Inversion of Aerosol Particle Size Distribution Using an Improved Stochastic Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Particle Size Distribution and Fredholm Integral Equation
2.2. Improved Stochastic Particle Swarm Optimization Algorithm
3. Results
3.1. The Performance of the Algorithm
3.2. Algorithm Verification
3.3. Aerosol Type
3.4. Experimental Simulation
4. Discussion
4.1. The Discussion of Algorithm Performance
4.2. The Discussion of Error and Robustness
4.3. The Discussion of Inversion of Aerosol Type
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Best Fitness Change for Different Distribution Functions
Appendix B. The Parameter Distribution of Inversion Results
Appendix C. Extinction Factor
References
- Sheng, Z.; Che, H.; Chen, Q.; Xia, X.; Liu, D.; Wang, Z.; Zhao, H.; Gui, K.; Zheng, Y.; Sun, T.; et al. Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017. Atmos. Res. 2019, 215, 193–207. [Google Scholar] [CrossRef]
- Mao, Q.; Nie, X. Polarization performance of a polydisperse aerosol atmosphere based on vector radiative transfer model. Atmos. Environ. 2022, 277, 119079. [Google Scholar] [CrossRef]
- Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 2013, 6, 438–442. [Google Scholar] [CrossRef]
- Climate Change 2014, Synthesis Report, Summary for Policymakers. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf (accessed on 21 April 2022).
- Chen, A.; Zhao, C.; Fan, T. Spatio-temporal distribution of aerosol direct radiative forcing over mid-latitude regions in north hemisphere estimated from satellite observations. Atmos. Res. 2022, 266, 105938. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.L.; et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Mao, Q. Study on shortwave radiative transfer characteristics in polydisperse aerosols in a clear sky. Infrared. Phys. Technol. 2021, 118, 103903. [Google Scholar] [CrossRef]
- Xu, F.; Diner, D.J.; Dubovik, O.; Schechner, Y. A correlated multi-pixel inversion approach for aerosol remote sensing. Remote Sens. 2019, 11, 746. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Huang, C.; Zhang, H.; Chen, Q. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China. Infrared. Phys. Technol. 2018, 89, 304–314. [Google Scholar] [CrossRef]
- Si, Y.; Li, S.; Chen, L.; Shang, H.; Wang, L.; Letu, H. Assessment and improvement of MISR Angstrom exponent and single-scattering albedo products using AERONET data in China. Remote Sens. 2017, 9, 693. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Han, X.; Gu, Y.; Yuan, Y.; Jiang, J.H.; Yang, X.; Liou, K.; Tan, H. Evaluation of MODIS, MISR, and VIIRS daily level-3 aerosol optical depth products over land. Atmos. Res. 2022, 265, 105810. [Google Scholar] [CrossRef]
- Fernández-Gálvez, J.; Guerrero-Rascado, J.L.; Molero, F.; Lyamani, H.; Revuelta, M.A.; Navas-Guzmán, F.; Sastre, M.; Bravo-Aranda, J.A.; Fernández, A.J.; Granados-Muñoz, M.J.; et al. Aerosol size distribution from inversion of solar radiances and measured at ground-level during SPALI10 campaign. Atmos. Res. 2013, 127, 130–140. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, F.; Li, J.; Zhang, J. Analysis of sea-salt aerosol size distributions in radiative transfer. J. Aerosol. Sci. 2019, 129, 71–86. [Google Scholar] [CrossRef]
- Cao, N.; Yang, S.; Cao, S.; Yang, S.; Shen, J. Accuracy calculation for lidar ratio and aerosol size distribution by dual-wavelength lidar. Appl. Phys. A 2019, 125, 590. [Google Scholar] [CrossRef]
- Wang-Li, L.; Cao, Z.; Buser, M.; Whitelock, D.; Parnell, C.B.; Zhang, Y. Techniques for measuring particle size distribution of particulate matter emitted from animal feeding operations. Atmos. Environ. 2013, 66, 25–32. [Google Scholar] [CrossRef]
