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Abstract: Combining the advantages of diversity provided by polarization MIMO radar and good
decoherence ability of matrix reconstruction technology, a method for height measurements based
on matrix reconstruction after real valued processing is developed. To solve height measurement
problem in meter wave polarization MIMO radar, we first derive the corresponding flat ground signal
model; then, the received data matrix is reconstructed to eliminate the influence of multipath coherent
signal on height measurements. Then, the reconstructed data matrix is transformed into a real valued
matrix using a unitary matrix. In order to reduce the influence of noise on the signal subspace and
reduce the data dimension, singular value decomposition technology is applied to receive the signal
data. Finally, the elevation and height of the target are estimated according to the principle that the
signal subspace is orthogonal to the noise subspace. The proposed method does not require prior
knowledge, such as the reflection coefficient, wave path difference and polarization information.
Simulation experiments show that the proposed algorithm has better estimation performance and
less computational complexity than conventional algorithms.

Keywords: height measurement; meter wave polarimetric MIMO radar; MUSIC; matrix reconstruction

1. Introduction

Most existing radars are single-polarization array radars, such as MIMO radar, which
can only receive one type of polarization information [1–3] of the electromagnetic wave sig-
nal. The vector sensor radar, namely the polarization radar, has polarization diversity char-
acteristics and can obtain at least two types of polarization information or up to six types of
polarization information [4–10] of the electromagnetic wave signal.
Refs. [4–7] studied the angle estimation of the specially separated electromagnetic vector
sensor array, and showed that the polarization information can improve the performance
of angle estimation.

Refs. [8–10] studied the array popularity of large electric dipoles and magnetic loops and
proposed corresponding angle and polarization estimation algorithms. It is well known that
direction of arrival (DOA) estimation is an important part of array signal processing [11,12],
in particular the height measurement of low altitude targets, which is affected by multipath
and is difficult to measure accurately [13–18]. Severe multipath coherence signals exist in the
low-elevation areas, which seriously affects the height measurement accuracy.

Therefore, polarimetric MIMO radar with both spatial diversity and polarization
diversity has attracted the attention of many scholars [19–22]. In order to make full use
of the advantages of polarimetric MIMO radar, Ref. [23] proposed a polarized smoothing
generalized multiple signal classification (MUSIC) algorithm based on the generalized
MUSIC algorithm, which improved the height measurement accuracy. Based on the MUSIC
algorithm [24], Zheng [25] proposed the steering vector synthesis MUSIC algorithm and
generalized MUSIC algorithms for the meter-wave polarimetric MIMO radar, which take
full advantage of the waveform diversity and polarization diversity with good estimation
accuracy and without decoherence processing.
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The paper proposes the idea of matrix reconstruction as well as the operation of
real-value processing to further improve the estimation accuracy and reduce the com-
putational complexity. The work is motivated to improve the angle estimation accuracy
with reduced computational complexity. The problem of the existing algorithms is that
the improvement of the angle measurement accuracy and the amount of calculations are
contradictory and cannot be unified. The challenges of the topic are to better apply and
combine these technologies.

In order to make better use of the advantages of polarimetric MIMO radar, we first
analyze the signal model of meter wave polarimetric MIMO radar in the low-elevation area
and then study a method based on matrix reconstruction without any prior information.
By taking full advantage of the waveform diversity and polarization diversity advantages
of the polarimetric MIMO radar, the proposed method has good accuracy at the case of low
snapshots or a low signal-to-noise ratio (SNR).

Finally, the proposed algorithm is further analyzed through computer simulation
results, and then the correctness and advantages of the proposed algorithm are verified
after comparison with the existing algorithms. The innovation of this paper is to apply
the polarization MIMO radar to the height measurement of complex terrain. The matrix
reconstruction in this paper does not require the prior information of the terrain, and the
real value technology can improve the accuracy of height measurement and reduce the
amount of calculation.

