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Abstract: Rapid urban growth has coincided with a substantial change in the environment, including
vegetation, soil, and urban climate. The surface urban heat island (UHI) is the temperature in the
lowest layers of the urban atmosphere; it is critical to the surface’s energy balance and makes it
possible to determine internal climates that affect the livability of urban residents. Therefore, the
surface UHI is recognized as one of the crucial global issues in the 21st century. This phenomenon
affects sustainable urban planning, the health of urban residents, and the possibility of living in
cities. In the context of sustainable landscapes and urban planning, more weight is given to exploring
solutions for mitigating and adapting to the surface UHI effect, currently a hot topic in urban thermal
environments. This study evaluated the relationship between land use/land cover (LULC) and land
surface temperature (LST) formation in the temperate mountain valley city of Kathmandu, Nepal,
because it is one of the megacities of South Asia, and the recent population increase has led to the
rapid urbanization in the valley. Using Landsat images for 2000, 2013, and 2020, this study employed
several approaches, including machine learning techniques, remote sensing (RS)-based parameter
analysis, urban-rural gradient analysis, and spatial composition and pattern analysis to explore the
surface UHI effect from the urban expansion and green space in the study area. The results revealed
that Kathmandu’s surface UHI effect was remarkable. In 2000, the higher mean LST tended to be
in the city’s core area, whereas the mean LST tended to move in the east, south, north, and west
directions by 2020, which is compatible with urban expansion. Urban periphery expansion showed
a continuous enlargement, and the urban core area showed a predominance of impervious surface
(IS) on the basis of urban-rural gradient analysis. The city core had a lower density of green space
(GS), while away from the city center, a higher density of GS predominated at the three time points,
showing a lower surface UHI effect in the periphery compared to the city core area. This study
reveals that landscape composition and pattern are significantly correlated with the mean LST in
Kathmandu. Therefore, in discussing these findings in order to mitigate and adapt to prominent
surface UHI effects, this study provides valuable information for sustainable urban planning and
landscape design in mountain valley cities like Kathmandu.

Keywords: urbanization; surface urban heat island; land surface temperature; sustainable cities;
green space; impervious surface; Kathmandu

1. Introduction

Urbanization and associated LULC changes [1,2] significantly impact the urban ther-
mal environment of cities and their neighboring areas. This can result in numerous envi-
ronmental problems, such as deforestation, ecological degradation [3], air pollution [4],
energy imbalance [5], and hydrological stress [6], while the most apparent environmental
problem is the increase in the urban heat island (UHI) [7–11]. The urban heat island (UHI)
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refers to urban core areas with temperatures that are higher than those in surrounding rural
areas. Rapid urban expansion exerts substantial pressure on the natural environment [2,3],
and as a result, the area has become built-up land [12]. Built-up land is mainly covered
by impervious surfaces and can modify the surface energy and hydrological balance in
urban areas [13]. Due to the UHI effect, increasing temperatures in urban areas can lead to
higher energy and water consumption, air pollution, and a greater health risk for urban
dwellers [14,15].

UHI can be categorized as either surface UHI or atmospheric UHI [16]. Surface UHI is
estimated using land surface temperature, derived from remotely sensed thermal infrared
(TIR) data. Atmospheric UHI is calculated using in situ data and is often categorized
into the canopy and boundary-layer UHI [16,17]. This study focuses on surface UHI to
more deeply understand the processes underlying changes in land surface temperature in
accordance with LULC composition and pattern. Surface UHI includes both the daytime
and nighttime UHI; the daytime surface UHI is stronger than the nighttime UHI due to
solar radiation [17,18].

Many studies have shown that local climate zones for urban heat island studies
standardize the global exchange of urban thermal observations [19–22]. Moreover, a
growing body of literature shows the advantages of satellite remote sensing (RS) for
monitoring urban LULC patterns and LST [11,23–25]. For example, Estoque et al., 2017 [17]
studied the influence of landscape composition and LST patterns in three megacities in
Southeast Asia. Athukorala and Murayama 2020 [18] examined the spatial variation in land
use/land cover and composition and its impact on surface urban heat islands in the tropical
sub-Saharan city of Accra, Ghana. Jiang et al., 2015 [26] assessed the effects of urbanization-
associated land use cover changes on land surface temperature and surface moisture in the
midwestern United States. Yan et al., 2022 [27] evaluated the warming effect of urbanization
and agriculture in highly developed urban agglomerations in China, considering both
daytime and nighttime. These geospatial analyses provided critical insights for increasing
and understanding surface UHI research in order to implement proper urban planning to
reduce the surface UHI effect in many cities worldwide [11,16,17,24,28], thus improving
the living conditions for urban residents [16,17].

Generally, there is a contrast between heat absorption on impervious surfaces (con-
crete, asphalt, and other heat-absorbing substances) and heat absorption in the natural
environment in urban areas [28–31]. Many studies have shown that LST in urban areas
can be reduced by increasing urban green space, because such areas produce a cooling
effect and enhance humidity and emissivity [32–34]. Moreover, they can create a shadow
effect that covers land, limiting the direct heat applied to urban land surfaces from solar
radiation [13,16]. Therefore, many researchers have investigated the relationship between
spatial variations in impervious surfaces and green space in urban areas and cities on a
local [13,18], regional [35,36], and global scale [37], as well as the use of modeling [38–40]
to understand this phenomenon.

Many studies have investigated the relationship between spatial variations of impervi-
ous surface and green space in many cities and in various climatic regions, including tropi-
cal [41,42], tropical mountain [13], subtropical [18,43], temperate [9,44], and hot desert [16]
regions. However, a study of temperate mountain valley cities that provide a favorable
climate for their residents is still lacking [45–47].

Kathmandu is one of the most developed cities in Nepal with respect to population
and economic development, with built-up areas covering the majority of its land. Recent
research has revealed that thermal comfort is a significant problem in Kathmandu [48]. For
example, Maharjan et al., 2021 [49] studied urban heat islands in densely populated cities
of South Asia, including Kathmandu Valley, using the normalized difference vegetation
index (NDVI) and normalized difference built-up index (NDBI). Their study found an
increase in surface temperature of up to 30 ◦C between 2015 and 2018. Therefore, our study
explores the relationship between LST and the spatial variation of impervious surface
and green space in the temperate mountain valley city of Kathmandu, Nepal, to provide
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valuable insights for urban planners and policymakers in order to achieve the proper
management of Kathmandu. We used Landsat data and various geospatial approaches
such as machine learning techniques, urban-rural analysis, index-based analysis, and
landscape configuration analysis to deeply understand the relationship between the LST
and LULC patterns of Kathmandu, Nepal.

2. Materials and Methods
2.1. Study Area

Kathmandu, the capital of Nepal, is located in the central area of Nepal (Figure 1). The
study area consists of three districts: Bhaktapur, Kathmandu, and Lalitpur, which contain
five municipalities: Kathmandu metropolitan, Bhaktapur, Madyapur Thimi, Lalitpur sub-
metropolitan, and Kirtipur [50]. The rate of urbanization during the 1990s was 6.6% per
annum, which was among the highest in the Asia Pacific region [50]. As a result, the total
population of Kathmandu reached 2.5 million by 2016, of which about 1,465,254 were
considered urban residents [50]. The altitude range of the area is 1026 m through 2547 m
(Figure 1). Kathmandu City stretches along the Bugmathi river basin [50]. According to
the Koppen classification, the study area belongs to a temperate, dry winter, hot summer
climate (Cwa) [51]. The area experiences four seasons: winter (December–February),
pre-monsoon (March–May), monsoon (June–September), and post-monsoon (October–
November) [50,52]. The average summer and winter temperatures in Kathmandu are 29 ◦C
and 10.1 ◦C, respectively [50,52]. Kathmandu is regarded as a high urban accumulated area,
and is the industrial and administrative hub in Nepal. Therefore, Kathmandu Valley has
accelerated in terms of both population and urban development, expanding to the outer
areas. After considering the urban development process and the potential restricted effects
of administrative boundaries, we defined our study area as 20 × 20 km, with a 10 km radial
from the city center in Kathmandu’s central hub (Figure 1).
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Figure 1. Location of the study area. (a) Nepal (28◦23′42′′N/84◦7′40′′E) and some other countries in
South Asia [53]; (b) Kathmandu City and its immediate surrounding areas [54]; and (c) study area of
20 × 20 km with a 10 km radius.
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2.2. LULC Classifications

