Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.3. Development Method
2.3.1. Sub-Basins Map
2.3.2. Rain Gauge Data
2.3.3. Rain Gauge Data
3. Results
3.1. Precipitation Base
3.2. Combined Precipitation
3.3. Application of Generated Precipitation Products in Hydrological Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Jakeman, A.; Fang, G.; Chen, X. Uncertainty Analysis of a Semi-Distributed Hydrologic Model Based on a Gaussian Process Emulator. Environ. Model. Softw. 2018, 101, 289–300. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y. Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef]
- Crespi, A.; Brunetti, M.; Ranzi, R.; Tomirotti, M.; Maugeri, M. A Multi-century Meteo-hydrological Analysis for the Adda River Basin (Central Alps). Part I: Gridded Monthly Precipitation (1800–2016) Records. Int. J. Climatol. 2021, 41, 162–180. [Google Scholar] [CrossRef]
- Twardosz, R.; Cebulska, M. Temporal Variability of the Highest and the Lowest Monthly Precipitation Totals in the Polish Carpathian Mountains (1881–2018). Theor. Appl. Climatol. 2020, 140, 327–341. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bintanja, R. Contribution of Climatic Changes in Mean and Variability to Monthly Temperature and Precipitation Extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; Zhang, D.-L.; Wu, M. Urbanization Enhanced Summertime Extreme Hourly Precipitation over the Yangtze River Delta. J. Clim. 2020, 33, 5809–5826. [Google Scholar] [CrossRef]
- Li, X.-F.; Blenkinsop, S.; Barbero, R.; Yu, J.; Lewis, E.; Lenderink, G.; Guerreiro, S.; Chan, S.; Li, Y.; Ali, H.; et al. Global Distribution of the Intensity and Frequency of Hourly Precipitation and Their Responses to ENSO. Clim. Dyn. 2020, 54, 4823–4839. [Google Scholar] [CrossRef]
- Darwish, M.M.; Tye, M.R.; Prein, A.F.; Fowler, H.J.; Blenkinsop, S.; Dale, M.; Faulkner, D. New Hourly Extreme Precipitation Regions and Regional Annual Probability Estimates for the UK. Int. J. Climatol. 2021, 41, 582–600. [Google Scholar] [CrossRef]
- Contractor, S.; Donat, M.G.; Alexander, L.V.; Ziese, M.; Meyer-Christoffer, A.; Schneider, U.; Rustemeier, E.; Becker, A.; Durre, I.; Vose, R.S. Rainfall Estimates on a Gridded Network (REGEN)–A Global Land-Based Gridded Dataset of Daily Precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci. 2020, 24, 919–943. [Google Scholar] [CrossRef]
- Charron, C.; St-Hilaire, A.; Ouarda, T.B.M.J.; van den Heuvel, M.R. Water Temperature and Hydrological Modelling in the Context of Environmental Flows and Future Climate Change: Case Study of the Wilmot River (Canada). Water 2021, 13, 2101. [Google Scholar] [CrossRef]
- Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. [Google Scholar] [CrossRef]
- Ghebreyesus, D.T.; Sharif, H.O. Development and Assessment of High-Resolution Radar-Based Precipitation Intensity-Duration-Curve (IDF) Curves for the State of Texas. Remote Sens. 2021, 13, 2890. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Yin, J.; Gu, L.; Xiong, F. Using the Global Hydrodynamic Model and GRACE Follow-On Data to Access the 2020 Catastrophic Flood in Yangtze River Basin. Remote Sens. 2021, 13, 3023. [Google Scholar] [CrossRef]