Notations: Superscript (·)∗, (·)T and (·)H denote conjugate, transpose and conjugate
transpose, respectively. ⊗ denotes Kronecker product, respectively. IM is an identity matrix
with dimension M. Π is the exchange matrix with ones on its anti-diagonal and zeros
elsewhere. det(·) denotes the matrix determinant.

2. Signal Model of Meter Wave Polarimetric MIMO Radar in Low Elevation Area

The schematic diagram of the polarimetric MIMO radar is shown in Figure 1. The
transceiver antennas are all vertically placed with polarization sensitive antenna, and its
adjust sensor spacing equals dt = dr =

λ
2 , where λ is the wavelength. θd is the direct wave

angle, θs is the reflection angle, ha is the height of the array, and ht is the height of the target.

Figure 1. Signal model of meter wave polarimetric MIMO radar in a low-elevation area.

There are M vector sensors in the polarimetric MIMO radar. The transmitted signals of

polarimetric MIMO radar are assumed to be a set of orthogonal signals S =
[
ST

1 , . . . , ST
M

]T
∈

C6M×1, where Sm = [sm,1, . . . , sm,6]
T , which satisfies the following Equation (1).

s∗m,psn,q =

{
P, m = n and p = q
0, otherwise

; m, n = 1, . . . M; p, q = 1, . . . , 6. (1)



Remote Sens. 2022, 14, 4121 3 of 10

Assuming that the low elevation reflection area is smooth and flat ground, the signal
of lth snapshot reaching at the target can be represented as

x(l) = [bt(θd) + e−jδρhbt(θs)]
T

S (2)

where δ = 4πhaht
Rλ is the phase difference due to the range difference of wave propagation

between the direct wave and reflected wave, R is the distance between the projection of
the target on the ground and the radar, and ρh is the Fresnel reflection coefficient of the
horizontally polarized wave with a value of

ρh =
sin θd −

√
ε− cos2 θd

sin θd +
√

ε− cos2 θd
(3)

where ε is the surface complex dielectric constant, which can be represented by the relative
dielectric constant εr and the surface material conductivity σe: ε = εr − j60λσe.b(θ) is the
whole steering vector, which equals b(θ) = a(θ)⊗ g(θ), where a(θ) is the spacial steering
vector and g(θ) is the polarization steering vector of a single electromagnetic vector sensor,
which can be expressed as:

a(θ) = [1, exp(−jπ sin(θ)), · · · , exp(−j(M− 1)π sin(θ))]T (4)

g(θ) =



cos φ cos θ − sin φ
sin φ cos θ cos φk
− sin θ 0
− sin φ − cos φ cos θ
cos φ − sin φ cos θ

0 sin θ


[

sin γejη

cos γ

]
(5)

where θ represents θd or θs, and br(θ) = bt(θ). Therefore, we can obtain the values of
br(θd), br(θs), bt(θd), bt(θs). As elevation measurement is the primary purpose of this
paper, we set the azimuth as φ = 90◦. Data for the lth snapshot received by the entire array
can be expressed as

X(l) = [br(θd) + e−jδρhbr(θs)]ξ(l)[bt(θd) + e−jδρhbt(θs)]
T

S + N(l) (6)

where ξ(l) is the complex reflection coefficient, and N(l) is the Gaussian white noise, with
a mean of zero and a variance of σ2. The following formula can be obtained after matching
filtering using the transmitted signals to Equation (6):

Y(l) = [br(θd) + e−jδρhbr(θs)]ξ(l)[bt(θd) + e−jδρhbt(θs)]
T
+ N(l)SH(l) (7)

For Equation (7), the received data under the lth snapshot can be expressed as the
following formula,

Y = [bt(θd) + e−jδρhbt(θs)]⊗ [br(θd) + e−jδρhbr(θs)]ξ(l) + N ∈ C36MN×L (8)

According to the conclusion of Ref. [21], the noise of N is still Gaussian white noise
after matching filtering and vectorization operation.

