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Abstract: Aerosol particle size distribution (PSD) is one of the main influencing factors of the radiation
effects and climate effects of aerosol. An improved stochastic particle swarm optimization (ISPSO)
algorithm is proposed, and the PSD characteristics of aerosols were successfully retrieved from the
aerosol optical depth (AOD). The performance analysis shows that the algorithm has good global
search ability and convergence performance and will not fall into local optima. Then, the robustness
and the ability to resist the noise of the algorithm were verified by adding random errors, using
random initial values, and changing the number of samples and inversion parameters, and it was
shown that the algorithm has a weak dependence on the initial value. The PSD characteristics of
three typical aerosols were inverted, and the results show that the algorithm has good adaptability to
the inversion of aerosol PSD. Finally, the PSD characteristics of aerosols from Xianghe and Mezaira
under typical weather were inverted based on AERONET data, which shows the effectiveness and
advancement of the ISPSO algorithm. This study can provide help for the obtaining of aerosol
parameters under poor optical conditions.

Keywords: improved stochastic particle swarm optimization; aerosol; particle size distribution;
inversion

1. Introduction

Atmospheric aerosol is a colloidal system composed of solid and liquid particles
and gas in the atmosphere. It is a multiphase mixture with multi-scale characteristics,
with diameters ranging from 0.001 to 100 µm [1–3]. Atmospheric aerosol is also the main
participating medium of atmospheric radiation. It affects the Earth’s energy balance
through direct and indirect radiation effects and is one of the biggest sources of uncertainty
in the assessment of global climate change [4–6]. Due to the significant spatiotemporal
heterogeneity of aerosol and the accompanying uncertainty of optical observations, the
accurate inversion of aerosol optical properties has always been a difficult point in the field
of atmospheric research and remote sensing [7,8].

Countries worldwide have developed a variety of optical and remote sensing equip-
ment for effectively obtaining the optical property parameters of atmospheric aerosols,
including different satellite-based, ground-based, and mobile detectors [9–11]. This equip-
ment provides great help for observation and inversion research on aerosols. However,
the existing remote sensing equipment can only obtain the optical properties of aerosols
in a finite spectrum. The optical properties in other wavelengths are generally obtained
by indirect methods. Specifically, physical parameters such as aerosol particle size distri-
bution (PSD) are obtained by inversion, and then the required aerosol optical properties
are calculated by these physical parameters [12–14]. For decades, researchers have de-
veloped a large number of techniques and methods to obtain the PSD of aerosols, such
as the aerodynamic method, optical method, electrical sensing zone method, electrical
mobility method, condensation methods, etc. [15]. Among them, the optical method is
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widely used in PSD inversion due to its advantage in obtaining temporal-spatial data, such
as the extinction method. For example, Lee et al. developed a new method for inversion
of aerosol PSD based on spectral extinction technique and optical depth [16]. He et al.
performed a nonparametric estimation of the aerosol PSD using spectral extinction and
regularization [17]. Wurl et al. used a nonlinear estimation method to invert the PSD
characteristics of small aerosol particles based on multi-wavelength extinction data [18].

In recent years, a large number of numerical algorithms have been used to solve opti-
mization problems such as the inversion of PSD. There are mainly two types that are widely
used at present; one is based on the gradient-based techniques, such as the Levenburg–
Marquardt method and Gauss–Newton method [19,20], and the other are the heuristic
intelligent optimization algorithms, such as the genetic algorithm, ant colony optimization
algorithm, fruit fly optimization algorithm, and particle swarm optimization algorithm
(PSO) [21,22]. The former algorithm was developed earlier and has been widely used to
invert the PSD characteristics of aerosols. For example, Stamnes et al. developed an OC-
SMART algorithm for inversion of aerosol and ocean parameters using nonlinear estimation
and the Levenburg–Marquardt method to improve retrieval accuracy [23]. Diner et al. em-
ployed nonlinear least squares and retrieved the optical properties and PSD of aerosols
through a multi-angle spectrometer [24]. Dubovik et al. retrieved the PSD characteristics
of aerosols through light scattering polarization measurements and gave a kernel look-up
table [25,26]. Although gradient-based techniques, such as the Levenburg–Marquardt
method, are widely used due to maturity and reliability, such algorithms still suffer from
cumbersome solutions (requiring complex mathematical calculations) and high dependence
on initial values. Specifically, the choice of initial value used for inversion can significantly
affect the solution and the accuracy of the results (an ill-posed problem). Hence, researchers
have developed various intelligent optimization algorithms to avoid these problems. These
intelligent algorithms have the advantages of simple solution and easy implementation.
Compared with traditional numerical inversion algorithms using gradient-based tech-
niques, intelligent algorithms have unique advantages in the face of the global optimal and
high dimensional problem and no longer rely too much on the initial value and do not
require the gradient information of the objective function. For example, He et al. retrieved
the PSD of aerosols based on the optimal wavelength selection technique and the fruit fly
optimization algorithm [27]. Yuan et al. inverted the PSD characteristics of aerosols through
a log normal distribution model and stochastic particle swarm optimization algorithm
(SPSO) [28]. Zhang et al. developed a quantum-behaved particle swarm algorithm to invert
the PSD and complex refractive index of aerosols [29].