- Lee, K.; Wong, M.S.; Nichol, J.; Chan, P.W. Retrieval of aerosol size distribution from Microtops II sunphotometer in Hong Kong. Aerosol. Air. Qualres. 2015, 15, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Mao, J.; Han, X. Non-parametric estimation of particle size distribution from spectral extinction data with PCA approach. Powder. Technol. 2018, 325, 510–518. [Google Scholar] [CrossRef]
- Wurl, D.; Grainger, R.G.; Mcdonald, A.J.; Deshler, T. Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the volcanically unperturbed lower stratosphere. Atmos. Chem. Phys. 2010, 10, 4295–4317. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. An efficient gradient method for maximum entropy regularizing retrieval of atmospheric aerosol particle size distribution function. J. Aerosol. Sci. 2008, 39, 305–322. [Google Scholar] [CrossRef]
- Sasi, S.; Natraj, V.; García, V.M.; Efremenko, D.S.; Loyola, D.; Doicu, A. Model Selection in Atmospheric Remote Sensing with an Application to Aerosol Retrieval from DSCOVR/EPIC, Part 1: Theory. Remote Sens. 2020, 12, 3724. [Google Scholar] [CrossRef]
- He, Z.; Liang, D.; Mao, J.; Han, X. Simultaneous estimation of aerosol optical constants and size distribution from angular light-scattering measurement signals. Chin. Phys. B 2018, 27, 059101. [Google Scholar] [CrossRef]
- Kim, H.; Barkey, B.; Paulson, S.E. Real refractive indices of α-and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation. J. Geophys. Res.-Atmos. 2010, 115, D24. [Google Scholar] [CrossRef]
- Stamnes, K.; Li, W.; Fan, Y.; Hamre, B.; Frette, Ø.; Folkestad, A.; Sorensen, K.; Stamnes, J.J. A new algorithm for simultaneous retrieval of aerosol and marine parameters in coastal environments. Am. Inst. Phys. 2013, 1531, 919–922. [Google Scholar]
- Diner, D.J.; Hodos, R.A.; Davis, A.B.; Garay, M.J.; Martonchik, J.V.; Sanghavi, S.V.; Allmen, P.; Kokhanovsky, A.A.; Zhai, P. An optimization approach for aerosol retrievals using simulated MISR radiances. Atmos. Res. 2012, 116, 1–14. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res.-Atmos. 2006, 111, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- He, Z.; Qi, H.; Yao, Y.; Ruan, L. Inverse estimation of the particle size distribution using the fruit fly optimization algorithm. Appl. Therm. Eng. 2015, 88, 306–314. [Google Scholar] [CrossRef]
- Yuan, Y.; Yi, H.L.; Shuai, Y.; Liu, B.; Tan, H.P. Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model. Atmos. Environ. 2011, 45, 4892–4897. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, H.; Ren, Y.; Sun, J.; Ruan, L. Simultaneous identification of optical constants and PSD of spherical particles by multi-wavelength scattering-transmittance measurement. Opt. Commun. 2018, 413, 317–328. [Google Scholar] [CrossRef]
- Vitale, V.; Tomasi, C.; Lupi, A.; Cacciari, A.; Marani, S. Retrieval of columnar aerosol size distributions and radiative-forcing evaluations from sun-photometric measurements taken during the CLEARCOLUMN (ACE 2) experiment. Atmos. Environ. 2000, 34, 5095–5105. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolut. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yi, H.L.; Shuai, Y.; Wang, F.Q.; Tan, H.P. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2106–2114. [Google Scholar] [CrossRef]
- Mao, J.; Li, J. Retrieval of particle size distribution from aerosol optical thickness using an improved particle swarm optimization algorithm. Opt. Rev. 2015, 22, 809–818. [Google Scholar] [CrossRef]