In assessing the relationship between LULC and LST, spatially and temporally con-
sistent LULC maps are required. However, we could not find spatially and temporally
consistent LULC maps for Kathmandu. Therefore, we used earth-observing satellite remote
sensing data to classify LULC maps in 2000, 2013, and 2020, considering urbanization
and data availability. We used Landsat images in this study [55]: Bands 4, 3, and 2 for
Landsat 5 and bands 5, 4, and 3 for Landsat 8 were used for LULC classification. The
target years were selected on the basis of the urban development of the Kathmandu Valley
and previous studies [52,56]. We employed machine learning techniques—the random
forest classification using R software [57]—to classify the LULC maps for the study area.
Many studies have shown that the random forest classification method has higher LULC
classification accuracy in many regions of the world [58–60]. Six land use and land cover
categories were identified: impervious surface (IS), green space 1 (GS1), green space 2
(GS2), bare land (BL), water (W), and other land (OL). The IS category consists of buildings,
roads, airports, schools, industrial areas, and asphalt areas. The GS1 category consists of all
types of forests, and GS2 consists of croplands, grasslands, and small types of bushes. BL
comprises exposure areas both natural and man-made. The water (W) category includes
rivers, lakes, and sub-channels, and OL mainly contains clouds, snow, and shadows in the
study area.

We used 600 sample points to evaluate the accuracy of each map in 2000, 2013, and
2020. Google Earth historical images were used for the accuracy assessment. The accuracy
of the maps was determined by automatic sampling in the algorithm for each year using
the software. The spatial resolution of the classified LULC maps was 30 × 30 m.

2.3. Estimation of LST

This study used Landsat collection 2 level-1 product data (one TM 5 image for 2000 and
two OLI/TIRS images for 2013 and 2020) to estimate LST in Kathmandu. Captured Landsat
TM 5 images in 2000 (4 April; 10:07 local solar time) and 2013, and 2020 Landsat 8 OLI/TIRS
(26 March; 10:33 local solar time, and 11 April; 10:22 local solar time) images were utilized
for the analysis. Before assessing the LST in the area, we pre-processed the data on the
basis of methods presented in our previous studies (surface reflectance values for the
multispectral bands and at-satellite brightness temperature (Tb) values for the thermal
bands) [18,61]. Generally, the frequently applied process of obtaining unprocessed Landsat
data requires the DN value of thermal bands (Landsat thematic mapper TM = band 6, and
Landsat 8 OLI/TIRS = bands 10 and 11) [18]. First, we obtained absolute radiance values
and performed the derivation of satellite brightness temperature [17,18]. We used the
pre-processed bands (band 6 for Landsat 5 TM and bands 10 and 11 of Landsat 8 OLI/TIRS)
and the normalized difference vegetation index (NDVI) method to estimate land surface
emissivity values [17,18]. Consequently, Kelvin values of the top-of-atmosphere brightness
temperature were shifted to Celsius (◦C). Equation (1) [13,18] was used to estimate the LST
for Kathmandu:

LST =
Tb

1 + (λ × T b /ρ) INε

(1)

where Tb refers to Landsat 5 TM band 6, Landsat 8 OLI/TIRS band 10 brightness temper-
ature, λ refers to the wavelength of emitted radiance (11.5 µm for band 6 and 10.8 µm
for band 10), ρ = h × c/σ (1.438 × 10−2 m K), σ = Boltzmann constant (1.38 × 10−23 J/k),
h = Planck’s constant (6.626 × 10−34 Js), c = velocity of light (2.998 × 108 m/s), IN refers to
the pre-launch logarithm, and ε refers to the emissivity of the land surface.

2.4. Spatial Profile of Surface UHI in Kathmandu City

A typical UHI formation represents the temperature distribution from the urban
core. The urban core area shows a heating condition and comes to the middle. It shows
a decreasing trend in basins, plateaus, and valleys. Estoque and Murayama 2017 [13]
introduced surface UHI profiling for the South Asian mountain city of Baguio, Philippines,
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considering urban-rural gradient surface UHI formation using Landsat data. Athuko-
rala and Murayama 2020 [18] investigated the surface UHI formation in Accra, Ghana,
observing cross-sectional surface UHI profiles based on Landsat data. This study also fo-
cused on surface UHI definition based on 210 × 210 m grid size because this grid size is
robust for predicting methodological factors and environmental elements utilizing statistical
connections in surface UHIor atmospheric UHI, and LULC categories, as well as spatial
configurations and patterns (210 × 210 m grid size used based on previous studies [13,16,18]);
then, a surface UHI profile of the Kathmandu was created.

2.5. Remote Sensing-Related Parameter Analysis

Geologically, a valley is considered as an extended depression on the earth’s surface
that is usually surrounded by mountain ridges. The depth and natural landscape features
of the valley strongly impact its local climate, and valley cities develop under these condi-
tions. Kathmandu is a bowl-shaped temperate mountain valley city (Figure 1). Therefore,
it is crucial to understand the relationship between natural parameters such as NDVI,
modified normalized difference water index (MNDWI), normalized difference bareness
index (NDBal), and elevation and LST. Understanding the relationship between natural pa-
rameters and LST and their interconnectivity with each variable provides valuable insights
for urban planners and policymakers for the purposes of sustainable city planning. To do
this, we used four remote sensing parameters: NDVI, MNDWI, NDBal, and elevation for
Kathmandu City, and each variable was selected on the basis of the knowledge of the study
area and previous studies [13,62–65]. Elevation (digital elevation model (DEM)) data were
obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) with 30 × 30 m resolution [55]. We resampled NDVI, MNDWI, and NDBal into 0
to 100 using the resample tool in the ArcGIS 10.5 software. For the final analysis, we used a
210 × 210 m grid size, as explained in Section 2.4. The multiple linear regression (MLR)
model [66,67] was applied to demonstrate the relationship between remote sensing-related
parameters and the mean LST using 9025 analytical grids. Some previous studies have
also employed the same statistical method [13]. The objective of MLR is to model the
linear relationship between response (dependent) variables and explanatory (independent)
variables. Several important assumptions had to be tested during the regression analysis,
including the presence of linearity between the dependent and independent variables. The
R-squared was used to calculate how much of the variation in the independent variables
can be attributed to the variation in the outcome.

2.6. Spatial Analysis
2.6.1. Characteristics in Surface UHI of Kathmandu

We assessed the characteristics of SUHII along the urban-rural gradient in Kathmandu
to understand its formation in the temperate mountain valley condition. As described in
Section 2.4, all 210 × 210 m grids were aimed in the same direction for this analysis (see
Estoque and Murayama 2017 [13]). Accordingly, 48 urban-rural buffers were demarcated as
urban-rural zones in this study (URZs), i.e., URZ1, URZ2, URZ3, . . . , URZ48 (Appendix A).
The zones show the mean LST and LULC densities of IS, GS1, and GS2 (we calculated the IS,
GS1, and GS2 densities along each URZs), and the formation of the remote sensing-related
parameters, i.e., NDVI, MNDWI, and NDBal, ranging from 0 to 100 at 210× 210 m intervals
(see Section 2.5). The surface UHI intensity changes were estimated between URZ1 (URZ1
was recognized as a high urban intensity zone) and other URZs. We applied the same
procedure for 2000, 2013, and 2020. On the basis of previous studies [16,18], we considered
high-IS-density zones (URZ1) as urban zones and URZs with <15% IS density as rural zones.
We excluded bare land (BL), water (W), and other land (OL) categories in this analysis,
because they possess relatively low areas compared to the other LULC categories.
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2.6.2. Landscape Composition and Pattern Analysis

This investigation aims to determine which spatial traits of the IS, GS1, and GS2
patches are likely to have impacted the spatial formation of LST in Kathmandu. The
210 × 210 m grid size used in Section 2.4 was inadequate for this composition and pattern
analysis due to the grid size. Therefore, we used a relatively large grid size for this analysis.
We applied a 4 × 4 km fishnet to divide the entire study area (20 × 20 km) into 25 sub-parts.
All sub-parts were considered in this analysis. For further investigation, the LULC and LST
maps were clipped with the corresponding polygon grid years 2000, 2013, and 2020.