Among the intelligent algorithms, the PSO algorithm has strong global search ability
and problem adaptability and has been widely used. However, the basic PSO algorithm
has low computational efficiency and easily falls into local optima. Hence, in this paper, an
improved stochastic particle swarm optimization (ISPSO) is proposed to invert the PSD
characteristics of aerosols based on the advantages of intelligent optimization algorithms.
The algorithm optimizes the iterative formula of the traditional particle swarm optimization
algorithm and adds random particles to the particle swarm after iteration, which has better
global search ability and convergence performance than various traditional intelligent
algorithms. Additionally, the robustness of the algorithm is verified by analyzing random
errors, changing inversion parameters, and the number of samples. The adaptability of the
algorithm to aerosols is verified by inverting the PSD of different aerosol types. Finally, the
example of the inversion of aerosol PSD characteristics in Xianghe is presented. Considering
the complex distribution and optical properties of aerosols, the study results in this paper
can provide help for effectively obtaining atmospheric aerosol parameters. The symbols
used in this paper are given in Table 1.
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Table 1. Symbol, nomenclature, and abbreviations.

Symbol Explanation

N The number concentration of aerosols for log normal
distribution, cm−3

rm Mean radius for log normal distribution, µm
σ The standard deviation for log normal distribution
τ Aerosol optical depth
r Particle radius, µm
κ Extinction factor of aerosol particle
m Complex refractive index, n ± ki
λ Wavelength, µm

n(r) The number concentration of aerosols with particle size
greater than r, cm−3

n The dimension of the particle swarm
x The position of the particle in the solution space
v The velocity of the particle in the solution space
i The number of iterations

c1, c2 Acceleration coefficient
Gd, Gb The individual and global best position

ω Inertia weight for PSO
ω′ Inertia weight for ISPSO

ζ1, ζ2, ζ3 The adjustment factor for ISPSO
ψ Control factor for ISPSO
γ Random error,%
δ Relative error,%

Vm The aerosol column volume concentration, µm3·µm−2

2. Materials and Methods
2.1. Aerosol Particle Size Distribution and Fredholm Integral Equation

Various size distribution functions have been used to describe the PSD, such as the
Weber distribution and log normal distribution, and the log normal distribution has been
proved to be accurate and efficient in aerosols (the effect of using the log normal distribution
is shown in Figure A1):

dn(r)
dln(r)

=
N

lnσ
√

2π
exp

(
− (lnr− lnrm)

2

2ln2σ

)
, (1)

where N is the number concentration, rm and σ represent the mean radius and standard
deviation, respectively.

The inverse radiation problem of solving PSD is based on the forward radiation
problem of calculating aerosol optical depth (AOD). Hence, the Fredholm integral equation
of the first kind expressing the relationship between AOD and the columnar aerosol PSD
can be written as [30]:

τ =
∫ rmax

rmin

πr2κ(r, m, λ)
dn(r)

dr
dr, (2)

where τ is the AOD; κ(r,m,λ) represents the extinction factor of aerosols; m is the complex
refractive index; and n(r) represents the PSD function of columnar aerosol.

The formula of inversion (objective function) can be obtained by bringing the log
normal distribution into the integral equation:

τretrieval =
∫ rmax

rmin

πr2κ(r, m, λ)
N

lnσ
√

2π
exp(− (lnr− lnrm)

2

2ln2σ
)dr, (3)

where τretrieval is the AOD obtained from the inverse problem; N, rm, and σ are the unknown
parameters to be inverted; and the upper and lower limits of the integration can be obtained
by the 3σ criteria.
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2.2. Improved Stochastic Particle Swarm Optimization Algorithm

The PSO algorithm is a kind of random search algorithm which belongs to the heuristic
algorithm based on the swarm, and its basic idea comes from the imitation of natural
laws. The algorithm adopts an information-sharing mechanism, and the core idea can be
summarized as: particle swarm searches for the target solution based on group cooperation
by simulating the foraging behavior of birds. Each particle moves and updates velocity
through the group and its own experience (one iteration). The experience comes from the
record of the best position of the group and the particle (the quality of the position is judged
by the objective function). This mechanism makes the particle swarm gradually gather to
the area where the target is located until the particle finds the target solution (the position
of any particle from the target is smaller than the requirement) [31,32].