3. Real Valued MUSIC Height Measurement Method Based on Matrix Reconstruction

To solve the problem of the effect of the multi-path reflection echo signal in the low-
elevation area of the polarimetric MIMO radar, this section reconstructs the received signal
data Equation (8) as matrix Z(l) ∈ CMM×36, which can be expressed as the following equa-
tion:

Z(l) = [Y1,1(l), . . . , Y1,M(l), Y2,1(l), . . . , YM,M(l)] (9)
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where Ym,n(l) ∈ C36×1 represents the data received by the nth vector sensor and the mth
transmitted signal. Equation (9) can be expanded as the following formula:

Z(l) = AΛξ(l)G + V(l) = AD(l) + V(l) (10)

where A is the steering vector after the matrix reconstruction, V(l) is the noise matrix of
the reconstructed data, G contains all the polarization information of the received data,
and Λξ(l) includes the reflection coefficient, the range difference of wave propagation and
other information as follows.

A =

[
ar(θd)⊗ at(θd) ar(θd)⊗ at(θs)
ar(θs)⊗ at(θd) ar(θs)⊗ at(θs)

]
∈ CMM×4 (11)

G =

[
g(θd)⊗ g(θd) g(θd)⊗ g(θs)
g(θs)⊗ g(θd) g(θs)⊗ g(θs)

]T

∈ C4×36 (12)

Λξ(l) = diag
{

ξ(l), e−jδρhξ(l), e−jδρhξ(l), e−j2δρ2
hξ(l)

}
(13)

After observation, it is not difficult to find that the column of G is linear independent
and, when ξ(l) 6= 0, RD = E

(
D(l)D(l)H), has rank min(4, 36) = 4. Furthermore, it is

important to note that, in Equation (10), when the rank of A is 4, the rank loss generated by
the multipath coherence signal has been resolved, i.e., the matrix reconstruction method
eliminates the effect of the multipath coherence signal. With K noncoherent low elevation
targets, the proposed method can solve the multipath coherent rank loss phenomenon for,
at most, 36/4.

However, the values in Equation (10) are complex values, and thus direct low-elevation
estimation leads to greater computational complexity. To reduce the algorithm complexity,
we perform the real-value processing using the unitary matrix with Equation (10) and
derive the corresponding real-value MUSIC elevation estimation method.

When the received data has L snapshots, the corresponding data expression of
ZL = [Z(1), . . . , Z(L)] ∈ CMM×36L can be obtained by Equation (10). To make full use
of the conjugated data, ZL can be extended as

ZL,U = [ZL, ΠMMZ∗LΠ36L] ∈ CMM×72L (14)

where ΠN is a commutative matrix with 1 on the antidiagonal elements and the remaining
position elements of 0. We can easily verify that ZL,U is the centrosymmetric Hermite
matrix [26], and the real-valued matrix can be obtained by processing with Equation (14)
using the unitary matrix [27].

ZR = ΓH
MMZ(k)Γ72L (15)

where ΓK is a sparse unitary matrix, whose odd and even dimensions are defined as, re-
spectively: 

Γ2K+1 = 1√
2

 IK 0K×1 jIK
01×K

√
2 01×K

ΠK 0K×1 −jΠK


Γ2K = 1√

2

[
IK jIK
ΠK −jΠK

] (16)

When the number of dimension of received data is large, the huge calculation amount
will increase the practical application difficulty. In order to reduce the dimension of the
receiving data, and to reduce the impact of the noise on the data, we can use Singular Value
Decomposition (SVD) technology to handle Equation (15), as follows:

ZR = UsΛsVH
s + UnΛnVH

n ∈ CMM×72L (17)
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As there are four transmission paths in the low elevation region for one target
and the reconstructed data covariance matrix rank is 4; therefore, Us ∈ CMN×4 and
Un ∈ CMN×MN−4 are composed of left singular value vectors corresponding to four
large singular values and left singular values corresponding to MN − 4 small singular
values. Λs and Λn consist of four large singular values and the remaining MN − 4 large
singular values. Similarly, Vs ∈ C72L×4 and Vn ∈ C72L×MN−4 consists of right singular
value vectors corresponding to four large singular values and a vector of right singular
values corresponding to MN − 4 small singular values. Equation (15) right is multiplied
with Vs, and then we have

∼
ZR = ZRVs ∈ CMN×4 (18)

According to Equation (18), the dimension of matrix ZR decreases from 72L to 4. It is
not difficult to find 72L � 4 when the number of snapshots L is large, and thus it is not
difficult to prove that singular value techniques can greatly reduce the matrix dimension.