- Marzuki, M.; Suryanti, K.; Yusnaini, H.; Tangang, F.; Muharsyah, R.; Vonnisa, M.; Devianto, D. Diurnal Variation of Precipitation from the Perspectives of Precipitation Amount, Intensity and Duration over Sumatra from Rain Gauge Observations. Int. J. Climatol. 2021, 41, 4386–4397. [Google Scholar] [CrossRef]
- Silver, M.; Karnieli, A.; Fredj, E. Improved Gridded Precipitation Data Derived from Microwave Link Attenuation. Remote Sens. 2021, 13, 2953. [Google Scholar] [CrossRef]
- Tiwari, S.; Jha, S.K.; Singh, A. Quantification of Node Importance in Rain Gauge Network: Influence of Temporal Resolution and Rain Gauge Density. Sci. Rep. 2020, 10, 9761. [Google Scholar] [CrossRef]
- Silva, T.R.B.F.; Santos, C.A.C.d.; Silva, D.J.F.; Santos, C.A.G.; da Silva, R.M.; de Brito, J.I.B. Climate Indices-Based Analysis of Rainfall Spatiotemporal Variability in Pernambuco State, Brazil. Water 2022, 14, 2190. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Tapiador, F.J. Orographic Biases in IMERG Precipitation Estimates in the Ebro River Basin (Spain): The Effects of Rain Gauge Density and Altitude. Atmos. Res. 2020, 244, 105068. [Google Scholar] [CrossRef]
- Urban, G.; Strug, K. Evaluation of Precipitation Measurements Obtained from Different Types of Rain Gauges. Meteorol. Z. 2021, 30, 445–463. [Google Scholar] [CrossRef]
- Merino, A.; García-Ortega, E.; Navarro, A.; Fernández-González, S.; Tapiador, F.J.; Sánchez, J.L. Evaluation of Gridded Rain-gauge-based Precipitation Datasets: Impact of Station Density, Spatial Resolution, Altitude Gradient and Climate. Int. J. Climatol. 2021, 41, 3027–3043. [Google Scholar] [CrossRef]
- Ye, X.; Guo, Y.; Wang, Z.; Liang, L.; Tian, J. Extensive Evaluation of Four Satellite Precipitation Products and Their Hydrologic Applications over the Yarlung Zangbo River. Remote Sens. 2022, 14, 3350. [Google Scholar] [CrossRef]
- Yu, S.; Lu, F.; Zhou, Y.; Wang, X.; Wang, K.; Song, X.; Zhang, M. Evaluation of Three High-Resolution Remote Sensing Precipitation Products on the Tibetan Plateau. Water 2022, 14, 2169. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 355–373. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Peterson, P.; Landsfeld, M.; Davenport, F.; Becker, A.; Schneider, U.; Pedreros, D.; McNally, A.; Arsenault, K.; Harrison, L.; et al. Algorithm and Data Improvements for Version 2.1 of the Climate Hazards Center’s InfraRed Precipitation with Stations Data Set. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 409–427. [Google Scholar] [CrossRef]
- He, Q.; Yang, J.; Chen, H.; Liu, J.; Ji, Q.; Wang, Y.; Tang, F. Evaluation of Extreme Precipitation Based on Three Long-Term Gridded Products over the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3010. [Google Scholar] [CrossRef]
- Cavalcante, R.B.L.; da Silva Ferreira, D.B.; Pontes, P.R.M.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E.B. Evaluation of Extreme Rainfall Indices from CHIRPS Precipitation Estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 104879. [Google Scholar] [CrossRef]
- Nepal, B.; Shrestha, D.; Sharma, S.; Shrestha, M.S.; Aryal, D.; Shrestha, N. Assessment of GPM-Era Satellite Products’ (IMERG and GSMaP) Ability to Detect Precipitation Extremes over Mountainous Country Nepal. Atmosphere 2021, 12, 254. [Google Scholar] [CrossRef]