We used five class-level spatial matrices: mean patch area (AREA_MN), number of
patches (NP), largest patch index (LPI), percentage of landscape (PLANND), and cohesion
(COHESION) (Table 1) (more information—Fragstats [68]). These class-level spatial metrics
have been widely applied in previous UHI studies. The 8-cell neighbor rule was employed
to estimate the five metrics. BL, W, and OL were excluded in this analysis due to the same
conditions explained in Section 2.5. Finally, the resulting metric values were correlated
with the mean LST of the LULC category of each sub-part to determine the influence of
landscape composition and pattern on the mean LST in Kathmandu.

Table 1. Class-level spatial metrics used in this study [68].

Index Description Unit Measure

Mean Patch Area
(AREA_MN)

The average patch size of LULC
classes. The spatial pattern and

heterogeneity of the area.
Hectare Composition of each LULC class

in the study area (LULC classes).

Number of Patches (NP) Derived using the total
landscape area.

Number of patches
per hectare

Estimation of the fragmentation
of each LULC class.

Largest Patch Index (LPI)

Quantifies the percentage of the
total landscape area taken up by

the largest patch at the class level.
It is a simple gauge of dominance.

0–100
LPI has the ability

to detect the advantages
of the LULC.

Percentage of Landscape
(PLANND)

Sum of the LULC classes divided
by the total landscape area × 100. Percentage Measurement of the abundance of

the corresponding LULC class.

Cohesion (COHESION)

The physical connectivity of the
corresponding patch type of the

LU class increases with more
clustering of the patch type in its
configuration, resulting in more

physical amalgamation.

0–100 The physical connectivity of the
equivalent patches of LULC class.

3. Results
3.1. LULC and LST Changes in Kathmandu from 2000 to 2020

The overall accuracy of the classified LULC maps was greater than 85% (Appendix B).
The classified LULC maps show that Kathmandu has undergone rapid urbanization over
the last two decades (2000–2020) (Figure 2). The area of IS increased by 762 ha between
2000 and 2013, and it expanded by 4240 ha between 2013 and 2020, corresponding to a total
of 5002 ha in the last 20 years (Table 2). In the visual interpretation, most of the IS area was
accumulated in the central part of the study area in 2000, and it gradually increased in the
outer area by 2020. The results show a total net loss of GS1 and GS2 recorded at 2807 ha
and 2202 ha in the 20 years, respectively (Figure 2). We observed that most GS1 areas were
located in the north-eastern, south-western, north-western, and south-eastern parts of the
study area, and GS2 was mainly concentrated in the middle part of the study area.
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northeast, and the periphery of southern and north-western parts. In 2013, the mean LST 
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south, and north-western parts of the study area. In particular, we observed significantly 
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Figure 2. LULC maps of Kathmandu City, Nepal, and its surrounding areas classified using machine
learning techniques (see Section 2.2): (a) LULC map in 2000; (b) LULC map in 2013; and (c) LULC
map in 2020.

Table 2. LULC area matrix of Kathmandu City from 2000 to 2020.

LULC Type 2000 km2 % 2013 km2 % 2020 km2 %

Impervious Surface 86.96 21.74 94.58 23.65 136.98 34.25
Green Space 1 (Forest) 116.69 29.17 99.7 24.93 88.62 22.16

Green Space 2 (Cropland/Grassland) 149.66 37.42 153.84 38.46 127.64 31.91
Bare Land 31.52 7.88 38.64 9.66 39.31 9.83

Water 1.93 0.48 1.79 0.45 1.7 0.43
Other Land (Cloud/Snow/Shadow) 13.24 3.31 11.44 2.86 5.75 1.44

Figure 3 shows the LST distribution of Kathmandu City from 2000 to 2020. The mean
LST in 2000 was 18.94 ◦C, and the LST was mainly concentrated in the central part, east,
northeast, and the periphery of southern and north-western parts. In 2013, the mean LST
was 25.19 ◦C and mainly accumulated in the central, south, and east parts. In 2020, the
mean LST was 26.11 ◦C, and the overall higher LST was observed in the central, east, south,
and north-western parts of the study area. In particular, we observed significantly higher
LST values in the Tribhuvan International Airport in Kathmandu at each time point (mean
LST was 25.11 ◦C in 2000, 27.43 ◦C in 2013, and 30.48 ◦C in 2020) (Figure 3).
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Figure 3. LST maps of Kathmandu City, Nepal, and its surrounding areas derived from Landsat
imagery: (a) LST map in 2000; (b) LST map in 2013; and (c) LST map in 2020.

Figure 4 shows the mean LST of each LULC category in Kathmandu. The results show
that the mean LST of IS was 19.80◦C in 2000, 26.52 ◦C in 2013, and 27.40 ◦C in 2020. The
mean LST of GS 1 was recorded at 16.88 ◦C in 2000 and 22.39 ◦C in 2020, while GS2′s was
18.66 ◦C in 2000 and 24.68 ◦C in 2020, indicating a lower mean LST than the IS category at
each time point. As mentioned before, the BL of the study area shows a relatively low area,
and most areas were located in the periphery of the study area (Figure 2). The mean LST of
BL was 21.49 ◦C in 2000, 25.82 ◦C in 2013, and 27.60 ◦C in 2020. The mean LST of the water
category was recorded at 18.89 ◦C in 2020 and 20.03◦C by 2020 over the study period.
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3.2. Characteristics of RS-Based Spatial Parameters
3.2.1. Changes in NDVI, MNDWI, and NDBal

Figure 5 indicates the normalized difference vegetation index (NDVI) values in Kath-
mandu City in 2000, 2013, and 2020. High NDVI values were concentrated in the north-east,
south-east, south-west, and north-west regions, while lower NDVI values were concen-
trated on a substantial portion of the study areas in 2000 and 2013. However, we observed
lower NDVI values by 2020 compared to in the years 2000 and 2013, and NDVI in 2020 was
mainly concentrated in the north-east, south-east, south-west, and north-west areas. The
central part of Kathmandu showed lower NDVI values ranging from 1 to 20 during the
study period.
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Figure 6 reveals the modified normalized difference water index (MNDWI) of Kath-
mandu City in 2000, 2013, and 2020. The MNDWI is used extensively as the RS parameter
in surface UHI studies. In 2000, higher values of MNDWI were recorded in the central,
north-western, south, and south-eastern areas (Figure 6). The MNDWI was more apparent
in the central, north-east, south-western, and north-east areas by 2013. Our results show
the MNDWI concentration in the central part of the study area over three time points, with
the effect of the Bhagmathi river basin and several tributaries (Bishnumati and Manamati)
flowing through the central part of the study area. Most areas at the three time points show
an MNDVI ranging between 1 and 20, indicating some water stress in the study area.
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Figure 7 shows the normalized difference bareness index (NDBal) of Kathmandu in
2000, 2013, and 2020. According to the three maps (Figure 7), higher NDBal values were
identified in the middle, north, east, south, and west parts of the study area. We observed
that most of the NDBal values of Kathmandu were spread out and located as a ring away
from and around the city center at the given time points, indicating rapid LULC change
due to the urban process in the area. The three maps indicate that substantial-high NDBal
values were located around the top of mountain areas compared to the city area, and the
LULC maps (Figure 2) also corroborated this condition. Moreover, the three LST maps of
Kathmandu show relatively high LST values related to the high NDBal around the top of
mountain areas (Figure 3).
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3.2.2. Relationship between Mean LST and RS-Based Parameters

The results show a relationship between the mean LST and RS-based parameters at a
grid size of 210× 210 m (Table 3). Overall, the MLR analysis results revealed that combining
the RS-based parameters used in this analysis makes it possible to explain the significance
of the parameters used in the mean LST during the study period. Moreover, each regression
coefficient β of the RS-based parameters showed statistical significance (p < 0.001) at the
three time points. For example, in 2000, the standardized regression coefficients showed
that the mean NDBal had a significant positive correlation with the mean LST, indicating
the heating power of the area. The mean NDVI, mean DEM, and mean MNDWI had a
significant negative relationship with mean LST, indicating the cooling power of the area.
In 2013 and 2020, the mean NDVI and mean elevation had the highest negative relationship
with the mean LST. In contrast, the mean NDBal had the highest negative relationship with
the mean LST in Kathmandu in 2013 and 2020. Our results indicate that the standardized
regression coefficients between the mean NDVI, mean elevation, and mean MNDWI and
the mean LST increased (negatively) during the study period. In contrast, the relationship
between mean NDBal and mean LST increased in 2020; however, the mean NDBal in 2013
showed a lower value than that in the years 2000 and 2020.
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Table 3. Results of MLR analysis in Kathmandu (dependent variable: mean LST; 210 × 210 m grid
size; and N = 9025).

