHT − βW(t−1)

m

WmHHT + σ
, (12)

H(t) = H(t−1) WT
mY

WT
mWm H + σ

, (13)

2.2.2. Quality Measures

We use the following six complimentary and widely used quality indices for the
quantitative SRR assessment: (1) mean peak signal-to-noise ratio (MPSNR); (2) cross-
correlations (CC); (3) structure similarity index (SSIM); (4) root mean squared error (RMSE);
(5) relative dimensionless global error in synthesis (ERGAS); and (6) spectral angle mapper
(SAM). Lagger MPSNR, SSIM, CC and smaller RMSE, ERGAS, SAM, indicates better SRR
results. The definitions are as follows:

MPSNR(X̂i, Xi) =
1
B

10 log10

(
max(xi)

2

‖x̂i − xi‖2
2/P

)
, (14)

SSIM(X̂, X) =

(
2µX̂µX + C1

)(
2σX̂X + C2

)(
µ2

X̂
+ µ2

X + C1
)(

σ2
X̂
+ σ2

X + C2

) , (15)

CC(X̂, X) =
1

mλ

mλ

∑
i=1

CCS
(

X̂i, Xi
)

, (16)

RMSE(X̂, X) =
‖X̂− X‖2

F
PmBh

, (17)

ERGAS(X̂, X) = 100d

√√√√√ 1
B

B

∑
i=1

‖x̂i − xi‖2
F(

1
P 1T

Pxi

)2 , (18)

SAM(X̂j, Xj) = arccos

(
x̂T

j xj

‖x̂j‖2‖xj‖2

)
, (19)

3. Experiment Results

Many aforementioned methods such as the single-image-based methods are more
practical for SRR. However, the ZY-1 02D satellite can effectively obtain MSI and HSI
concurrently, providing auxiliary higher resolution co-registered imagery. Therefore, the
proposed method is based on the fusion mechanism. In addition, five methods, with the
same theoretical basis, are compared to evaluate the performance of our method. All
these methods can be divided into DL- and model-based approaches. The DL-based
method is MIAE [39]. The model-based methods are FuVar [49], ECCV14 [52], ICCV15 [50],
CNMF [48], and our method.
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3.1. The Simulated Data

The experiments were performed on Hyperspec Chikusei data. Firstly, the HR-HSI
was down-sampled to obtain the simulated LR-HSI and HR-MSI [56]. Then, the SRR results
were compared with the original HR-HSI to verify the effectiveness of the proposed method.

Figure 3 shows the results of SRR in the Hyperspec Chikusei simulated data. The RGB
bands used in the color composite imagery of HSI and MSI are 55, 37, 22, and 4, 3, and 2,
respectively. The color-composite error images (Figure 3b) visualize the spatial distribution
of errors in RGB bands, where blue pixels mean no fusion error and colored pixels indicate
local spectral distortion. It is essential to reveal the error characteristics of individual bands,
because they significantly impact many applications based on spectral indices and band
ratios that select very few specific bands [56]. The RMSE images visualize the magnitude
of the error at each pixel spectrum. The SAM images visualize the spatial distribution of
spectral angle errors.

The FuVar has the most prominent error in the color-composite error, RMSE, and
SAM images. The reason is that many parameters in FuVar need to be known or estimated
previously. Thus, the FuVar is sensitive to prior knowledge, leading to poor performance
only using the available LR-HSI and HR-MSI. For the other five methods, finding the
differences from the color composite imageries in Figure 3a is challenging. However,
Figure 3b,d show that MIAE has a relatively large error, and then ICCV15 and ECCV14,
CNMF and the proposed method have better and approximate results.

Table 1 presents the quantitative evaluation indices of the SRR results of the six
methods, which quantify the SRR abilities from space, spectra, and time, respectively.
According to the function of each evaluation index in Section 2.2.2, the proposed method
achieves the best results except the time. At the same time, CNMF achieves the highest
time efficiency compared with other methods. The reason is that the added constraint items
of the proposed method require extra solving time.

Table 1. Quantitative indices of SRR in Hyperspec Chikusei simulated data.