The particle searches for the target solution in the solution space (the target solution
is unknown, and the relative distance of the particle to the solution can be judged by the
objective function) and has two properties of position and velocity. If the dimension of the
solution space is n (each dimension corresponds to an unknown parameter in this paper,
and the N, rm, σ constitute a solution, and the variation range of N, rm, σ constitutes a
three-dimensional solution space), the position of the particle is x(n) = (x1, x2, . . . , xn)T, and
the velocity of the particle is v(n) = (v1, v2, . . . , vn)T. The position of any particle in the
swarm is randomly initialized by giving upper and lower limits:

ξ = rand[0− 1](ξmax − ξmin) + ξmin, (4)

where ξ is the arbitrary parameter of particles.
The quality of the solution searched by the particle is evaluated by fitness (the quality

is inversely proportional to the distance from the target solution). In this paper, the larger
the fitness, the better the quality of the solution. Referring to the definition of variance, the
fitness of any particles can be expressed according to Equation (3):

f itness = 1/[∑n
k=1

(
τobject − τinversion

)2
/n], (5)

where τobject and τinversion are the target AOD and the AOD, respectively, calculated based
on Equation (3) through the searched N, rm, σ in the solution space. The reciprocal means
that the greater the fitness, the closer to the target solution. The value k generally ranges
from 1 to 4 and represents the four spectral channels (440 nm, 675 nm, 870 nm, and 1020
nm) often used to invert the PSD.

The movement of particles in the solution space (the update of position and velocity)
is achieved by iterative formulas. According to the Refs. [31,32] of Eberhart and Kennedy,
the iterative formulas of the PSO algorithm can be expressed as:

v(n)i+1 = ωv(n)i + c1·rand[0− 1]
(

G(n)d
i − x(n)i

)
+ c2·rand[0− 1]

(
G(n)b

i − x(n)i

)
, (6)

x(n)i+1 = x(n)i +v(n)i+1, (7)

where v is the velocity of the particle; x represents the position of the particle; n is the
dimension of the particle; i represents the number of iterations; c1 and c2 are called acceler-
ation coefficients, which represent the cognitive and social parameters, respectively; and
Gd and Gb are individual and global best positions, respectively. Meanwhile, ω represents
the inertia weight of the velocity and varies with the number of iterations:

ω(i) = (imax − i)/imax(ωmax −ωmin) +ωmin, (8)

where ωmax and ωmin represent the maximum and minimum weights, respectively. The
weight value gradually decreases with the number of iterations, indicating that the effect
of velocity decreases. Referring to the Equations (6)–(8), the particles adjust the velocity
during iteration based on the inertia weight, the global optimal position, and the individual
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optimal position and change their position according to the velocity. The global optimal
position is the best position searched by the swarm (the solution with highest quality of the
swarm), while the individual optimal position is the best position searched by the particle
itself. Therefore, the movement of the particles is influenced by both the swarm and the
particles themselves, that is, the information sharing mechanism and the proportion of
influence can be adjusted by ω, C1, and C2.

The basic particle swarm optimization is often of low computational efficiency. Mean-
while, the aerosol optical properties (especially the extinction factor) calculated based on
Mie theory have significant oscillation characteristics, and the changes in the properties
with the particle size are non-convex functions. Hence, it is easy to obtain a local optimum
solution by using the PSO algorithm. Based on the above reasons, an improved stochastic
particle swarm optimization (ISPSO) algorithm is developed in this paper. The convergence
ability and the search capability in solution space are considered to the maximum extent
to avoid local optima based on the improvement of the PSO algorithm from Refs. [33,34].
The flowchart of the algorithm is shown in Figure 1, and the iterative formula of the ISPSO
algorithm is updated as follows:

v(n)i+1 = ω′v(n)i + c·rand[0− 1]
[
ψ
(

ζ1G(n)d
i + ζ2G(n)b

i + ζ3x(n)i

)
− 3x(n)i

]
, (9)

x(n)i+1 = x(n)i + v(n)i+1, (10)

where c is a positive constant and the same as the acceleration coefficient; ζ1, ζ2, ζ3 are the
adjustment factors and their sum is 1, and the relative ratio of ζ1 and ζ2 affect the relative
influence of individual and global best positions; and ψ represents the control factor, which
is used to describe the relative proportion of Gd and Gb to xi:

ψ = (Ψmax − 3)(imax − i)/imax·rand[0− 1] + 3, (11)

and the ratio of Gd and Gb to xi is 1 when ψ is equal to 3, and the ratio of Gd and Gb is
higher (lower) when ψ is greater (less) than 3. The role of ψ is to give the swarm additional
search capability in the early iterations. The value of ψ gradually tends to 3 after a period
of iteration, and the iterative formula tends to the PSO algorithm. The initial value of ψ can
be set to 3 ± 0.1.