RS-Based Parameters Coefficients

Unstandardized β Std. Error Standardized β Sig.

2000
(Constant) 22.590 0.144

Mean NDVI −0.031 0.001 −0.319 0.000
Mean MNDWI −0.017 0.001 −0.116 0.000
Mean NDBal 0.057 0.001 0.434 0.000

Mean elevation −0.003 0.000 −0.218 0.000
R2 = 0.696; Adjusted R2 = 0.695

2013
(Constant) 35.163 0.124

Mean NDVI −0.043 0.001 −0.506 0.000
Mean MNDWI −0.024 0.001 −0.170 0.000
Mean NDBal 0.042 0.001 0.410 0.000

Mean elevation −0.006 0.000 −0.453 0.000
R2 = 0.781; Adjusted R2 = 0.780

2020
(Constant) 31.154 0.112

Mean NDVI −0.046 0.001 −0.516 0.000
Mean MNDWI −0.045 0.001 −0.410 0.000
Mean NDBal 0.059 0.001 0.457 0.000

Mean elevation −0.006 0.000 −0.506 0.000
R2 = 0.729; Adjusted R2 = 0.729

3.3. Characteristics of Surface UHI in Kathamndu

Our results reveal that the density of IS and the mean LST have regular characteristics
(Figure 8a). The URZs near the central business district (CBD) exhibited the highest mean
LST, which declined along the urban−rural gradient in 2000, 2013, and 2020 (Figure 8a).
Conversely, the density of GS1 and GS2 indicates the lowest mean LST as being near the
CBD. The density of GS1 and GS2 gradually increased from the CBD, corresponding to
a large part of the rural area in the study period (Figure 8a). The density of IS increased
from the center to URZ4, and a quick drop was identified from URZ4 to URZ5. This drop
exhibited an ascending trend from URZ5 to URZ9, which continued until URZ12 with small
fluctuations (Figure 8a). From URZ12 to URZ48, the density of IS showed a decreasing trend
that is compatible with the mean LST at the three time points.

In contrast, the density of GS2 had a higher value than that of GS1 around the city
center at the three time points, and it gradually declined until URZ4. From URZ4 to URZ6,
the density of GS2 increased until URZ6, before again declining between URZ6 and URZ12,
apart from in 2013. By 2020, the density of GS2 showed an increasing trend until URZ33,
and then decreased until URZ48, indicating changes in the urban structure in the suburbs
(Figure 2). The density of GS1 decreased from the center grid to URZ20, indicating that
urban pressure in Kathmandu was reflected from the CBD to the suburbs. We observed that
from URZ20 to URZ48, the density of GS1 increased across the three time points. Moreover,
we found that the density of GS2 was higher from URZ12 to URZ42 than that of GS1,
showing a significant impact on mean LST in Kathmandu (see mean LST values in each
LULC at three time points) (Figure 8a).
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The mean NDVI did not reveal the highest mean LST to be in the CBD. Our results
revealed that the mean MNDWI had higher values near the urban core area than the mean
NDVI and NDBal values because the area flourished in rivers and sub-waterways. The
mean MNDWI value showed an increasing trend from the center grid to URZ8, with
some fluctuations, and it gradually declined along the urban-rural gradient during the
study period. We observed that the mean MNDWI values increased from URZ25 to URZ48
compared to 2013, indicating enhanced green cover (forest, cropland, and grassland) in
the urban-rural transition area and the rural area in comparison to the LULC maps of the
study area (Figure 2). The decrease in the mean NDVI reported around the city core area
indicated rapid urban growth in the central part of Kathmandu and an abundance in the
urban fringe (Figure 8b). The results revealed that mean NDVI values increased gradually
from URZ29 to URZ48, indicating a greater cooling effect in these zones.

The mean NDBal of the study area showed an increasing trend until URZ26 and
declined from that point until the final zone, with few fluctuations. However, we observed a
slight increase in the mean NDBal between URZ25 and URZ29 (Figures 7 and 8b), indicating
that the BL was mostly located between the hinterland and the peripheral in the study
area in 2020 (Figure 2). We observed an increase in NDBal from URZ32 to URZ48 in 2020
compared to in 2013. This enhancement may have been due to the urbanization process
near hill areas and increased deforestation activities in this area, because the density of the
GS1 also decreased in this area (Figures 2 and 8a).

On the basis of the differences between Figure 8a,b, it can be concluded that the density
of GS1 and GS2 decreased over the three time points. This pattern corresponds to the
mean NDVI, MNDWI, and NDBal from URZ1 to URZ48, URZ25, and URZ31, respectively,
indicating the urbanization characteristics (i.e., the density of IS) in the area influenced the
formation of UHI in the area.
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3.4. LULC Composition and Pattern vs. Mean LST in Kathmandu

The results indicate that IS, GS1, and GS2 had a significant relationship with mean LST
in Kathmandu in 2000, 2013, and 2020 (Table 4). The correlation coefficients of IS showed a
positive relationship with mean LST during the study period. Conversely, GS1 and GS2
had a negative relationship with mean LST during the study period. The values of the five
IS metrics revealed the rapid expansion of IS in Kathmandu. These results correspond to
our classified LULC maps for the area (Figure 2). The Area_MN, LPI, and COHESION
of GS2 had a negative relationship at the three time points. The PD and PLAND of GS1
possessed lower values in 2013, but higher values in 2020. The AREA_MN, PD, LPI, and
PLAND of GS2 had a negative relationship with mean LST in Kathmandu. All values were
statistically significant (p < 0.001).

Table 4. Results of LULC composition vs. mean LST.

2000 2013 2020

IS GS1 GS2 IS GS1 GS2 IS GS1 GS2

AREA_MN 0.425 −0.235 −0.357 0.454 −0.629 −0.204 0.532 −0.670 −0.103
PD 0.108 −0.730 −0.087 0.257 −0.123 −0.138 0.477 −0.560 −0.194
LPI 0.127 −0.464 −0.039 0.481 −0.614 −0.34 0.505 −0.686 −0.024

PLAND 0.173 −0.549 −0.151 0.351 −0.800 −0.124 0.421 −0.660 −0.112
COHESION 0.209 −0.512 −0.196 0.539 −0.789 −0.173 0.611 −0.897 −0.262

Note 1: Area_MN—mean patch size; PD—patch density; LPI—largest patch index; PLAND—percentage of
landscape; and COHESION—cohesion. Note 2: IS—impervious surface; GS1—green space 1; and GS2—green
space 2.

Overall, five matrices—AREA_MN, PD, LPI, PLAND, and COHESION, and IS, GS1,
and GS2—have a confirmed potential influence on the mean LST in the temperate mountain
valley city of Kathmandu. A growing body of literature indicates that widespread patches
of green space can promote a cooling effect compared to the small and scattered patches of
green space. We observed widespread IS patches in Kathmandu to promote the surface
UHI effect. However, small and scattered patches of IS promoted a relatively lower surface
UHI effect in Kathmandu.