Method MPSNR CC SSIM RMSE ERGAS SAM TIME (s)

MIAE 31.9489 0.9624 0.8888492 184.37565 17.3296 2.3846 325.1728
FuVar 19.7156 0.5038 0.3319486 791.5662 56.8757 21.4455 1861.6585

ECCV14 13.4956 0.9870 0.0000111 1680.3724 114.5954 1.4832 1302.0734
ICCV15 13.4956 0.9868 0.0000111 1680.3726 114.5954 1.3751 357.9853
CNMF 47.3551 0.9890 0.9999995 0.0039 1.5966 1.3619 240.6289
OURS 47.4468 0.9896 0.9999996 0.0037 1.5117 1.3305 253.2515

Figure 4 shows the variation in the six indices with the number of endmembers in
the Hyperspec Chikusei simulated data of the proposed method. The performance of
the proposed method improves with an increase in the number of endmembers finally
saturating. Furthermore, results indicate that time efficiency is proportional to the number
of endmembers. According to the characteristics of HSI, this is reasonable because a linear
combination of more varying endmember spectra enables a more accurate expression of
all pixel spectra in the data until the endmember variety becomes sufficient. Owing to the
abundance sum-to-one, the optimal endmember D may be larger than the actual object
types in the scene. This leads to the calculated number of pure endmembers that include not
only single objects but also shadows and mixed pixels [48]. Therefore, the number of pure
endmembers may exceed the object types in the imagery. We conclude that 30 endmembers
has the best performance when the proposed method is applied to the Hyperspec Chikusei
simulated data.
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Figure 3. SRR results of Hyperspec Chikusei simulated data. (1st row) Color composite imageries 
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ods ((a) column), color-composite error images relative to the reference data ((b) column), RMSE 
((c) column), and SAM images ((d) column). 

Figure 3. SRR results of Hyperspec Chikusei simulated data. (1st row) Color composite imageries
of reference HSI and simulated LR-HSI. (2nd−7th rows) Color composite imageries of the six meth-
ods ((a) column), color-composite error images relative to the reference data ((b) column), RMSE
((c) column), and SAM images ((d) column).

Table 2 illustrates the effect of the constraints on the proposed method in the Hyperspec
Chikusei simulated data. α and β were set as 0.00, 0.05, 0.10, 0.15, 0.30, 0.40, 0.50, and 0.60
respectively, and fixed endmembers at 30. We conclude that with the increase in the α and
β, the indices gradually become better, but the quality of the SRR results begins declining
when α and β are 0.40. This decline is due to using the multiplicative update principle in
this method, which is a gradient descent criterion with a variable step size. Namely, α and
β affect the gradient step size, affecting the smoothness of the solutions of Equations (8) and
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(9). Accordingly, the appropriate α and β can ensure the method converges at the optimal
point to the greatest extent. Furthermore, the time efficiency of the proposed methods is
comparable when α and β are between 0.15 and 0.50, especially with 0.15 taking the shortest
time. To summarize, the proposed method has the best SRR results when α and β are 0.30.
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Table 2. Effect of the constraints on the proposed method in the Hyperspec Chikusei simulated data.

α and β
Values MPSNR CC SSIM RMSE ERGAS SAM TIME (s)

0.00 47.2463 0.9890 0.9999995 0.0039 1.5688 1.3580 273.4078
0.05 47.2376 0.9892 0.9999995 0.0039 1.5438 1.3647 281.8419
0.10 47.2711 0.9890 0.9999995 0.0039 1.5576 1.3695 280.2361
0.15 47.2951 0.9890 0.9999995 0.0039 1.5646 1.3709 250.1167
0.30 47.4468 0.9896 0.9999996 0.0037 1.5117 1.3305 253.2515
0.40 47.3949 0.9889 0.9999995 0.0039 1.5794 1.3799 256.5485
0.50 47.3993 0.9890 0.9999995 0.0039 1.5761 1.3732 257.3367
0.60 47.4953 0.9890 0.9999995 0.0039 1.5673 1.3677 281.2979

3.2. ZY-1 02D HSI

Figure 5 presents the SRR results of the six methods on ZY-1 02D HSI. The RGB bands
used in the color composite imagery of HSI and MSI are 35, 19, 11, and 4, 3, 2, respectively.
Obviously, the FaVur has the relatively poorest SRR result. It produced a “mosaic” result
with the lowest reconstructed quality. MIAE and ECCV14 reconstruct the spatial details
but result in massive spectral distortion; significant differences exist between the SRR result
and the original HSI in the color composite imagery. On the contrary, ICCV15 has good
spectral fidelity but poor spatial details. Nevertheless, CNMF and the proposed method all
achieve better results in spatial and spectral dimensions; furthermore, the spatial resolution
of the reconstructed HSI was significantly improved, and the color information of the
ground objects is correct. However, the CNMF inadequately solves the mixed spectrum at
some edges and does not recover the spatial detail well.