The ω′ represents the modified inertia weight of velocity. Considering that the velocity
of the PSO algorithm has a minimum value, Gb often fails to meet accuracy requirements.
This makes the algorithm converge early and fall into local optima. Hence, the value of
ω′min is 0 in this paper, which means that the velocity of the particle is reduced to 0 after
the number of iterations exceeds imax so as to avoid the above problems. At this point, the
motion of the particle is completely driven by the individual and global best positions. The
ω′(i) is updated as follows:

ω′(i) = ω′max(imax − i)/imax, (12)

The ISPSO algorithm adjusts the velocity of the swarm through c and adjusts the
relative size of Gd, Gb to xi through ψ and ζ1, ζ2, ζ3. In addition, a new particle is randomly
generated after one iteration based on the existing particle swarm to further improve the
global search capability of the ISPSO algorithm (for more detail, please see Refs. [35,36]).
The position of this new particle is expressed as xj

(n) = (x1, x2, . . . , xn)T, subsequently
updated as follows:

Gb = argmax〈 f itness
(

Gd
i

)
, f itness(Gd

j )〉, (13)

where argmax<•> represents the variable in parenthesis that maximizes the objective
function in the angle bracket. The Gb is replaced by the local optimum solution of the new
particle if the particle has the largest fitness after repeated comparison with the swarm.
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Figure 1. The flow of the ISPSO algorithm.

3. Results
3.1. The Performance of the Algorithm

In this paper, the performance of the ISPSO algorithm is evaluated by comparing it
with traditional intelligent algorithms such as the genetic algorithm (GA) and PSO algo-
rithm. The best fitness variation of different algorithms is shown in Figure 2. The number of
maximum iterations is 500. The acceleration coefficients c1 and c2 of the standard PSO algo-
rithm are both 1.8, and the inertia weights ωmax and ωmin are 0.9 and 0.4, respectively. The
basic simulation parameters of the IPSO (improved particle swarm optimization algorithm,
no random particles) and ISPSO algorithm are shown in Table 2. The probabilities of muta-
tion and crossover of the genetic algorithm are 0.3 and 0.6, respectively, and the swarm size
of all algorithms is 50. The results show that the ISPSO algorithm achieves a higher fitness
in a shorter number of iterations compared with the GA, PSO, and IPSO algorithms, so the
ISPSO algorithm has higher computational efficiency and better convergence performance.
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Figure 2. The best fitness variation under GA, PSO, IPSO, and ISPSO algorithms.

Table 2. The basic simulation parameters of IPSO and ISPSO algorithms.

Swarm Size Inertia Weight
(Maximum) ωmax

Inertia Weight
(Minimum) ωmin

Acceleration
Coefficient c

Control
Factor ψ

ζ1 ζ2 ζ3

50 0.9 0 2.0 to 3.0 0.3 0.3 0.4

The inversion of the ISPSO algorithm under different swarm sizes is also compared,
and the results are shown in Figures 3 and 4, which are the best fitness and calculation time
as a function of the swarm size, respectively. It can be seen that the convergence speed
and the fitness of the ISPSO algorithm both increase with the increasing swarm size, but
the computation time of the algorithm also increases. The accuracy of the algorithm is not
significantly improved when the swarm size of the algorithm exceeds 50. Hence, to take
into account both the computational efficiency and computational accuracy, the swarm size
is set to 50. In addition, the calculation time of the ISPSO and PSO algorithm is proportional
to the swarm size, and the calculation time of the ISPSO algorithm is less than that of the
PSO algorithm, which has obvious advantages.
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The mean radius (rm) and standard deviation (σ) of the ISPSO algorithm and the PSO
algorithm for 50-times calculation are shown in Figure 5 (the upper limit of the number of
iterations is 500). The inversion results of the ISPSO algorithm are completely concentrated
in the neighborhood range of (rm, σ) = (1.0, 0.5), so the ISPSO algorithm does not fall into
the local optima. However, some of the results of the PSO algorithm fall in another area,
which can be considered to fall into the local optima (The distributions of other inversion
parameters are shown in Figures A2 and A3).
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3.2. Algorithm Verification

In this section, the influence of random error (γ%), random initial values, the number of
samples, and the number of inversion parameters on the inversion results of the algorithm
are analyzed to further verify the robustness of the algorithm (all calculations are repeated
50-times). The relative error δ is defined before the simulation:

δ =

∣∣∣∣Pture − Pcalculation
Pcalculation

∣∣∣∣× 100%, (14)

where Ptrue is the true value, and Pcalculation is the inversion result. The true value and
complex refractive index of inversion are shown in Table 3, including the wavelengths of
250 nm, 440 nm, 675 nm, 870 nm, and 1020 nm.
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Table 3. True value and complex refractive index of different wavelengths.