4. Discussion
4.1. Change in Urban Structure in Kathmandu

To investigate the effect on surface UHI of urban expansion and green space distri-
bution in Kathmandu, this study tried various approaches, including machine learning
techniques, remote sensing (RS)-based parameter analysis, urban-rural gradient analysis,
and spatial composition and pattern analysis. Here, we offer sustainable landscape and
urban planning strategies for use by city planners and policymakers in Kathmandu to
mitigate the UHI effect and improve the quality of life of city dwellers.

Our results provide strong evidence of the rapid urban growth in Kathmandu, Nepal,
showing an exponential expansion of IS over a time span of 20 years (from 2000 to 2020)
(Figure 2). Some studies have shown that the Kathmandu Valley is the most densely popu-
lated area, the major economic core, and one of the fastest-blooming urban agglomerations
in South Asia [69,70]. This city is critical, because Kathmandu is a mountain valley city with
unique geophysical characteristics in a land-locked country that has no land connected
to an ocean or coastlines [71]. Kathmandu’s urbanization has primarily been driven by
religion, tourism, and the city’s pleasant cool climate [72,73]. The population of Kathmandu
City was 2.5 million in 2016, and is expected to increase rapidly with these impacts and
drivers [52,71–79]. These results reveal that IS has rapidly encroached in the east, north,
south, and west with increasing population and infrastructure from the urban core to the
suburbs (Figure 2). This condition indicates that the central part of the Kathmandu Valley
and its neighborhoods are critical determinants of its urban development.



Remote Sens. 2022, 14, 4047 15 of 23

4.2. Linking Surface SUHI Formation with LULC

In this study, we derived three remote sensing-based LST maps for 2000, 2013, and
2020, and the mean LST of Kathmandu was 18.94 ◦C in 2000, 25.19 ◦C in 2013, and 26.11 ◦C
in 2020 (Figure 3). However, we discovered that the LST values at the three time points
not only closely corresponded to LULC, but those other environmental variables, such as
surface moisture, humidity, solar radiation, wind speed, precipitation, and anthropogenic
heat release, may not have been temporally stable across the three time points when the
thermal images were acquired.

Hence, our research focused on the temporal fluctuations of surface UHI in Kath-
mandu. Here, two factors are considered, i.e., surface UHI and the density of LULC
difference between climate zones (between LULC categories and URZs) during the study
period. This approach enables the comparison of surface urban heat intensities in Kath-
mandu from 2000 to 2020. The results revealed the increasing trend of surface UHI intensity
between 2000 and 2020. We found that the surface UHI intensity between GS2 and GS1
increased by 1.37 ◦C during the study period. Considering the urban-rural gradient, an
average increase in surface UHI intensity between 2000 and 2020 based on URZ1 (urban
zone with the highest IS density at the three time points) and the rural zone (the first
URZ with <15% IS density) generated a higher value, at 3.89 ◦C. Therefore, the underlying
mechanisms of the increased surface UHI intensity in Kathmandu need to be understood
in order to achieve sustainable city planning.

In 2000 and 2013, the proportions of the study area accounted for by IS in Kathmandu
were 21.74% and 23.65%, respectively. However, during the period between 2013 and 2020,
the proportion of IS was 34.25%, an increase of 10.6% compared to the 2000–2013 period.
Several studies have discovered that the surface UHI intensity is positively correlated with
city size [9,11,80–82]. Therefore, we selected a 10 km buffer to restrict the study area. We
discovered that the increasing trend of surface UHI intensity in Kathmandu had been
impacted by changes in the natural landscape caused by rapid urban processes arising
from the considerable expansion of IS and the visible degradation of green space in the
area. The natural landscape change from GS1 (forest) to GS2 (cropland/grassland) cannot
be neglected, because the mean LST difference between GS2 and GS1 shows an increasing
trend, as mentioned before, and this can enhance the surface UHI effect in the area. Urban
landscape transformation also influences changes in the values of the RS-based parameters
(NDVI, MNDWI, and NDBal) considered in this study. Therefore, future urban planning
should pay more attention to this condition.

Our study found a high surface UHI value near Tribhuvan International Airport at
three time points, with increasing intensity between 2000 and 2020 (Figure 3). We gave
more attention to this area because the airport is the most critical place for the country from
a socio-economic perspective. The results revealed that GS2 and GS1 near the airport area
had declined with the rapid expansion of IS (sub-urbanization), promoting more surface
UHI in this vicinity. Therefore, urban planners should pay more attention to reducing LST
by means of possible and practical treatments in this area.

Along the urban-rural gradient, we observed a slightly decreased IS density between
URZ4 and URZ7 and an improved GS2 density in the same area. However, the decline in IS
density and increase in GS2 density did not fully correspond to the mean LST in this region
(see Figure 8a). As mentioned above, the MNDWI in the URZs exhibited lower values,
and NDBal showed relatively high values in these URZs. This effect might have enhanced
the mean LST in these URZs. Previous studies have reported similar findings [16,18]. For
instance, XIAO et al. (2007) revealed that surface UHI was not most pronounced in the
CBD. Rather, it was located in the south of the central city near the 4th ring road and the dry
Yongding river in the south-western part of the city, which is the biggest area of bare land in
Beijing, China [83]. Estoque and Murayama studied the impact of landscape composition
and pattern on land surface temperature in the three megacities of Southeast Asia [17].
They identified a significant correlation between land use categories and mean LST changes
along the urban-rural gradient in Bangkok, Jakarta, and Manila. Athukorala and Murayama
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discovered a strong relationship between LULC density and tasseled cap transformation
(TCT) and the mean LST change in the sub-Saharan city of Accra, Ghana [18]. They found
that GS2 (cropland and grassland) positively contributes to enhancing surface UHI by
combining the effects of the bareness index in the sub-Saharan climate.

4.3. Effect of Landscape Composition and Pattern on Surface UHI Formation

Our study shows that the five spatial metrics were significantly correlated with the
mean LST in Kathmandu (the density of IS (positive) in 2000, 2013, and 2020, and the density
of GS1 and GS2 (negative)) (Table 4). These findings are similar to other studies by Estoque
et al. (2017) [17], Myint et al. (2013) [84], Hou and Estoque (2020) [32], Zhou et al. (2011) [66],
Athukorala and Murayama (2021) [16], and Zhou et al. (2017) [85]. They revealed that
the AREA_MN, PD, LPI, PLAND, and COHESION of IS and GS significantly correlate
with the mean LST. However, data information, including the magnitude, significance,
and angle of the influence, differed between our findings and those of prior studies. It
is important to note that rapid urban growth changes natural environments into the IS,
receiving more solar energy and little reflected solar radiation [16,86]. In that context, LST
affects urban thermal environmental change and modifies environmental factors (humidity,
evapotranspiration, and energy balance) in the urban area, influencing human health and
thermal comfort.

Generally, vegetation and shadow help to reduce the surface temperature [16,87–89].
In Kathmandu, we observed that forest cover, high-rise building shadow, and mountain
shadow mitigate surface UHI in certain areas. However, the position of this shadow
effect varies with earth rotation and time. For example, many studies have investigated
the surface UHI effect using Landsat data [13,17,89]. The local time of data capture was
during the morning. The solar incidence angle (the angle between solar rays and the
vertical direction) produces the evapotranspiration and shadow effects. However, the
magnitude, location, and surface covering of areas with these effects should be fully
considered for urban planning, especially the relationship between the effects of shadow
and earth rotation.

Geophysically, Kathmandu City is located in a mountain valley and one of the coun-
try’s major river basins (the Bagmati river basin). Urban planners should pay more attention
to these factors with respect to urban planning. Landscape composition and pattern analy-
sis can fill this gap and provide more insights for urban planners [8,66,85,90,91]. Generally,
large patches of IS produce more surface UHI, and relatively small patches have a lower
surface UHI effect. On the other hand, large GS patches have a more cooling effect, and
small patches have less of a cooling effect. Our study reveals that enlarged and continuous
patches of GS1 (forest) and GS2 (cropland/grassland) generate a more significant cooling
effect in rural areas (Shanti Danda, Chonga Ganesh temple area, Hanumante river area,
Gokarna, Chanautipato, Coronation garden, Chhanui military barracks, Swayambhunath,
and Shoyembhu areas) than in urban core areas. Similar results have been reported in
Bangkok, Jakarta, Manila, Accra, greater Cairo, and Baguio [13,16–18]. However, the mag-
nitude of the cooling effect of GS1 is higher than GS2 in Kathmandu. We discovered that
the complex shape of the forest and cropland/grassland was more active in cooling LST
in Kathmandu. Zhou et al. (2017) [85] revealed the same conditions in Sacramento, but in
Baltimore, a simple tree crown with a small margin in the same area performed better in
terms of cooling effect. Such differences have emerged in the literature between study areas
with different climatic conditions. Therefore, the relationship between landscape metrics
and LST should be thoroughly considered in order to achieve sustainable city planning.