Figure 6 shows the spectral lines of ZY-1 02D HSI SRR results for different methods:
vegetation, soil, and blue-roofed building. Compared with the original HSI spectral lines,
MIAE fits better for soil but lower for others. FuVar and ICCV14 poorly fit the three types
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of ground objects. On the other hand, ECCV15 is a better fit for blue-roofed buildings but
lower for the others. The fitting effect of CNMF and the proposed method is similar, but
the proposed method is higher for blue-roofed buildings.
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Table 3 presents the quantitative evaluation indices of the six methods SRR results
in the ZY-1 02D HSI. According to the function of each evaluation index in Section 2.2.2,
MIAE achieves the best CC and SSIM. The reason is that the imagery sizes of HSI and MSI
used in the experiment are 178 × 198 and 600 × 600 pixels, respectively; therefore, the
imagery size of the reconstructed HR-HSI is 600 × 600. In addition, there is no reference
HR-HSI for the ZY-1 02D data, the original LR-HSI is selected to qualify the method’s
performance. Additionally, the MIAE SRR result is very similar to the LR-HSI spatially
(Figure 5). Thus, the CC and SSIM, which characterize the geometric distortion, to quantify
the reconstructed results contain some errors. However, the proposed method achieves the
optimal indices for the others. Especially, the ERGAS, which offers a global indication of
the quality of a fused imagery [57], achieves the best value. In addition, the CNMF has the
highest time efficiency.

Figure 7 shows the variation in the six indices with the number of endmembers in
the ZY-1 02D HSI experimental data of the proposed method, which are similar to the
performance in the Hyperspec Chikusei simulated data.

The performance of the proposed method improves with an increase in the number of
endmembers and finally saturates from Figure 7a,b,d,e. However, Figure 7c shows the apparent
fluctuation of SSIM with the increase in the number of endmembers. The reason is that, without
the referenced HR-HSI, the original LR-HSI is selected to qualify the method’s performance.
Yet significant differences exist between the spatial resolution of LR-HSI and reconstructed
HR-HSI. Thus, the SSIM is low and unstable. The SAM also fluctuates in a small range with the
endmember variations in Figure 7f, and the values are between 6 and 9 when the endmember is
greater than 28. One of the possible reasons is that the resolution between HSI and corresponding
MSI of ZY-1 02D is not an integer, so errors may occur during endmember unmixing, resulting
in fluctuations in spatial structure and spectral similarity.
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Table 3. Quantitative indices of SRR in ZY-1 02D HSI.

Method MPSNR CC SSIM RMSE ERGAS SAM TIME (s)

MIAE 17.8093 0.7392 0.4168 476.9396 60.6493 11.4362 616.3177
FuVar 11.0014 0.2747 0.0811 1203.2809 84.7249 44.2109 4812.1460

ECCV14 10.8087 0.5921 0.0843 1191.3784 87.8039 25.2693 2966.4885
ICCV15 18.8991 0.6769 0.0903 468.8753 42.3810 8.3175 188.3746
CNMF 18.2901 0.6937 0.2494 489.3940 41.8792 11.1107 150.0200
OURS 19.1274 0.6839 0.2478 443.3611 39.4557 7.2542 153.2204
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Thirty endmembers were used with the proposed method applied to ZY-1 02D experi-
mental data, combining quantitative and qualitative indices.

3.3. ZY-1 02D HSI SRR Results for before and after Denoising

Due to severe noise in infrared bands of ZY-1 02D HSI, denoising is performed before
SRR. Admittedly, denoising will affect the high-frequency information of images. Therefore,
this section introduces the SRR results before and after denoising of ZY-1 02D HSI from
the color composite imageries, single-band imageries, spectral lines, and quantitative
evaluation indices.

Figure 8 illustrates the color composite imageries before and after denoising. The
bands of color composite imageries of HSI and MSI are the same in Figure 5. Compared
with HSI and MSI in Figure 8a, we can conclude that MIAE obtains a relatively blurry scene.
FuVar achieves the poorest SRR results whether denoised or not. ECCV14 retains more
spatial details than the spectral information from the SRR results before and after denoising.
On the contrary, ICCV15 preserves spectral information better than the remaining spatial
details and ICCV15 SRR results preserve more spatial details after denoising. Both CNMF
and the proposed method have an excellent ability to preserve the spatial detail and spectral
information, whether denoised or not.