In the same way, the covariance matrix of the real-valued data can be obtained by the
following equation:

RZR =
1

72L

∼
ZR

∼
ZH

R ∈ CMM×MM (19)

Eigenvalue decomposition of matrix RZR yields the following formula.

RZR = EsΛsEH
s + EnΛnEH

n (20)

Matrices Es and En represent the signal and noise subspaces, respectively, whose
eigenvalues constitute the diagonal matrices Λs and Λn. Since RZR is a real-valued matrix,
both Es and En are real-valued matrices. Based on the orthogonality of the signal subspace
and noise subspace, the following spectrum formula can be obtained.

P(θd, θs) =
det
(
EH

n En
)

det
(
AH

R EnEnHAR
) (21)

Equation (21) is called the generalized MUSIC algorithm. The difference between it
and the traditional MUSIC algorithm is that there is no need for information of the steering
vector. It is sufficient to know the steering matrix because the steering matrix is orthogonal
to the noise subspace and because the angle estimation can be obtained by using this point.

As the received data is processed as real-valued data by the unitary matrix, the steering
vector AR = ΓH

M2A for the spectral peak search in Equation (21) does not contain any
polarization parameter, the range difference of wave propagation and reflection coefficient
information; thus, it is not difficult to prove that the proposed method can estimate the
target elevation value without the polarization information.

The above equation is a two-dimensional spectral peak search, which can be reduced
to a one-dimensional search according to the relationship between the angle of direct wave
and the reflected wave as shown below

θs = −arctan(tan θd + 2ha/R) (22)

Based on the distance R and elevation estimations, the height of the target can be
calculated as:

H ≈ R sin θd + ha (23)

4. Summary and Computational Complexity of the Proposed Algorithm

The algorithm steps studied in this paper are as follows:

1. Reconstruct the received signal data using Equation (9).
2. The unitary matrix is used to process the real-value of the reconstructed received

signal matrix.
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3. Reduce the effect of big dimension of received data and noise using the singular
value technique.

4. The signal covariance matrix was obtained by Equation (19), and then the eigenvalue
was decomposed to obtain the noise subspace matrix.

5. According to the noise subspace matrix, the spectral peak search was performed as in
Equation (21).

6. The target height is obtained according to the geometric relationship of Equation (23).

According to the algorithm steps, it is not difficult to find that the complexity of the
proposed method is mainly divided into the following parts: (1) real-valued processing; (2)
estimate the real-valued covariance matrix; (3) eigenvalue decomposition of the covariance;
and (4) spectral peak search. The specific expression is as follows: (1) 24 · 72M2L; (2) 72M4L;
(3) M6; (4) num ·

(
8M4 + 36M2). Therefore, the complexity of the proposed algorithm is

36M2(48L + num) + M4(72L + 8num) + M6.
The generalized MUSIC algorithm proposed in Ref. [28] is abbreviated as G-MUSIC;

the generalized MUSIC algorithm applied in polarimetric MIMO radar is abbreviated
as PG-MUSIC [23]; the height measurement method of maximum likelihood estimation
proposed in Ref. [29] is abbreviated as the ML algorithm; and its extension algorithm in
polarimetric MIMO radar is abbreviated as P-ML [25]. The G-MUSIC algorithm complexity
is 4M4L + 4M6 + 4Θ

(
32M2 + 8M4).

ThecomplexityofPG-MUSICalgorithmis4
(
36M2)3+4

(
36M2)2L+4Θ

(
36 ·32M2 +8 ·362M4

)
.

The complexity of ML algorithm is 4M4(L+ M2)+4Θ
(
32M2 +4M4 + M6). The complexity of P-ML

algorithm is 4 ·362M4(L+36M2)+4Θ
(
363M6 +32 ·36M2 +4 ·362M4).