Wave (nm) Real Part Image Part True Value

250 1.53 0.05

(N, rm, σ) =
(10, 1, 0.9)

440 1.53 0.008
675 1.53 0.009
870 1.52 0.009

1020 1.50 0.009

The influence of different random errors (γ%) on the algorithm is evaluated, and the
results are shown in Table 4. The random errors are 0%, 3%, 5%, and 10%, respectively, and
the wavelengths used for inversion are 440 nm, 675 nm, 870 nm, and 1020 nm, respectively.
The results show that the inversion value is consistent with the true value when the random
error is 0%. As the random error increases, the relative error of the inversion parameters is
also rapidly increased. The aerosol PSD characteristics under different random errors are
shown in Figure 6. It can be found that the inversion results can still reproduce the real
PSD characteristics well when the random error is 3% and 5%, and the relative error with
the true value is still acceptable, but the relative error increases sharply when the random
error reaches 10% and the inversion result has become unacceptable.

Table 4. The relative error under different random errors.

True Value γ% N rm σ δ(N) δ(rm) δ(σ)

(N, rm, σ) =
(10, 1, 0.9)

0% 10.00 1.00 0.90 0% 0% 0%
3% 10.34 1.05 0.92 3.40% 5.00% 2.22%
5% 12.56 1.29 0.95 25.60% 29.00% 5.56%

10% 17.72 1.95 1.09 77.20% 95.00% 21.11%
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The relative error of the inversion results of 10 random initial values based on a 5%
random error is shown in Figure 7. It can be seen that the relative error does not change
significantly with different initial values. The inversion results fluctuate around the average
relative error, and the maximum relative error is about 8%. This indicates that the ISPSO
algorithm is weakly dependent on the inversion initial value.
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The effects of the number of samples on the inversion results are also compared in this
paper. The comparison is necessary, because the measurement results of sun photometers in
different wavelengths are inevitably noisy and distorted, and severe noise may cause data
in a certain wavelength to be unavailable. The results are shown in Table 5 and Figure 8.
“Without 440 nm” means that 440 nm is discarded among the four inversion wavelengths
of 440 nm, 675 nm, 870 nm, and 1020 nm and uses the remaining three wavelengths for
inversion. The other “Without” labels are similar to “Without 440 nm”. “With 250 nm”
means that four wavelengths of 250 nm, 675 nm, 870 nm, and 1020 nm are used for inversion.
“All wavelengths” means that all five wavelengths are used for inversion. The results show
that the inversion results of the two cases such as “All wavelengths” and “With 250 nm”
are consistent with the true values, and the relative error is almost 0%. The data of 250 nm
successfully replaced 440 nm and played an effective role. However, there is a serious
relative error in the inversion results of “Without 440 nm”. As seen in Equations (2) and (3),
the more difference between the extinction factor in different wavelengths and the higher
the independence between each other, the stronger the resistance to noise (for further
analysis, please see Figure A4). Therefore, after removing 440 nm, the remaining three
wavelengths are not significantly independent of each other, and the inversion results have
a large relative error. However, the relative errors of “Without 675 nm” and “Without
870 nm” are small, indicating that these two wavelengths are less independent of each
other. Therefore, if possible, it is easier to obtain accurate inversion results by selecting
wavelengths with more independent optical properties.

Table 5. The inversion results under different wavelength combinations.

True Value Type N rm σ δ(N) δ(rm) δ(σ)

(N, rm, σ) =
(10, 1, 0.9)

With
250 nm 10.01 1.00 0.90 0.10% 0% 0%

Without
440 nm 18.42 1.95 0.93 84.20% 95.00% 3.33%

Without
675 nm 10.07 1.01 0.90 0.70% 1.00% 0%

Without
870 nm 10.11 1.02 0.90 1.10% 2.00% 0%

Without 1020 nm 14.13 1.29 0.92 41.30% 29.00% 2.22%
All wavelengths 10.00 1.00 0.90 0% 0% 0%
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The influence of the number of inversion parameters is further evaluated in this
paper, and the true value of the inversion adopts the double log normal distribution (True
value: (N1, rm1, σ1, N2, rm2, σ2) = (100, 0.2, 0.7, 10, 1, 0.9)). When the number of inversion
parameters is 3, then N1, N2, and rm2 are unknown, and the rest of the true values are
known. When the number of inversion parameters is 4, then N1, N2, rm1, and rm2 are
unknown, and so on. The wavelength and corresponding complex refractive index are
shown in Table 3, and the results are shown in Table 6. The results show that the inversion
accuracy begins to decrease when the number of inversion parameters is larger than 4.
When the number of inversion parameters is 6, the relative error far exceeds 100%, and the
inversion results have become unacceptable.