Overall, for Kathmandu, it is suggested to plant suitable trees or set waterways and
protect the existing tributaries (we observed that some sub-water channels were dispersed
around the city core area during the study period) near roads and buildings to decrease
the surrounding surface UHI. Athukorala and Murayama (2021) [16] revealed that rooftop
greening provided a practical cooling effect during both daytime and nighttime in greater
Cairo, Egypt. In this respect, Kathmandu is a bowl-shaped city, and reducing surface UHI
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remains a challenge. Moreover, the lessons learned from rooftop agriculture and vegetation
in greater Cairo, Egypt [16] provide a more efficient approach to mitigating the surface UHI
effect. Therefore, urban planners could rearrange the green space (trees) in Kathmandu to
create adjoining patches, maximizing their cooling ability.

4.4. Implication for Surface UHI Mitigation and Urban Climate Adaptation

Kathmandu has been Nepal’s largest urban agglomeration, industrial center, and socio-
economic and tourist hub in recent decades [52,71,72], during which period the extensive
natural and semi-natural landscape was rapidly transformed into IS. Many researchers
across the world have recently focused their attention on the relationship between the
significant loss of urban green space and the increasing surface UHI effect [13,17,66].
Our findings revealed that the tremendous growth of IS and the decline of green space
made the surface UHI effect more pronounced in downtown Kathmandu. Many urban
agglomerations are rapidly approaching mitigation and climatic adaption to the surface
UHI effect by means of sustainable city planning [8,16,17]. The growing literature shows
that efficiently distributed vertical greenery [92–94], such as rooftop vegetation and green
walls [16,95,96], makes a reliable contribution to reducing surface UHI and heat fluxes by
means of moist and shading facades, thus facilitating human thermal comfort.

According to the visual interpretation, the IS in the 2000 map shows relatively high
fragmentation compared to the IS in the 2020 map. However, the actual situation is that
the IS in 2020 is more fragmented than the IS presented in the 2000 map because of urban
development with high buildings and rapid urban structure change, resulting in greater
fragmentation of IS in Kathmandu by 2020. This condition also substantially affected the
increase in surface UHI in Kathmandu. In this context, the implementation of rooftop
solar photovoltaic systems (SPVSs) has provided roof cover and improved indoor thermal
conditions by minimizing extreme heatwaves in the urban core area [97–99]. Our results
reveal that the urban areas in Kathmandu have expanded from the CBD to the urban
periphery and suburban areas.

Urban agglomerations can effectively produce a positive cooling effect by optimizing
the green space [17]. The cooling effects of PD, PLAND, COHESION, and LPI values
on surface UHI were exceptional and robust in Kathmandu. Therefore, it is critical to
ensure sufficient size and consistency of green space when planning green landscapes
to achieve maximum surface UHI cooling by improving the interconnection between
patches [16], such as establishing urban parks and green corridors and decreasing the
extent of patches [100].

In response to the formation of surface UHI in Kathmandu from 2000 to 2020, we
propose that Kathmandu’s urban core should be filled in with green patches with high
population density and aggregated urban land, and that more green infrastructure net-
works, in connection with topographic features and roads, should be planned, thus further
promoting cooling conditions in the urban area. Moreover, as explained previously, urban
planners in Kathmandu should pay a great deal of attention to the Tribhuvan International
Airport area, enhancing greenery around the airport vicinity. The link between the GS and
RS parameters indicates that vegetation and blue infrastructure should be connected at mi-
cro and macro levels. Similar results and implementations have been reported in previous
studies [18,101]. To reduce the heatwave effect on urban city dwellers, urban designers and
planners should understand the characteristics of rapid urban growth structure change at
various development levels and logically composite patterns of urban green spaces and
anthropogenic activities.

5. Conclusions

This study assessed the surface UHI and related it to the LULC composition and
pattern in the temperate mountain valley city of Kathmandu, Nepal, from 2000 to 2020,
using Landsat images. The study area experienced rapid urban development during the
study period. This indicates a substantial expansion of impervious surfaces and loss of
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green space in Kathmandu, and the surface UHI phenomenon is remarkable in the city.
Our results revealed a significant relationship between the mean LST and urban expansion
(impervious surface and green space change). The mean LST, mean NDVI, mean MNDWI,
mean NDBal, and elevation were critical spatial parameters for deriving the surface UHI
in the study area (the statistical relationships were R2 = 0.695 in 2000, R2 = 0.781 in 2013,
and R2 = 0.729 in 2020). On the basis of various geospatial methods, this study provides
valuable practical approaches for sustainable urban planning and design in Kathmandu.
The results show that the surface UHI in Kathmandu has increasing characteristics. The
LULC has exhibited a drastic change in Kathmandu during the past 20 years, and the city
core indicated the promotion of surface UHI due to the high density of IS.

In contrast, other land covers (GS1, GS2, W, and OL) had lower surface UHI, with the
exception of the bare land category. The urban periphery showed the expansion of the city
into more rural areas; these land changes enhanced the surface UHI in the urban fringe.
GS1 and GS2 gradually decreased in the urban core areas during the study period, showing
more fragmentation and reducing the patch size gap, resulting in a reduced cooling effect
in the city core. Based on the above-mentioned conclusions, in order to control the further
strengthening of surface UHI, protecting vegetation cover and the urban river system,
it may be helpful to increase river basin sustainability (Bagmati river basin) and enhance
the ecological characteristics of urban greenery, thus mitigating and adapting to the surface
UHI effect in Kathmandu in the future.
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URZ48). Background image (Landsat 8, 11 April 2020 image, false color band composite bands 6, 4,
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Appendix B

Table A1. Confusion matrices of the classified LULC maps of this study.

LULC Category
Reference Data

Total
User’s

Accuracy (%)IS GS 1 GS 2 BL W OL

2000
IS 98 1 4 5 1 2 111 88.29

GS 1 3 96 3 1 4 6 113 84.96
GS 2 1 6 89 2 1 2 101 88.12
BL 3 0 3 79 0 1 86 91.86
W 1 3 2 2 81 1 90 90.00
OL 1 4 1 4 5 84 99 84.85

Total 107 110 102 93 92 96 600

Producer’s
accuracy (%) 91.59 87.27 87.25 84.95 88.04 87.50

Overall accuracy (%) = 87.83

2013
IS 103 2 3 4 3 1 116 88.79

GS 1 2 79 2 3 3 6 95 83.16
GS 2 3 3 98 5 5 2 116 84.48
BL 3 2 1 84 2 5 97 86.60
W 1 1 4 3 72 4 85 84.71
OL 4 3 3 2 3 76 91 83.52

Total 116 90 111 101 88 94 600

Producer’s
accuracy (%) 88.79 87.78 88.29 83.17 81.82 80.85

Overall accuracy (%) = 85.33

2020
IS 93 4 2 5 1 3 108 86.11

GS 1 3 84 1 1 3 2 94 89.36
GS 2 1 2 96 3 2 4 108 88.89
BL 1 3 4 87 3 3 101 86.14
W 2 5 2 1 79 5 94 84.04
OL 3 1 1 4 2 84 95 88.42

Total 103 99 106 101 90 101 600

Producer’s
accuracy (%) 90.29 84.85 90.57 86.14 87.78 83.17

Overall accuracy (%) = 87.16

Note: impervious surface (IS), green space 1 (GS1), green space 2 (GS2), bare land (BL), water (W), and other
land (OL).