- Darand, M.; Siavashi, Z. An Evaluation of Global Satellite Mapping of Precipitation (GSMaP) Datasets over Iran. Meteorol. Atmos. Phys. 2021, 133, 911–923. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W.; Lu, D.; Liu, J.; Ren, L.; Hong, Y.; Zhang, J. Recent Global Performance of the Climate Hazards Group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J. Hydrol. 2020, 591, 125284. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, F.; Shi, C.; Zhao, C.; Zhang, L.; Ren, L.; Zhu, Y.; Jiang, S.; Liu, Y. Statistical Evaluation of the Latest GPM-Era IMERG and GSMaP Satellite Precipitation Products in the Yellow River Source Region. Water 2020, 12, 1006. [Google Scholar] [CrossRef]
- Aksu, H.; Akgül, M.A. Performance Evaluation of CHIRPS Satellite Precipitation Estimates over Turkey. Theor. Appl. Climatol. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Dewan, A.; Ismail, T.; Alias, N. Performance of Five High Resolution Satellite-Based Precipitation Products in Arid Region of Egypt: An Evaluation. Atmos. Res. 2020, 236, 104809. [Google Scholar] [CrossRef]
- Le, X.-H.; Lee, G.; Jung, K.; An, H.; Lee, S.; Jung, Y. Application of Convolutional Neural Network for Spatiotemporal Bias Correction of Daily Satellite-Based Precipitation. Remote Sens. 2020, 12, 2731. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Rahnamay Naeini, M.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.; Sorooshian, S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sens. 2020, 12, 2102. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Liu, J.; Wang, G. A Spatiotemporal Deep Fusion Model for Merging Satellite and Gauge Precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Moradkhani, H.; Zhang, X.; Hu, C. Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, H.; Jiang, Y.; Lu, X. A Method for the Optimized Design of a Rain Gauge Network Combined with Satellite Remote Sensing Data. Remote Sens. 2020, 12, 194. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente y Agua. Balance Hídrico Superficial de Bolivia (1980–2016): Documento de Difusión; MMAyA: La Paz, Bolivia, 2018. [Google Scholar]
- World Meteorological Organization. Guide to Hydrological Practices, 6th ed.; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Wickel, A.; Ghajarnia, N.; Yates, D.; Newman, A.; Escobar, M.; Purkey, D.; Lima, N.; Escalera, A.C.; von Kaenel, M. Developing a Gridded High-Resolution Gauge Based Precipiation Product for Bolivia. In Geophysical Research Abstracts; EGU: Vienna, Austria, 2019; p. 18457. [Google Scholar]
- Ureña, J.; Saavedra, O.; Kubota, T. The Development of a Combined Satellite-Based Precipitation Dataset across Bolivia from 2000 to 2015. Remote Sens. 2021, 13, 2931. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Craig, J.; Nijssen, B.; Wood, A.; Gutmann, E.; Mizukami, N.; Brekke, L.; Arnold, J.R. Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States. J. Hydrometeorol. 2015, 16, 2481–2500. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente y Agua. Programa Plurianual de Gestión Integrada de Recursos Hídricos y Manejo Integral de Cuencas 2013–2017; MMAyA: La Paz, Bolivia, 2014. [Google Scholar]
- Ministerio de Medio Ambiente y Agua. Programa Plurianual de Gestión Integrada de Recursos Hídricos y Manejo Integral de Cuencas 2017–2020; MMAyA: La Paz, Bolivia, 2017. [Google Scholar]