Comparing SRR results of all noisy single-band imageries before and after denoising
(Figure 9 shows the 160th band with the most severe noise corruption), it is revealed that
MIAE and FuVar reconstruct the spatial details poorly, but the latter cannot remove the
most noise compared to the first. ECCV14 recovers more spatial details before denoising but
is incapable of removing noise. While restoring spatial details, ICCV15 also removes most
of the noise in the result before denoising. Although noise in the SRR results of ICCV15 are
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reduced after denoising, some spatial details are lost, such as object edge contours. The
SRR results of CNMF and the proposed method before and after denoising remove most of
the noise while improving the resolution of the imagery and restoring the edges of objects
and spatial details excellently.
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(2nd rows) of MIAE, FuVar, ECCV14, ICCV15, CNMF, and the proposed method.
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Figure 9. SRR results of ZY-1 02D HSI in band 166 before and after denoising. ((a) column) Noising
HSI (1st row) and denoised HSI (2nd row). (b–g) Columns are before (1st row) and after denoising
(2nd row) SRR results of MIAE, FuVar, ECCV14, ICCV15, CNMF, and ours, respectively.

Table 4 shows the quantitative evaluation indices of the six SRR methods results before
denoising. According to the function of each evaluation index in Section 2.2.2, ICCV15
achieves the best SAM. Additionally, the MPSNR, RMSE, and ERGAS of CNMF are the
best. The CC, SSIM, and time efficiency of the proposed method are the best.

Figure 10 shows the spectral lines of ZY-1 02D HSI SRR results for different materials:
vegetation, soil, and blue-roofed building. MIAE best fits the spectral lines of the soil
relatively after denoising, but poorly for the others. The three spectral lines of FuVar and
ECCV14 fit poorly with original spectral lines both before and after denoising, indicating
the highest distortion of its SRR results. ICCV15 has a better-fitted result of the spectral line
of the blue-roofed building after denoising. For CNMF, the spectral lines of the blue-roofed
building before and after denoising are quite different from the original, while the spectral
line of the soil after denoising fits well with the original. Notably, the vegetation spectral
line of CNMF after denoising has some outliers. At the same time, the proposed method
has the best fitting effect of all three spectral lines after denoising.
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Table 4. Quantitative indices of SRR in ZY-1 02D HSI before denoising.

Method MPSNR CC SSIM RMSE ERGAS SAM TIME (s)

MIAE 15.0415 0.6439 0.0599 696.3550 65.3466 10.8613 619.4395
FuVar 10.9691 0.2757 0.0363 1208.1741 84.0772 43.9273 4408.8130

ECCV14 10.8002 0.5885 0.0857 1187.8724 87.6889 23.7784 2979.5627
ICCV15 18.7260 0.5643 0.0663 479.8861 42.9734 8.5419 173.6451
CNMF 18.7657 0.6957 0.2499 464.5570 39.6662 9.6229 159.7210
OURS 18.5660 0.7072 0.2572 476.7362 40.0394 15.2285 159.2980
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Figure 10. The spectral lines of SRR results in ZY−1 02D HSI before and after denoising. From top 
to bottom, each row represents MIAE, FuVar, ECCV14, ICCV15, CNMF, and the proposed method. 
((a) column) vegetation; ((b) column) soil; and ((c) column) blue-roofed building. 
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4. Discussion
4.1. SRR via Constraint Endmember Matrix Unmixing

Most of the traditional SRR methods are applied to simulated datasets, in which the
proportion of resolution between HSI and corresponding MSI is an integer achieving high
SRR accuracy. Unfortunately, these methods often achieved lower SRR accuracy when
applied to the ZY-1 02D data. Our proposed method added endmember matrix constraint
terms to traditional the non-negative matrix factorization, guiding Formulas (8) and (9)
to conduct smoothing solutions to improve the usability of SRR on ZY-1 02D data. This
measure enables the proposed method to fully utilize the properties of endmember matrices
of HSI and MSI during SRR, thereby retaining more spatial details and spectral information.

Spectral unmixing and SRR can amplify each other in an interactive feedback frame-
work. Hence the unmixing-based SRR not only enhances the spatial resolution but also
solves the mixing pixels in HSI [58]. Linear spectral mixing (LMM) models are widely
used in spectral unmixing with simplicity and efficiency [59]. The endmember abundance
mapping in Figure 11 corresponds to easily recognizable surface materials observed in the
ZY-1 02D HSI scene. Even though these are not always “pure materials” in the physical
sense, they look realistic and comparatively clean due to inter-reflections and shadows.
This confirms the conventional wisdom that the LMM is sufficient for many HSI imaging
problems, particularly SRR [60].
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The quantitative evaluation indices of spectral information of Hyperspec Chikusei
simulated data and ZY-1 02D experimental data (Tables 1 and 3) illustrate that the proposed
method achieves the best MPSNR, RMSE, ERGAS, and SAM when compared to other
methods. Furthermore, from the visual results (Figure 5) and the spectral line graphs
(Figure 6), the proposed method also has less noise and the best spectral line fitting. This
improvement is due to the proposed method’s non-negative endmember matrices and
sum-to-one constraint, which avoids outliers and artifacts in SRR results [60]. Therefore,
the proposed method can realize spectral unmixing during SRR.