References
1. Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote

sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [CrossRef]
2. Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Ecosystem services monitoring in the Muthurajawela Marsh and

Negombo lagoon, Sri Lanka, for sustainable landscape planning. Sustainability 2021, 13, 11463. [CrossRef]
3. Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of urbanization on the Muthurajawela Marsh and Negombo

Lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021,
13, 316. [CrossRef]

4. Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al.
High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2015, 514, 218–222. [CrossRef]

5. Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ.
Sci. 2008, 20, 120–128. [CrossRef]

6. Kifle, A.B.; Mengistu, T.G.; Stoffberg, G.H.; Tadesse, T. Climate change and population growth impacts on surface water supply
and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [CrossRef]

7. Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 425, 102. [CrossRef]

http://doi.org/10.1016/j.apgeog.2008.12.005
http://doi.org/10.3390/su132011463
http://doi.org/10.3390/rs13020316
http://doi.org/10.1038/nature13774
http://doi.org/10.1016/S1001-0742(08)60019-4
http://doi.org/10.1016/j.crm.2017.08.004
http://doi.org/10.1038/nature01952


Remote Sens. 2022, 14, 4047 20 of 23

8. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of
Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]

9. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental
USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]

10. Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface
urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [CrossRef]

11. Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and
land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]

12. Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainabil-
ity planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [CrossRef]

13. Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data
(1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [CrossRef]

14. Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve
comfort in urban environments. Sol. Energy 2014, 103, 682–703. [CrossRef]

15. Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [CrossRef]
16. Athukorala, D.; Murayama, Y. Urban heat island formation in Greater Cairo: Spatio-temporal analysis of daytime and nighttime

land surface temperatures along the urban-rural gradient. Remote Sens. 2021, 13, 1396. [CrossRef]
17. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban

heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef]
18. Athukorala, D.; Murayama, Y. Spatial Variation of Land Use / Cover Composition and Impact on Surface Urban Heat Island in a

Tropical Sub-Saharan City of Accra, Ghana. Sustainability 2020, 12, 7953. [CrossRef]
19. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [CrossRef]
20. Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the “local climate zone” scheme using temperature observations and

model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [CrossRef]
21. Emery, J.; Pohl, B.; Crétat, J.; Richard, Y.; Pergaud, J.; Rega, M.; Zito, S.; Dudek, J.; Vairet, T.; Joly, D.; et al. How local climate zones

influence urban air temperature: Measurements by bicycle in Dijon, France. Urban Clim. 2021, 40, 101017. [CrossRef]
22. Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the

method using mobile measurements. Build. Environ. 2015, 83, 39–49. [CrossRef]
23. Ibrahim, G.R.F. Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in

the Kurdistan Region of Iraq. Climate 2017, 5, 13. [CrossRef]
24. Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island based on the relationship between land

surface temperature and Land Use/ Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [CrossRef]
25. Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the links between lulc changes and suhi in cities: Insights from

two-decadal studies (2001–2020). Remote Sens. 2021, 13, 3654. [CrossRef]
26. Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature

and surface moisture: A case study in the midwestern united states. Remote Sens. 2015, 7, 4880–4898. [CrossRef]
27. Yan, Z.; Zhou, D.; Li, Y.; Zhang, L. An integrated assessment on the warming effects of urbanization and agriculture in highly

developed urban agglomerations of China. Sci. Total Environ. 2022, 804, 150119. [CrossRef]
28. Park, J.; Kim, J.H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on

urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [CrossRef]
29. Qin, Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015, 96, 86–94. [CrossRef]
30. Qin, Y.; Hiller, J.E. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy

Build. 2014, 85, 389–399. [CrossRef]
31. Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total

Environ. 2017, 584, 1040–1055. [CrossRef] [PubMed]
32. Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study

on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [CrossRef]
33. Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature

and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [CrossRef]
34. Zheng, Y.; Li, Y.; Hou, H.; Murayama, Y.; Wang, R.; Hu, T. Quantifying the cooling effect and scale of large inner-city lakes based

on landscape patterns: A case study of Hangzhou and Nanjing. Remote Sens. 2021, 13, 1526. [CrossRef]
35. Du, T.M.J.; Cilliers, S.S.; Dallimer, M.; Goddard, M.; Guenat, S.; Cornelius, S.F. Urban green infrastructure and ecosystem services

in sub-Saharan Africa. Landsc. Urban Plan. 2018, 180, 249–261. [CrossRef]
36. Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of

tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506, 453–465. [CrossRef]
37. Fischer, E.M.; Oleson, K.W.; Lawrence, D.M. Contrasting urban and rural heat stress responses to climate change. Geophys. Res.

Lett. 2012, 39, 1–8. [CrossRef]
38. Mushore, T.D.; Odindi, J.; Dube, T.; Mutanga, O. Prediction of future urban surface temperatures using medium resolution

satellite data in Harare metropolitan city, Zimbabwe. Build. Environ. 2017, 122, 397–410. [CrossRef]

http://doi.org/10.1016/j.rse.2011.07.008
http://doi.org/10.1016/j.rse.2009.10.008
http://doi.org/10.1016/j.rse.2006.09.003
http://doi.org/10.1016/j.rse.2005.11.016
http://doi.org/10.1016/j.landurbplan.2013.04.008
http://doi.org/10.1016/j.isprsjprs.2017.09.008
http://doi.org/10.1016/j.solener.2012.07.003
http://doi.org/10.1016/j.amepre.2008.08.021
http://doi.org/10.3390/rs13071396
http://doi.org/10.1016/j.scitotenv.2016.10.195
http://doi.org/10.3390/su12197953
http://doi.org/10.1175/BAMS-D-11-00019.1
http://doi.org/10.1002/joc.3746
http://doi.org/10.1016/j.uclim.2021.101017
http://doi.org/10.1016/j.buildenv.2014.05.005
http://doi.org/10.3390/cli5010013
http://doi.org/10.1016/j.scs.2016.03.009
http://doi.org/10.3390/rs13183654
http://doi.org/10.3390/rs70404880
http://doi.org/10.1016/j.scitotenv.2021.150119
http://doi.org/10.1016/j.ufug.2016.12.005
http://doi.org/10.1016/j.enbuild.2015.03.005
http://doi.org/10.1016/j.enbuild.2014.09.076
http://doi.org/10.1016/j.scitotenv.2017.01.158
http://www.ncbi.nlm.nih.gov/pubmed/28161043
http://doi.org/10.1016/j.ufug.2020.126719
http://doi.org/10.1016/j.scs.2017.05.005
http://doi.org/10.3390/rs13081526
http://doi.org/10.1016/j.landurbplan.2018.06.001
http://doi.org/10.1016/j.scitotenv.2014.11.006
http://doi.org/10.1029/2011GL050576
http://doi.org/10.1016/j.buildenv.2017.06.033


Remote Sens. 2022, 14, 4047 21 of 23

39. Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy
consumption in office buildings. Energy Build. 2012, 47, 302–311. [CrossRef]

40. Santamouris, M. Cooling the buildings—Past, present and future. Energy Build. 2016, 128, 617–638. [CrossRef]
41. Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India.

A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [CrossRef]
42. Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [CrossRef]
43. Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts Tropical

climate is understood to be dominated by. Int. J. Climatol. 2008, 2029, 2011–2029. [CrossRef]
44. Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities.

Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [CrossRef]
45. Liu, C.; Li, Y. Spatio-temporal features of urban heat island and its relationship with land use/cover in mountainous city: A case

study in Chongqing. Sustainability 2018, 10, 1943. [CrossRef]
46. Mishra, B.; Sandifer, J.; Gyawali, B.R. Urban Heat Island in Kathmandu, Nepal: Evaluating Relationship between NDVI and LST

from 2000 to 2018. Int. J. Environ. 2013, 1, 9–19. [CrossRef]
47. Sarif, M.O.; Rimal, B.; Stork, N.E. Assessment of changes in land use/land cover and land surface temperatures and their impact

on surface Urban heat Island phenomena in the Kathmandu Valley (1988–2018). ISPRS Int. J. Geo-Inform. 2020, 9, 726. [CrossRef]
48. Aryal, A.; Shakya, B.M.; Maharjan, M.; Talchabhadel, R.; Thapa, B.R. Evaluation of the Land Surface Temperature using Satellite

Images in Kathmandu Valley. Nepal J. Civ. Eng. 2021, 1, 1–10. [CrossRef]
49. Maharjan, M.; Aryal, A.; Man Shakya, B.; Talchabhadel, R.; Thapa, B.R.; Kumar, S. Evaluation of Urban Heat Island (UHI) Using

Satellite Images in Densely Populated Cities of South Asia. Earth 2021, 2, 6. [CrossRef]
50. UN HABITAT. For a Better Urban Cities and Climate Change Initiative: Kathmandu Valley, Nepal; United Nations Human Settlements

Programme: Nairobi, Kenya, 2015.
51. Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808.