- Achá, N.A.; Saavedra, O.C.; Ureña, J.E. Modelación Hidrológica en la Cuenca del Río Rocha Incorporando Lineamientos de Caudal Ecológico. Investig. Desarollo 2022, 22. [Google Scholar] [CrossRef]
- Ureña, J.; Saavedra, O. Evaluation of Satellite Based Precipitation Products at Key Basins in Bolivia. Asia-Pac. J. Atmos. Sci. 2020, 56, 641–655. [Google Scholar] [CrossRef]
Altiplano Basin | Amazon Basin | La Plata Basin | Bolivia | |||||
---|---|---|---|---|---|---|---|---|
GSMaP | CHIRPS | GSMaP | CHIRPS | GSMaP | CHIRPS | GSMaP | CHIRPS | |
Determination Coefficient (R2) | 0.35 | 0.38 | 0.37 | 0.28 | 0.33 | 0.25 | 0.36 | 0.29 |
Correlation Coefficient (R) | 0.58 | 0.61 | 0.60 | 0.52 | 0.58 | 0.50 | 0.59 | 0.53 |
Accumulated Bias (mm) | 3933.9 | 3115.3 | 11,450.8 | 12,363.9 | 8181.3 | 8581.7 | 8573.2 | 9030.3 |
Relative Bias (%) | 9.14 | −7.91 | 5.56 | 1.55 | 12.49 | −3.92 | 6.78 | 0.29 |
Mean Absolute Error (MAE) | 0.65 | 0.52 | 1.90 | 2.05 | 1.36 | 1.42 | 1.42 | 1.50 |
Root Mean Square Error (RMSE) | 1.05 | 1.01 | 2.79 | 3.34 | 2.11 | 2.57 | 2.04 | 2.42 |
Nash and Sutcliffe Efficiency (NSE) | 0.69 | 0.72 | 0.76 | 0.66 | 0.71 | 0.57 | 0.80 | 0.72 |
Altiplano Basin | Amazon Basin | La Plata Basin | Bolivia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GS | CH | GMET | GS | CH | GMET | GS | CH | GMET | GS | CH | GMET | |
Determination Coefficient (R2) | 0.93 | 0.86 | 0.73 | 0.75 | 0.70 | 0.75 | 0.93 | 0.80 | 0.68 | 0.81 | 0.74 | 0.73 |
Correlation Coefficient (R) | 0.97 | 0.93 | 0.85 | 0.86 | 0.83 | 0.86 | 0.96 | 0.89 | 0.81 | 0.90 | 0.86 | 0.85 |
Accumulated Bias (mm) | 976.9 | 1336.7 | 1191.4 | 7478.5 | 7960.3 | 4810.9 | 2034.4 | 4035.0 | 4017.1 | 8573.2 | 6178.2 | 3390.2 |
Relative Bias (%) | −12.03 | −22.86 | −10.00 | −32.90 | −34.96 | 4.04 | −13.75 | −29.78 | −2.25 | −29.04 | −33.64 | 2.46 |
Mean Absolute Error (MAE) | 0.16 | 0.22 | 0.20 | 1.24 | 1.32 | 0.80 | 0.34 | 0.67 | 0.67 | 0.89 | 1.02 | 0.56 |
Root Mean Square Error (RMSE) | 0.28 | 0.42 | 0.43 | 2.03 | 2.16 | 1.31 | 0.66 | 1.21 | 1.30 | 1.43 | 1.60 | 0.91 |
Nash and Sutcliffe Efficiency (NSE) | 0.98 | 0.95 | 0.95 | 0.87 | 0.86 | 0.95 | 0.97 | 0.90 | 0.89 | 0.90 | 0.88 | 0.96 |
Rain Gauge | GSMaP | CHIRPS | GS | CH | |
---|---|---|---|---|---|
Determination Coefficient (R2) | 0.52 | 0.82 | 0.09 | 0.42 | 0.36 |
Correlation Coefficient (R) | 0.72 | 0.91 | 0.30 | 0.65 | 0.60 |
Mean Absolute Error (MAE) | 5.45 | 1.19 | 6.55 | 4.25 | 3.14 |
Root Mean Square Error (RMSE) | 9.88 | 2.79 | 12.44 | 8.55 | 6.23 |
Nash and Sutcliffe Efficiency (NSE) | −1.32 | 0.82 | −2.67 | −0.74 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saavedra, O.; Ureña, J. Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia. Remote Sens. 2022, 14, 4195. https://doi.org/10.3390/rs14174195
Saavedra O, Ureña J. Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia. Remote Sensing. 2022; 14(17):4195. https://doi.org/10.3390/rs14174195
Chicago/Turabian StyleSaavedra, Oliver, and Jhonatan Ureña. 2022. "Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia" Remote Sensing 14, no. 17: 4195. https://doi.org/10.3390/rs14174195
APA StyleSaavedra, O., & Ureña, J. (2022). Generation of Combined Daily Satellite-Based Precipitation Products over Bolivia. Remote Sensing, 14(17), 4195. https://doi.org/10.3390/rs14174195