Table 6. The relative errors under different numbers of inversion parameters.

True Value Number of Inversion
Parameters Relative Error

(N1, rm1, σ1,
N2, rm2, σ2) =

(100, 0.2, 0.7, 10, 1, 0.9)

3 δ(N1, N2, rm2) = (0%, 0%, 0%)
4 δ(N1, rm1, N2, rm2) = (11%, 23%, 9%, 21%)
5 δ(N1, rm1, σ1, N2, rm2) = (93%, 137%, 91%, 87% 115%)
6 δ(N1, rm1, σ1, N2, rm2, σ2) = (152%, 235%, 184%, 136%, 183%, 139%)

3.3. Aerosol Type

To evaluate the adaptability of the ISPSO algorithm to inverse the PSD characteristics
of different types of aerosol, three types of aerosol (dust aerosol, water-soluble aerosol,
and soot aerosol) are considered. The complex refractive indices at different wavelengths
and true values of these aerosols are listed in Table 7 [37,38]. The mean radius of PSD of
dust aerosol is much larger than the water-soluble aerosol and soot aerosol. Soot aerosol
has the smallest mean radius and the largest complex refractive index (both real and
imaginary parts).

Table 7. Complex refractive index and true value for three aerosol types.

Wavelength (nm) 440 (n ± ki) 675 (n ± ki) 870 (n ± ki) 1020 (n ± ki) N rm σ

Dust 1.52 ± 0.008i 1.52 ± 0.008i 1.52 ± 0.008i 1.52 ± 0.008i 10.0 0.54 0.73
Soot 1.75 ± 0.46i 1.75 ± 0.43i 1.75 ± 0.43i 1.75 ± 0.43i 10.0 0.012 0.69

Water-soluble 1.53 ± 0.005i 1.53 ± 0.006i 1.53 ± 0.012i 1.53 ± 0.012i 10.0 0.04 0.80

The inversion results and relative error changes under different random errors and
different aerosol types are shown in Table 8 and Figure 9. The results show that the
inversion results deteriorate with the increasing random error for any aerosol type, but the
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inversion results are generally more reasonable. For dust aerosol and water-soluble aerosol,
the accuracy of the inversion results is lower than the soot aerosol under each random error.
For soot aerosol, the inversion results vary little with the random error, which indicates
that the optical properties of soot aerosol at different wavelengths are more independent
and therefore more resistant to noise.

Table 8. The inversion results for three aerosol types.

Aerosol γ% N rm σ δ(N) δ(rm) δ(σ)

Dust:
(N, rm, σ) =

(10, 0.54, 0.73)

0% 10.0 0.54 0.73 0% 0% 0%
3% 10.32 0.59 0.74 3.20% 9.26% 1.37%
5% 12.13 0.71 0.77 21.30% 31.48% 5.48%
10% 16.95 1.06 0.85 69.50% 96.30% 16.44%

Soot:
(N, rm, σ) =

(10, 0.012, 0.69)

0% 10.0 0.012 0.69 0% 0% 0%
3% 10.42 0.012 0.71 4.20% 8.33% 2.90%
5% 11.41 0.013 0.75 14.10% 8.33% 8.70%
10% 14.23 0.015 0.87 42.30% 16.67% 26.09%

Water-soluble:
(N, rm, σ) =

(10, 0.04, 0.80)

0% 10.0 0.04 0.80 0% 0% 0%
3% 10.27 0.042 0.82 2.70% 5.00% 2.50%
5% 11.89 0.05 0.89 18.90% 25.00% 11.25%
10% 14.05 0.066 1.01 40.50% 65.00% 26.25%
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3.4. Experimental Simulation

Xianghe is densely populated, located in northern China, and prone to dusty weather.
Meanwhile, Mezaira is located in the Arabian desert, which is dry and rainy all the year
round, and is dominated by dust aerosols. In this paper, the algorithm is verified by
two locations with AERONET data. The complex refractive index and PSD are shown in
Table 9, and the measurement wavelengths are 440 nm, 675 nm, 870 nm, and 1020 nm,
respectively. Vm is the aerosol column volume concentration, which can be converted to
number concentration N by dividing the sphere volume in the integral term. The sun
photometer data from 22 March 2021 and 5 April 2021 (Xianghe) and from 18 July 2018
and 31 July 2018 (Mezaira) are used. The inversion results are shown in Figure 10. The
results show that the PSD parameters retrieved by the algorithm are in agreement with the
AERONET retrieval products (version 3.0), both in dust and urban aerosols. Hence, the
ISPSO algorithm can effectively perform the inversion of aerosol PSD.

Table 9. The complex refractive index and PSD measured by AERONET.