[CrossRef]
52. Thapa, R.B.; Murayama, Y. Urban growth modeling of Kathmandu metropolitan region, Nepal. Comput. Environ. Urban Syst.

2011, 35, 25–34. [CrossRef]
53. Educational Software—Maps, Learn to Read and More. Available online: http://www.yourchildlearns.com/ (accessed on 11

December 2021).
54. DIVA-GIS. Available online: https://www.diva-gis.org/ (accessed on 11 December 2021).
55. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 11 December 2021).
56. Thapa, R.B.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and

Spatial Metrics Approaches. Remote Sens. 2009, 1, 534–556. [CrossRef]
57. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 11 December 2021).
58. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a

random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]
59. Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
60. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
61. Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the seasonal effect of building shadows on urban land surface

temperatures based on remote sensing data. Remote Sens. 2019, 11, 497. [CrossRef]
62. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island

studies. Remote Sens. Environ. 2004, 89, 467–483. [CrossRef]
63. Shahfahad; Talukdar, S.; Rihan, M.; Hang, H.T.; Bhaskaran, S.; Rahman, A. Modelling urban heat island (UHI) and thermal

field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environ. Dev. Sustain. 2021, 24,
3762–3790. [CrossRef]

64. Sun, Q.; Wu, Z.; Tan, J. The relationship between land surface temperature and land use/land cover in Guangzhou, China.
Environ. Earth Sci. 2012, 65, 1687–1694. [CrossRef]

65. Du, J.; Xiang, X.; Zhao, B.; Zhou, H. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat
imagery. Sustain. Cities Soc. 2020, 61, 102346. [CrossRef]

66. Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on
land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [CrossRef]

67. Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using
landscape metrics approach. Urban Ecosyst. 2015, 18, 209–222. [CrossRef]

68. McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps.
Computer Software Program Produced by the Authors at the University of Massachusetts Amherst. 2012. Available online:
http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 11 June 2022).

69. Shrestha, K.C.S.; Ninsawat, S.; Chonwattana, S. Predicting flood events in Kathmandu Metropolitan City under climate change
and urbanisation. J. Environ. Manag. 2021, 281, 111894. [CrossRef]

http://doi.org/10.1016/j.enbuild.2011.12.019
http://doi.org/10.1016/j.enbuild.2016.07.034
http://doi.org/10.1016/j.scs.2017.02.018
http://doi.org/10.1016/j.habitatint.2004.04.008
http://doi.org/10.1002/joc.1695
http://doi.org/10.1016/j.jag.2005.05.003
http://doi.org/10.3390/su10061943
http://doi.org/10.3126/ije.v8i1.22546
http://doi.org/10.3390/ijgi9120726
http://doi.org/10.3126/njce.v1i1.43368
http://doi.org/10.3390/earth2010006
http://doi.org/10.1007/s00704-015-1549-0
http://doi.org/10.1016/j.compenvurbsys.2010.07.005
http://www.yourchildlearns.com/
https://www.diva-gis.org/
https://earthexplorer.usgs.gov/
http://doi.org/10.3390/rs1030534
https://www.r-project.org/
http://doi.org/10.1016/j.isprsjprs.2011.11.002
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1080/01431160412331269698
http://doi.org/10.3390/rs11050497
http://doi.org/10.1016/j.rse.2003.11.005
http://doi.org/10.1007/s10668-021-01587-7
http://doi.org/10.1007/s12665-011-1145-2
http://doi.org/10.1016/j.scs.2020.102346
http://doi.org/10.1016/j.landurbplan.2011.03.009
http://doi.org/10.1007/s11252-014-0387-7
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://doi.org/10.1016/j.jenvman.2020.111894


Remote Sens. 2022, 14, 4047 22 of 23

70. Lamichhane, S.; Shakya, N.M. Shallow aquifer groundwater dynamics due to land use/cover change in highly urbanized basin:
The case of Kathmandu Valley. J. Hydrol. Reg. Stud. 2020, 30, 100707. [CrossRef]

71. Thapa, R.B.; Murayama, Y.; Ale, S. Kathmandu. Cities 2008, 25, 45–57. [CrossRef]
72. Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic

hierarchy process. Appl. Geogr. 2010, 30, 70–83. [CrossRef]
73. Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270.

[CrossRef]
74. Lamichhane, S.; Shakya, N.M. Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley,

Nepal. J. Hydrol. Reg. Stud. 2019, 26, 100635. [CrossRef]
75. Mitchell, M.; Roca Iglesias, A. Urban agriculture in Kathmandu as a catalyst for the civic inclusion of migrants and the making of

a greener city. Front. Arch. Res. 2019, 9, 169–190. [CrossRef]
76. Haack, B.N.; Rafter, A. Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat Int. 2006, 30, 1056–1065.

[CrossRef]
77. Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105,

140–148. [CrossRef]
78. Prajapati, R.; Upadhyay, S.; Talchabhadel, R.; Thapa, B.R.; Ertis, B.; Silwal, P.; Davids, J.C. Investigating the nexus of groundwater

levels, rainfall and land-use in the Kathmandu Valley, Nepal. Groundw. Sustain. Dev. 2021, 14, 100584. [CrossRef]
79. Dahal, A.; Khanal, R.; Mishra, B.K. Identification of critical location for enhancing groundwater recharge in Kathmandu Valley,

Nepal. Groundw. Sustain. Dev. 2019, 9, 100253. [CrossRef]
80. Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.-B.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and

their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133.
[CrossRef]

81. Oke, T.R. City size and the urban heat island. Atmos. Env. 1973, 7, 769–779. [CrossRef]
82. Yeon-Hee, K.; Jong-Jin, B. Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605.
83. Xiao, R.-B.; Ouyang, Z.-Y.; Zheng, H.; Li, W.-F.; Schienke, E.W.; Wang, X.-K. Spatial pattern of impervious surfaces and their

impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [CrossRef]
84. Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban

warming. Landsc. Ecol. 2013, 28, 959–978. [CrossRef]
85. Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study.

Remote Sens. Environ. 2017, 195, 1–12. [CrossRef]
86. EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Com- Pendium of Strategies; US Environmental Protection

Agency: Washington, DC, USA, 2008.
87. Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade

orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [CrossRef]
88. Morakinyo, T.E.; Kong, L.; Lau, K.K.L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and

neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [CrossRef]
89. Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface

temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [CrossRef]
90. Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the

heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [CrossRef]
91. Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space

spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J.
Photogramm. Remote Sens. 2014, 89, 59–66. [CrossRef]

92. Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [CrossRef]
93. Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island

mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [CrossRef]
94. Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Wong, N.C. Energy simulation of vertical greenery systems. Energy Build. 2009, 41, 1401–1408.

[CrossRef]
95. Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ.

2018, 146, 226–237. [CrossRef]
96. Wong, N.H.; Jusuf, S.K.; Syafii, N.I.; Chen, Y.; Hajadi, N.; Sathyanarayanan, H.; Manickavasagam, Y.V. Evaluation of the impact of

the surrounding urban morphology on building energy consumption. Sol. Energy 2011, 85, 57–71. [CrossRef]
97. Millstein, D.; Menon, S. Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environ. Res.

Lett. 2011, 6, 034001. [CrossRef]
98. Dimond, K.; Webb, A. Sustainable roof selection: Environmental and contextual factors to be considered in choosing a vegetated

roof or rooftop solar photovoltaic system. Sustain. Cities Soc. 2017, 35, 241–249. [CrossRef]
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