- Qi, H.; Ruan, L.M.; Zhang, H.; Wang, Y.M.; Tan, H.P. Inverse radiation analysis of a one-dimensional participating slab by stochastic particle swarm optimizer algorithm. Int. J. Therm. Sci. 2007, 46, 649–661. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Ji, J.; Zhu, G. Estimation of absorption coefficients for one-dimensional non-uniform medium using particle swarm optimization. In Proceedings of the Second International Symposium on Computational Intelligence and Design, Washington, DC, USA, 12–14 December 2009. [Google Scholar]
- Mao, Q.; Huang, C.; Zhang, H.; Chen, Q.; Yuan, Y. Performance of MODIS aerosol products at various timescales and in different pollution conditions over eastern Asia. Sci. China Technol. Sci. 2021, 64, 774–784. [Google Scholar] [CrossRef]
- Mao, Q.; Cheng, F.; Chen, M. Experimental Study on the Chemical Characterization of Atmospheric Aerosols in Wuhan, China. Atmosphere 2021, 12, 1393. [Google Scholar] [CrossRef]
- He, Z.; Qi, H.; Chen, Q.; Ruan, L. Retrieval of aerosol size distribution using improved quantum-behaved particle swarm optimization on spectral extinction measurements. Particuology 2016, 28, 6–14. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Gile, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, B.; Chen, Z.; Zhang, X.; Li, J.; Shen, Q.; Tong, Q. Improved algorithm for the retrieval of aerosol optical depth using the sunpohometer CE 318. Opt. Tech. 2007, 33, 38–41. [Google Scholar]
- Singh, R.; Singh, C.; Ojha, S.P.; Kumar, A.S.; Kumar, A.S.K. Development of an improved aerosol product over the Indian subcontinent: Blending model, satellite, and ground-based estimates. J. Geophys. Res.-Atmos. 2017, 122, 367–390. [Google Scholar] [CrossRef]
- Tao, M.; Wang, Z.; Tao, J.; Chen, L.; Wang, J.; Hou, C.; Wang, L.; Xu, X.; Zhu, H. How do aerosol properties affect the temporal variation of MODIS AOD bias in eastern China? Remote Sens. 2017, 9, 800. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Pan, X.; You, W.; Zhu, X.; Zang, Z.; Wang, D.; Zhang, X.; Hu, Y.; Jin, S. Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model. Atmos. Res. 2021, 264, 105877. [Google Scholar] [CrossRef]
Symbol | Explanation |
---|---|
N | The number concentration of aerosols for log normal distribution, cm−3 |
rm | Mean radius for log normal distribution, μm |
σ | The standard deviation for log normal distribution |
τ | Aerosol optical depth |
r | Particle radius, μm |
κ | Extinction factor of aerosol particle |
m | Complex refractive index, n ± ki |
λ | Wavelength, μm |
n(r) | The number concentration of aerosols with particle size greater than r, cm−3 |
n | The dimension of the particle swarm |
x | The position of the particle in the solution space |
v | The velocity of the particle in the solution space |
i | The number of iterations |
c1, c2 | Acceleration coefficient |
Gd, Gb | The individual and global best position |
ω | Inertia weight for PSO |
ω′ | Inertia weight for ISPSO |
ζ1, ζ2, ζ3 | The adjustment factor for ISPSO |
ψ | Control factor for ISPSO |
γ | Random error,% |
δ | Relative error,% |
Vm | The aerosol column volume concentration, μm3∙μm−2 |
Swarm Size | Inertia Weight (Maximum) ωmax | Inertia Weight (Minimum) ωmin | Acceleration Coefficient c | Control Factor ψ | ζ1 | ζ2 | ζ3 |
---|---|---|---|---|---|---|---|
50 | 0.9 | 0 | 2.0 | to 3.0 | 0.3 | 0.3 | 0.4 |
Wave (nm) | Real Part | Image Part | True Value |
---|---|---|---|
250 | 1.53 | 0.05 | (N, rm, σ) = (10, 1, 0.9) |
440 | 1.53 | 0.008 | |
675 | 1.53 | 0.009 | |
870 | 1.52 | 0.009 | |
1020 | 1.50 | 0.009 |
True Value | γ% | N | rm | σ | δ(N) | δ(rm) | δ(σ) |
---|---|---|---|---|---|---|---|
(N, rm, σ) = (10, 1, 0.9) | 0% | 10.00 | 1.00 | 0.90 | 0% | 0% | 0% |
3% | 10.34 | 1.05 | 0.92 | 3.40% | 5.00% | 2.22% | |
5% | 12.56 | 1.29 | 0.95 | 25.60% | 29.00% | 5.56% | |
10% | 17.72 | 1.95 | 1.09 | 77.20% | 95.00% | 21.11% |