Date Wavelength (nm) n ± ki Ture Value (Vm, rm, σ)

22 March 2021
(Xianghe, dust)

440 1.6 ± 0.0032i

(0.605, 1.716, 0.728)
675 1.59 ± 0.0005i
870 1.57 ± 0.0005i
1020 1.56 ± 0.0005i

5 April 2021
(Xianghe, sunny)

440 1.47 ± 0.0059i

(0.139, 0.339, 1.512)
675 1.49 ± 0.0043i
870 1.50 ± 0.0042i
1020 1.49 ± 0.0043i

18 July 2018
(Mezaira, sample1)

440 1.53 ± 0.0022i

(0.612, 1.230, 1.008)
675 1.54 ± 0.0013i
870 1.53 ± 0.0018i
1020 1.53 ± 0.0025i

31 July 2018
(Mezaira, sample2)

440 1.52 ± 0.0023i

(2.140, 1.243, 0.639)
675 1.49 ± 0.0005i
870 1.47 ± 0.0005i
1020 1.46 ± 0.0005i
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4. Discussion
4.1. The Discussion of Algorithm Performance

The intelligent algorithm is a biologically-inspired method that searches for a target
in a solution space by simulating the swarm behavior of organisms. The idea of group
collaboration makes this kind of algorithm more suitable for global optimal problems. Es-
pecially for the SPSO algorithm with random particles, it seldom falls into the local optima
compared with the PSO algorithm [28,33]. The advantages of the PSO algorithm make it
easier to be modified and improved. The improved algorithm (ISPSO) undoubtedly has
better performance and convergence ability compared with various traditional intelligent
algorithms (such as the PSO algorithm and the GA algorithm). Additionally, the optimal
swarm size of the intelligent algorithm is affected by the dimension of the solution space,
the search range, and the objective function (Equation (3)), but the conditions such as
the objective function are not significantly different in some intelligent algorithm studies
compared with ours [28,33–35,39], so the optimal swarm size is the same (swarm size = 50).

Furthermore, as mentioned in the introduction, the advantages of intelligent algo-
rithms over traditional numerical algorithm are significant. According to the case in
Refs. [38,39], the intelligent algorithm has better convergence (or results). Therefore, in
some practical applications such as AERONET and SKYNET (for example, the volume PSD
of aerosols is retrieved by combining the aerosol optical depth and scattering phase func-
tions measured by AERONET (composite scattering and extinction measurements) [40,41]),
the intelligent algorithms can have higher computational efficiency and less dependence
on the initial value (easier to avoid the local optima).

4.2. The Discussion of Error and Robustness

Since the objective function is a Fredholm integral equation of the first kind and a priori
information is used on the PSD characteristics (giving distribution type), the inversion is a
clearly ill-posed problem, i.e., small changes in the aerosol optical data may cause a huge
error in the inversion results. Hence, this ill-conditioned characteristic of the inversion
make robustness an important criterion for evaluating the algorithm [39]. The results of the
error analysis show that the relative error of the inversion result relative to the true value
rapidly increase with the increasing random error (data noise). The inversion results have
begun to be distorted when the random error is 10%. In the inversion results, the relative
error of the standard deviation is the smallest, and the mean radius is the largest. The
effect of different inversion parameters on the objective function is different. The bigger
the effect of the inversion parameters (the higher the sensitivity), the stronger the ability to
resist noise. In addition, the weak dependence on the inversion initial value and the search
range are a significant advantage of the intelligent algorithm, and the inversion results of
multiple random initial values and subsequent studies verify this advantage.

The number of inversion samples and inversion parameters is also an important fac-
tor affecting the uncertainty of inversion. The relative number of inversion samples and
parameters makes the calculation indetermined or overdetermined. The overdetermined
equation need not be discussed, but for the indetermined problem, the independence be-
tween samples becomes very important. The stronger the independence between samples,
the higher the ability to resist noise. Hence, the independence between the samples of
675 nm and 870 nm wavelength is weak, so the inversion results are little affected after
deleting either of the two samples. Similarly, the relative error of inversion results increases
rapidly with the increasing number of inversion parameters.

In summary, when the independence of the samples is insufficient and the number
of inversion parameters significantly exceeds the samples, the accuracy of the inversion
results will be unacceptable. When dealing with the double log normal distribution or
others, the uncertainty of the inversion can be reduced in the following ways: (1) As shown
in Table 5 and Figure 8, the ill-posed problem of inversion can be effectively avoided by
selecting appropriate data to increase the independence between samples. (2) If the number
of inversion parameters is significantly larger than samples, some unknown parameters
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can be given a priori. For example, Yuan Yuan et al. used the number concentration only
in the log normal distribution as an unknown parameter to obtain the PSD characteris-
tics of aerosols [28]. (3) More samples for inversion can be used; for example, angular
light scattering measurements are used to obtain the aerosol PSD and complex refractive
index [29].