To summarize, the proposed SRR method is suitable for ZY-1 02D data, improving the
spatial resolution and preserving more spectral information.

4.2. Denoising Effect on SRR for ZY-102D HSI

Since the proposed method is based on spectral unmixing, the predefined number of
endmembers is the corresponding subspace. Denoising means reducing the dimension
of high-dimensional noisy data, separating noise in a signal subspace [61]. Consequently,
subspace-based methods naturally imply denoising ability [57]. The results also logically
illustrate that the proposed method can remove most noise during SRR (Figures 8–10).
However, the proposed method mainly implements SRR. Thus, some bands still contain
some noise.

Consequently, we preprocessed the ZY-1 02D HSI noisy bands using subspace-based
non-local low-rank and sparse factorization (SNLRSF) [62]. Typically, denoising will
change the part of the high-frequency information of the imagery and influence SRR
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correspondingly. Accordingly, we set up the control experiment to explore whether to
denoise previously.

The control experiment results (Section 3.3) reveal that preprocessing the ZY-1 02D
HIS noised bands before SRR can preserve more information and achieve better results.

4.3. Future Works

The proposed method adds novel smoothing constraints to non-negative matrix
factorization, improving the SRR accuracy for ZY-1 02D HSI. However, small-window
images were selected in our experiments instead of the whole scene. Future works will be
carried out to extend the proposed method for the whole scenes or realize the adaptive
parameter blocking strategy for large-scale scenes to promote the broader application of
ZY-1 02D HSI.

5. Conclusions

This study proposed an endmember matrix constraint unmixing method for ZY-1
02D HSI SRR. The proposed method adds endmember matrix constraint terms to the
non-negative matrix factorization, which not only enhances the spatial resolution but also
realizes the spectral unmixing vastly. In addition, regarding the severe noise in the infrared
bands of ZY-1 02D HSI, the influence of denoising on SRR is also discussed. Experimental
results on simulated and ZY-1 02D data demonstrate that the proposed method is suitable
for ZY-1 02D HSI SRR.
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PCA Principal Component Analysis
PSF Point Spread Function
SRF Spectral Response Function
CNMF Coupled Non-Negative Matrix Factorization
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CC Cross Correlations
SSIM Structure Similarity Index
RMSE Root Mean Squared Error
ERGAS Relative Dimensionless Global Error in Synthesis
SAM Spectral Angle Mapper

References
1. Lu, H.; Qiao, D.; Li, Y.; Wu, S.; Deng, L. Fusion of China ZY-1 02D Hyperspectral Data and Multispectral Data: Which Methods

Should Be Used? Remote Sens. 2021, 13, 2354. [CrossRef]
2. Zhang, H.; Han, B.; Wang, X.; An, M.; Lei, Y. System design and technique characteristic of ZY-1-02D satellite. Spacecr. Eng.

2020, 29. [CrossRef]
3. Guo, H.; Han, B.; Wang, X.; Tan, K. Hyperspectral and Multispectral Remote Sensing Images Fusion Method of ZY-1-02D Satellite.

Spacecr. Eng. 2020, 29, 180–185.
4. Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003,

20, 21–36. [CrossRef]
5. Besiris, D.; Tsagaris, V.; Fragoulis, N.; Theoharatos, C. An FPGA-based hardware implementation of configurable pixel-level color

image fusion. IEEE Trans. Geosci. Remote Sens. 2011, 50, 362–373. [CrossRef]
6. Mamatha, G.; Sumalatha, V.; Lakshmaiah, M.V. FPGA implementation of satellite image fusion using wavelet substitution

method. In Proceedings of the 2015 Science and Information Conference (SAI), London, UK, 28–30 July 2015; pp. 1155–1159.
7. Chauhan, R.P.S.; Dwivedi, R.; Asthana, R. A high-speed image fusion method using hardware and software co-simulation. In

Proceedings of the International Conference on Information and Communication Technology for Intelligent Systems, Ahmedabad,
India, 25–26 March 2017; pp. 50–58.

8. Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal
Process. 2016, 128, 389–408. [CrossRef]

9. Zhou, C.; Tian, Y.; Ji, T.; Wu, S.; Zhang, F. The Study of Method for Improving the Spatial Resolution of Satellite Images with CCD
Cameras. J. Remote Sens. 2002, 6, 179–182.

10. Zhang, X.; Zhang, A.; Li, M.; Liu, L.; Kang, X. Restoration and Calibration of Tilting Hyperspectral Super-Resolution Image.
Sensors 2020, 20, 4589. [CrossRef] [PubMed]

11. Zhang, K.; Yang, C.; Li, X.; Zhou, C.; Zhong, R. High-Efficiency Microsatellite-Using Super-Resolution Algorithm Based on the
Multi-Modality Super-CMOS Sensor. Sensors 2020, 20, 4019. [CrossRef]

12. Wang, J.; Wu, Z.; Lee, Y.-S. Super-resolution of hyperspectral image using advanced nonlocal means filter and iterative back
projection. J. Sens. 2015, 2015, 943561. [CrossRef]

13. Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 2004, 14,
47–57. [CrossRef]

14. Li, X.; Zhang, Y.; Ge, Z.; Cao, G.; Shi, H.; Fu, P. Adaptive Nonnegative Sparse Representation for Hyperspectral Image Super-
Resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4267–4283. [CrossRef]

15. Dalla Mura, M.; Vivone, G.; Restaino, R.; Addesso, P.; Chanussot, J. Global and local Gram-Schmidt methods for hyperspectral
pansharpening. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan,
Italy, 26–31 July 2015; pp. 37–40.

16. Kwarteng, P.; Chavez, A. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component
analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348.

17. Shah, V.P.; Younan, N.H.; King, R.L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets.
IEEE Trans. Geosci. Remote Sens. 2008, 46, 1323–1335. [CrossRef]

18. González-Audícana, M.; Saleta, J.L.; Catalán, R.G.; García, R. Fusion of multispectral and panchromatic images using improved
IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1291–1299. [CrossRef]

19. Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution. IEEE
Trans. Image Process. 2019, 28, 3034–3047. [CrossRef] [PubMed]

20. Zou, C.; Xia, Y. Bayesian dictionary learning for hyperspectral image super resolution in mixed Poisson–Gaussian noise. Signal
Process. Image Commun. 2018, 60, 29–41. [CrossRef]

http://doi.org/10.3390/rs13122354
http://doi.org/10.3969/j.issn.1673-8748.2020.06.002
http://doi.org/10.1109/MSP.2003.1203207
http://doi.org/10.1109/TGRS.2011.2163723
http://doi.org/10.1016/j.sigpro.2016.05.002
http://doi.org/10.3390/s20164589
http://www.ncbi.nlm.nih.gov/pubmed/32824252
http://doi.org/10.3390/s20144019
http://doi.org/10.1155/2015/943561
http://doi.org/10.1002/ima.20007
http://doi.org/10.1109/JSTARS.2021.3072044
http://doi.org/10.1109/TGRS.2008.916211
http://doi.org/10.1109/TGRS.2004.825593
http://doi.org/10.1109/TIP.2019.2893530
http://www.ncbi.nlm.nih.gov/pubmed/30668472
http://doi.org/10.1016/j.image.2017.09.003


Remote Sens. 2022, 14, 4034 17 of 18

21. Vella, M.; Zhang, B.; Chen, W.; Mota, J.F.C. Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22
September 2021; pp. 3837–3841.

22. Bungert, L.; Coomes, D.A.; Ehrhardt, M.J.; Rasch, J.; Reisenhofer, R.; Schönlieb, C.-B. Blind image fusion for hyperspectral imaging
with the directional total variation. Inverse Probl. 2018, 34, 044003. [CrossRef]

23. Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3631–3640.

24. Zhang, M.; Sun, X.; Zhu, Q.; Zheng, G. A Survey of Hyperspectral Image Super-Resolution Technology. In Proceedings of the
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–6 July 2021; pp. 4476–4479.

25. Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced deep-learning techniques for salient and category-specific object detection:
A survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [CrossRef]

26. Liu, N.; Han, J. A deep spatial contextual long-term recurrent convolutional network for saliency detection. IEEE Trans. Image
Process. 2018, 27, 3264–3274. [CrossRef]

27. Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Maltezos, E. Stacked autoencoders driven by semi-supervised learning for
building extraction from near infrared remote sensing imagery. Remote Sens. 2021, 13, 371. [CrossRef]

28. Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]

29. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification
via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [CrossRef]

30. Wu, H.; Prasad, S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Trans. Image
Process. 2017, 27, 1259–1270. [CrossRef]

31. Lu, X.; Zheng, X.; Yuan, Y. Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 5148–5157. [CrossRef]

32. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2015, 38, 295–307. [CrossRef]

33. Lai, W.-S.; Huang, J.-B.; Ahuja, N.; Yang, M.-H. Fast and accurate image super-resolution with deep laplacian pyramid networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2599–2613. [CrossRef]

34. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic
single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

35. Dong, W.; Zhou, C.; Wu, F.; Wu, J.; Shi, G.; Li, X. Model-guided deep hyperspectral image super-resolution. IEEE Trans. Image
Process. 2021, 30, 5754–5768. [CrossRef]

36. Wei, W.; Nie, J.; Li, Y.; Zhang, L.; Zhang, Y. Deep recursive network for hyperspectral image super-resolution. IEEE Trans. Comput.
Imaging 2020, 6, 1233–1244. [CrossRef]

37. Zheng, K.; Gao, L.; Liao, W.; Hong, D.; Zhang, B.; Cui, X.; Chanussot, J. Coupled convolutional neural network with adaptive
response function learning for unsupervised hyperspectral super resolution. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2487–2502.
[CrossRef]

38. Yao, J.; Hong, D.; Chanussot, J.; Meng, D.; Zhu, X.; Xu, Z. Cross-attention in coupled unmixing nets for unsupervised hyperspectral
super-resolution. In Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 208–224.

39. Liu, J.; Wu, Z.; Xiao, L.; Wu, X.-J. Model inspired autoencoder for unsupervised hyperspectral image super-resolution. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

40. Lu, X.; Yang, D.; Zhang, J.; Jia, F. Hyperspectral image super-resolution based on spatial correlation-regularized unmixing
convolutional neural network. Remote Sens. 2021, 13, 4074. [CrossRef]

41. Wang, X.; Ma, J.; Jiang, J.; Zhang, X.-P. Dilated projection correction network based on autoencoder for hyperspectral image
super-resolution. Neural Netw. 2022, 146, 107–119. [CrossRef] [PubMed]

42. Yi, C.; Zhao, Y.-Q.; Chan, J.C.-W. Hyperspectral image super-resolution based on spatial and spectral correlation fusion. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 4165–4177. [CrossRef]

43. Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral image super-resolution via non-negative structured sparse
representation. IEEE Trans. Image Process. 2016, 25, 2337–2352. [CrossRef] [PubMed]

44. Guo, F.; Zhang, C.; Zhang, M. Hyperspectral image super-resolution through clustering-based sparse representation. Multimed.
Tools Appl. 2021, 80, 7351–7366. [CrossRef]

45. Sun, L.; Cheng, Q.; Chen, Z. Hyperspectral Image Super-Resolution Method Based on Spectral Smoothing Prior and Tensor Tubal
Row-Sparse Representation. Remote Sens. 2022, 14, 2142. [CrossRef]

46. Xue, J.; Zhao, Y.-Q.; Bu, Y.; Liao, W.; Chan, J.C.-W.; Philips, W. Spatial-spectral structured sparse low-rank representation for
hyperspectral image super-resolution. IEEE Trans. Image Process. 2021, 30, 3084–3097. [CrossRef]

47. Zhang, K.; Wang, M.; Yang, S. Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank
factorization. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1363–1371. [CrossRef]

48. Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled non-negative matrix factorization unmixing for hyperspectral and multispectral data
fusion. IEEE Trans. Geosci. Remote Sens. 2011, 50, 528–537. [CrossRef]

http://doi.org/10.1088/1361-6420/aaaf63
http://doi.org/10.1109/MSP.2017.2749125
http://doi.org/10.1109/TIP.2018.2817047
http://doi.org/10.3390/rs13030371
http://doi.org/10.1109/TGRS.2016.2601622
http://doi.org/10.1109/TGRS.2017.2783902
http://doi.org/10.1109/TIP.2017.2772836
http://doi.org/10.1109/TGRS.2017.2702596
http://doi.org/10.1109/TPAMI.2015.2439281
http://doi.org/10.1109/TPAMI.2018.2865304
http://doi.org/10.1109/TIP.2021.3078058
http://doi.org/10.1109/TCI.2020.3014451
http://doi.org/10.1109/TGRS.2020.3006534
http://doi.org/10.1109/TGRS.2022.3143156
http://doi.org/10.3390/rs13204074
http://doi.org/10.1016/j.neunet.2021.11.014
http://www.ncbi.nlm.nih.gov/pubmed/34852297
http://doi.org/10.1109/TGRS.2018.2828042
http://doi.org/10.1109/TIP.2016.2542360
http://www.ncbi.nlm.nih.gov/pubmed/27019486
http://doi.org/10.1007/s11042-020-09952-w
http://doi.org/10.3390/rs14092142
http://doi.org/10.1109/TIP.2021.3058590
http://doi.org/10.1109/TGRS.2016.2623626
http://doi.org/10.1109/TGRS.2011.2161320