5. Computer Simulation Results

This section verifies the reliability and superiority of the proposed algorithm mainly
through simulation experiments. In this paper, the angle search range is set as 0.5

◦ − 12
◦
,

the search angle interval is 0.01
◦
, and the number of searches is 1151. A meter-wave

polarimetric MIMO radar system has the transceiver array elements M = N = 6, and the
adjusted element spacing is dt = dr = λ/2. In addition, the wavelength is set as λ = 1. The
height array is ha = 5m, and number of Monte Carlo experiments is K = 500. In simulation
experiments, the number of target is set to 1, and the root mean square error is defined as

RMSE_DOA =

√√√√ 1
K

K

∑
k=1

(∧
θk − θd

)2
(24)

RMSE_H =

√√√√ 1
K

K

∑
k=1

( ∧
Hk − ht

)2
(25)

where
∧
θk is the estimated elevation value obtained by the kth experiment,

∧
Hk is the es-

timated target height obtained by the kth experiment, and K is the number of Monte
Carlo experiments.

Example 1: In this experiment, the number of L = 10, the actual elevation of the target
is 3

◦
. The SNR is set as 10 dB. Figure 2 is a spatial spectrum of the proposed method with

10 times. It can be seen from Figure 2 that the proposed method can correctly measure the
target elevation angle, which proves the correctness of the proposed method.
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Figure 2. The spatial spectrum of the proposed algorithm with 10 times.

Example 2: In this experiment, the number of snapshots is L = 10, the actual elevation
of the target is 3

◦
, the distance between the target and the radar is R = 200 km, and the

range of SNR is from −10 to 10 dB. Figure 3 shows the relationship between the RMSE of
angle estimation and SNR for the five algorithms, and Figure 4 shows the RMSR of height
measurement and SNR of the five algorithms.

Figure 3. RMSE of angle estimation versus SNR.
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Figure 4. RMSE of height measurement versus SNR.

From Figures 3 and 4, the PG-MUSIC and P-ML methods show better estimation accu-
racy than the G-MUSIC and ML methods, which demonstrates the polarization diversity
advantage of polarizing-sensitive arrays. Moreover, the proposed algorithm outperforms
the PG-MUSIC and P-ML methods, which demonstrates the superiority of the proposed al-
gorithm.

Example 3: Figure 5 shows the relationship between the computational complexity
and the number of array elements of the five algorithms. It can be found from Figure 5 that
the computational complexity of the PG-MUSIC and P-ML methods is significantly higher
than that for the G-MUSIC and ML methods. This indicates that, although polarimetric
MIMO radar has a polarization diversity advantage, it also increases the algorithmic
computational complexity.

Figure 5. Complexity changes with the array number.

Notably, the proposed algorithm has the lowest computational complexity because of
the data with real values and because the steering vector dimension for spectrum search
is lower than for the PG-MUSIC and P-ML methods. This proves that the proposed
method is more conducive to engineering implementations. In addition, according to
the experimental results of this example and example 2, compared with the other four
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algorithms, the proposed algorithm reduces the computing complexity and improves the
accuracy of the target elevation and height measurement.

6. Conclusions

To further improve the measurement accuracy, we studied a height measurement
method based on the meter-wave polarimetric MIMO radar, which makes full use of
the waveform diversity and polarization diversity. First, the receiving signal model was
analyzed. According to the height measurement signal model, the received data matrix
was reconstructed to eliminate the effect of the multipath reflection echo. To reduce the
algorithm complexity, the reconstructed data matrix was processed with real values using
a unitary matrix.

Finally, the corresponding spectrum search was presented, which requires no known
polarization information. In the simulation experiment, the proposed algorithm was
comprehensively compared with the state-of-the-art algorithms, which showed that the
proposed algorithm had the best performance. Therefore, when selecting the estimation
algorithms, we can consider using the real value processing technology in this paper
to improve the diversity of samples. In addition, the decoherence method of matrix
reconstruction is a good decoherence method that does not depend on the information of
the terrain.
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