4.3. The Discussion of Inversion of Aerosol Type

Atmospheric aerosols can be described by the PSD and the complex refractive index
when the aerosol is assumed to be spherical. Different aerosols have different PSD and
complex refractive index, resulting in different optical properties (such as extinction factor)
at a given wavelength. The higher the difference between the aerosol optical property data
at different wavelengths, the stronger its independence and thus the stronger the ability
to resist noise. Soot aerosol has the best ability to resist noise, while dust aerosol has the
worst inversion accuracy from the inversion results. Furthermore, the mean radius had the
largest relative error, and the standard deviation had the smallest relative error regardless
of aerosol type, which is consistent with the previous analysis.

The data verified by the practical example comes from the Xianghe station, including
dust and sunny days. The inversion results agree quite well with the AERONET results.
It is easy to obtain consistent results since the AOD data of AERONET comes from the
direct inversion of the Beer–Lambert law (have high accuracy) [42]. However, the effect of
random errors cannot be ignored when considering the satellite data. The study shows that
the measurement error (random error) of AOD may be up to 40% and 20%, respectively, for
passive remote sensing such as MODIS and active remote sensing such as Caliop [43–45].

In a future study, the multi-log normal distribution with more inversion parameters
will be considered for the ISPSO algorithm, and the atmospheric medium, such as clouds
and fog, will also be considered. In addition, the algorithm will attempt to obtain the PSD
characteristics of aerosols without being given the distribution type a priori.

5. Conclusions

In this paper, the PSD characteristics of aerosols are inverted using the log normal
distribution based on the self-developed ISPSO algorithm. The performance evaluation
shows that the algorithm has a faster convergence speed and better accuracy than traditional
intelligent algorithms. The distribution results of the inversion parameters show that the
algorithm can effectively avoid the local optima compared with the PSO algorithm. The
ability of the algorithm to resist noise is evaluated by adding random errors of the inversion.
Then, the weak dependence of the algorithm on the initial value is reflected through the
inversion results of the random initial value. The relative errors of the inversion results
of the algorithm under different wavelength combinations and the number of inversion
parameters are analyzed, and the applicability and robustness of the algorithm are further
clarified. In addition, the study found that the independence of data can significantly affect
the accuracy of the inversion results and is proportional to the accuracy. Then, the PSD
characteristics of dust aerosol, water-soluble aerosol, and soot aerosol are inverted by the
algorithm. The results show that the inversion of three aerosols is reasonable and effective,
and the inversion accuracy of soot aerosol is the highest. The results also show that the
relative error of the mean radius in the inversion parameters is the largest and the standard
deviation is the smallest, which is related to the sensitivity of the inversion parameters in
the objective function. Finally, the ISPSO algorithm is used to invert the PSD characteristics
of Xianghe and Mezaira combined with AERONET data. The inversion results are in good
agreement with the inversion data from AERONET. The ISPSO algorithm is an effective
technique to obtain aerosol PSD, and the size distribution can provide support for further
study on atmospheric aerosol radiation and environmental effects.
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Appendix A. The Best Fitness Change for Different Distribution Functions

Atmospheric aerosol is a polydisperse system, and although there are many distribu-
tion functions to describe the PSD of atmospheric aerosol, the log normal distribution is
the most common. The measured aerosol PSD, complex refractive index, and AOD data
from Ref. [39] are used, and the aerosol PSD are assumed to conform to log normal, Weber,
and Rosin–Rammler distributions, respectively. The variation of the best fitness with the
number of iterations is calculated, and the results are shown in Figure A1. The results show
that the log normal distribution has the best convergence performance. Hence, the log
normal distribution can best model the PSD of atmospheric aerosols.
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Appendix B. The Parameter Distribution of Inversion Results

In addition to the results of (rm, σ) given in the main text, the results of (N, rm) and
(N, σ) are also given in Figures A2 and A3 (N = 10). The same as the main text, the ISPSO
algorithm has no results fall into the local optima, while the PSO algorithm has a small
number of inversion results fall into the local optima, which reflects the effectiveness of the
random particles.
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Appendix C. Extinction Factor

According to the parameters given in the main text, the extinction factors at different
wavelengths and particle sizes are shown in Figure A4. It can be found that the inde-
pendence between the wavelengths of 675 nm and 870 nm is not good, far worse than
between 440 nm and 1020 nm. Additionally, it can also be found that the extinction factor
gradually tends to 2 when the particle size is larger than 1 µm, and the independence of all
the wavelengths becomes worse. It can explain why the inversion results of dust aerosol
have the largest relative error among the three aerosols simulated in the main text (the
effective radius of dust aerosol is greater than 1 µm).
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