True Value | Type | N | rm | σ | δ(N) | δ(rm) | δ(σ) |
---|---|---|---|---|---|---|---|
(N, rm, σ) = (10, 1, 0.9) | With 250 nm | 10.01 | 1.00 | 0.90 | 0.10% | 0% | 0% |
Without 440 nm | 18.42 | 1.95 | 0.93 | 84.20% | 95.00% | 3.33% | |
Without 675 nm | 10.07 | 1.01 | 0.90 | 0.70% | 1.00% | 0% | |
Without 870 nm | 10.11 | 1.02 | 0.90 | 1.10% | 2.00% | 0% | |
Without 1020 nm | 14.13 | 1.29 | 0.92 | 41.30% | 29.00% | 2.22% | |
All wavelengths | 10.00 | 1.00 | 0.90 | 0% | 0% | 0% |
True Value | Number of Inversion Parameters | Relative Error |
---|---|---|
(N1, rm1, σ1, N2, rm2, σ2) = (100, 0.2, 0.7, 10, 1, 0.9) | 3 | δ(N1, N2, rm2) = (0%, 0%, 0%) |
4 | δ(N1, rm1, N2, rm2) = (11%, 23%, 9%, 21%) | |
5 | δ(N1, rm1, σ1, N2, rm2) = (93%, 137%, 91%, 87% 115%) | |
6 | δ(N1, rm1, σ1, N2, rm2, σ2) = (152%, 235%, 184%, 136%, 183%, 139%) |
Wavelength (nm) | 440 (n ± ki) | 675 (n ± ki) | 870 (n ± ki) | 1020 (n ± ki) | N | rm | σ |
---|---|---|---|---|---|---|---|
Dust | 1.52 ± 0.008i | 1.52 ± 0.008i | 1.52 ± 0.008i | 1.52 ± 0.008i | 10.0 | 0.54 | 0.73 |
Soot | 1.75 ± 0.46i | 1.75 ± 0.43i | 1.75 ± 0.43i | 1.75 ± 0.43i | 10.0 | 0.012 | 0.69 |
Water-soluble | 1.53 ± 0.005i | 1.53 ± 0.006i | 1.53 ± 0.012i | 1.53 ± 0.012i | 10.0 | 0.04 | 0.80 |
Aerosol | γ% | N | rm | σ | δ(N) | δ(rm) | δ(σ) |
---|---|---|---|---|---|---|---|
Dust: (N, rm, σ) = (10, 0.54, 0.73) | 0% | 10.0 | 0.54 | 0.73 | 0% | 0% | 0% |
3% | 10.32 | 0.59 | 0.74 | 3.20% | 9.26% | 1.37% | |
5% | 12.13 | 0.71 | 0.77 | 21.30% | 31.48% | 5.48% | |
10% | 16.95 | 1.06 | 0.85 | 69.50% | 96.30% | 16.44% | |
Soot: (N, rm, σ) = (10, 0.012, 0.69) | 0% | 10.0 | 0.012 | 0.69 | 0% | 0% | 0% |
3% | 10.42 | 0.012 | 0.71 | 4.20% | 8.33% | 2.90% | |
5% | 11.41 | 0.013 | 0.75 | 14.10% | 8.33% | 8.70% | |
10% | 14.23 | 0.015 | 0.87 | 42.30% | 16.67% | 26.09% | |
Water-soluble: (N, rm, σ) = (10, 0.04, 0.80) | 0% | 10.0 | 0.04 | 0.80 | 0% | 0% | 0% |
3% | 10.27 | 0.042 | 0.82 | 2.70% | 5.00% | 2.50% | |
5% | 11.89 | 0.05 | 0.89 | 18.90% | 25.00% | 11.25% | |
10% | 14.05 | 0.066 | 1.01 | 40.50% | 65.00% | 26.25% |
Date | Wavelength (nm) | n ± ki | Ture Value (Vm, rm, σ) |
---|---|---|---|
22 March 2021 (Xianghe, dust) | 440 | 1.6 ± 0.0032i | (0.605, 1.716, 0.728) |
675 | 1.59 ± 0.0005i | ||
870 | 1.57 ± 0.0005i | ||
1020 | 1.56 ± 0.0005i | ||
5 April 2021 (Xianghe, sunny) | 440 | 1.47 ± 0.0059i | (0.139, 0.339, 1.512) |
675 | 1.49 ± 0.0043i | ||
870 | 1.50 ± 0.0042i | ||
1020 | 1.49 ± 0.0043i | ||
18 July 2018 (Mezaira, sample1) | 440 | 1.53 ± 0.0022i | (0.612, 1.230, 1.008) |
675 | 1.54 ± 0.0013i | ||
870 | 1.53 ± 0.0018i | ||
1020 | 1.53 ± 0.0025i | ||
31 July 2018 (Mezaira, sample2) | 440 | 1.52 ± 0.0023i | (2.140, 1.243, 0.639) |
675 | 1.49 ± 0.0005i | ||
870 | 1.47 ± 0.0005i | ||
1020 | 1.46 ± 0.0005i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, X.; Mao, Q. Inversion of Aerosol Particle Size Distribution Using an Improved Stochastic Particle Swarm Optimization Algorithm. Remote Sens. 2022, 14, 4085. https://doi.org/10.3390/rs14164085
Nie X, Mao Q. Inversion of Aerosol Particle Size Distribution Using an Improved Stochastic Particle Swarm Optimization Algorithm. Remote Sensing. 2022; 14(16):4085. https://doi.org/10.3390/rs14164085
Chicago/Turabian StyleNie, Xin, and Qianjun Mao. 2022. "Inversion of Aerosol Particle Size Distribution Using an Improved Stochastic Particle Swarm Optimization Algorithm" Remote Sensing 14, no. 16: 4085. https://doi.org/10.3390/rs14164085
APA StyleNie, X., & Mao, Q. (2022). Inversion of Aerosol Particle Size Distribution Using an Improved Stochastic Particle Swarm Optimization Algorithm. Remote Sensing, 14(16), 4085. https://doi.org/10.3390/rs14164085