Remote Sens. 2022, 14, 4034 18 of 18

49. Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M. Super-resolution for hyperspectral and multispectral image fusion accounting for
seasonal spectral variability. IEEE Trans. Image Process. 2019, 29, 116–127. [CrossRef] [PubMed]

50. Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral super-resolution by coupled spectral unmixing. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3586–3594.

51. Han, X.; Yu, J.; Xue, J.-H.; Sun, W. Hyperspectral and multispectral image fusion using optimized twin dictionaries. IEEE Trans.
Image Process. 2020, 29, 4709–4720. [CrossRef]

52. Akhtar, N.; Shafait, F.; Mian, A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In Proceedings of
the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 63–78.

53. Li, J.; Peng, Y.; Jiang, T.; Zhang, L.; Long, J. Hyperspectral image super-resolution based on spatial group sparsity regularization
unmixing. Appl. Sci. 2020, 10, 5583. [CrossRef]

54. Yokoya, N.; Iwasaki, A. Airborne Hyperspectral Data over Chikusei. Space Appl. Lab., Univ. Tokyo, Tokyo, Japan, Tech. Rep.
SAL-2016-05-27 2016. Available online: https://www.researchgate.net/publication/304013716_Airborne_hyperspectral_data_
over_Chikusei (accessed on 16 June 2016).

55. Pauca, V.P.; Piper, J.; Plemmons, R.J. Non-negative matrix factorization for spectral data analysis. Linear Algebra Its Appl. 2006,
416, 29–47. [CrossRef]

56. Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent
literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [CrossRef]

57. Loncan, L.; De Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.;
Simoes, M. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [CrossRef]

58. Yi, C.; Zhao, Y.-Q.; Yang, J.; Chan, J.C.-W.; Kong, S.G. Joint hyperspectral super-resolution and unmixing with interactive feedback.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3823–3834. [CrossRef]

59. Wei, J.; Wang, X. An overview on linear unmixing of hyperspectral data. Math. Probl. Eng. 2020, 2020, 3735403. [CrossRef]
60. Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral super-resolution with spectral unmixing constraints. Remote Sens. 2017,

9, 1196. [CrossRef]
61. He, Y.; Gan, T.; Chen, W.; Wang, H. Adaptive denoising by singular value decomposition. IEEE Signal Process. Lett. 2011, 18,

215–218. [CrossRef]
62. Cao, C.; Yu, J.; Zhou, C.; Hu, K.; Xiao, F.; Gao, X. Hyperspectral image denoising via subspace-based nonlocal low-rank and

sparse factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973–988. [CrossRef]

http://doi.org/10.1109/TIP.2019.2928895
http://www.ncbi.nlm.nih.gov/pubmed/31329120
http://doi.org/10.1109/TIP.2020.2968773
http://doi.org/10.3390/app10165583
https://www.researchgate.net/publication/304013716_Airborne_hyperspectral_data_over_Chikusei
https://www.researchgate.net/publication/304013716_Airborne_hyperspectral_data_over_Chikusei
http://doi.org/10.1016/j.laa.2005.06.025
http://doi.org/10.1109/MGRS.2016.2637824
http://doi.org/10.1109/MGRS.2015.2440094
http://doi.org/10.1109/TGRS.2017.2681721
http://doi.org/10.1155/2020/3735403
http://doi.org/10.3390/rs9111196
http://doi.org/10.1109/LSP.2011.2109039
http://doi.org/10.1109/JSTARS.2019.2896031

	Introduction 
	Materials and Methods 
	Data 
	Methods 
	HSI SRR by Endmember Matrix Constraint Unmixing 
	Quality Measures 


	Experiment Results 
	The Simulated Data 
	ZY-1 02D HSI 
	ZY-1 02D HSI SRR Results for before and after Denoising 

	Discussion 
	SRR via Constraint Endmember Matrix Unmixing 
	Denoising Effect on SRR for ZY-102D HSI 
	Future Works 

	Conclusions 
	References

