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Abstract: With the completion of the BeiDou Global Navigation Satellite System (BDS-3), the multi-
system precise point positioning ambiguity resolution (PPP-AR) has been realized. The satellite
phase fractional cycle bias (FCB) is a key to the PPP-AR. Compared to the combined ionosphere-free
(IF) model, the undifferenced and uncombined (UDUC) model retains all the information from the
observations and can be easily extended to arbitrary frequencies. However, the FCB is difficult to
apply directly to the UDUC model. An observable-specific signal bias (OSB) can interact directly
with the original observations, providing complete flexibility for PPP-AR for multi-frequency multi-
GNSS. In this study, the OSB product generation for the GPS (G), Galileo (E), and BDS-3 (C) systems
is performed using 117 globally distributed multi-GNSS experiment (MGEX) stations, and their
performances are evaluated. Then, the PPP-AR comparison and analysis of the two positioning
models of the UDUC and IF are conducted. The results show that the stability of OSB products
of the three systems is better than 0.05 ns. For the precise point positioning (PPP) ambiguity fixed
solution, with comparable positioning accuracy and convergence time to the products of both the
Wuhan University (WUM) and the Centre National d’Etudes Spatials (CNES) institutions, an average
fixed-ambiguity rate is over 90%. Compared to the PPP float solution, the PPP-AR has the most
significant improvement in positioning accuracy in the E-direction. The average improvements in the
positioning accuracy under the IF and UDUC models in the static and kinematic modes are higher
than 45% and 40%, respectively. The convergence times of the IF and UDUC models are improved on
average by 48% and 60% in the static mode and by 40% and 55% in the kinematic mode, respectively.
Among the IF and UDUC positioning models, the former has slightly better positioning accuracy and
convergence time than the latter for the PPP float solution. However, both models have comparable
positioning accuracy and convergence time after the PPP-AR. The GCE multi-system combination
is superior to other system combinations. The average convergence time for the static PPP fixed
solution is 8.5 min, and the average convergence time for the kinematic PPP fixed solution is 16.4 min.

Keywords: fractional cycle bias; observable-specific signal bias; PPP-AR; combined ionosphere-free
model; undifferenced and uncombined model

1. Introduction

The Precise Point Positioning (PPP) technology requires only a single receiver to
achieve wide-area centimeter or even millimeter positioning accuracy. Due to this ad-
vantage, the PPP has been widely used in geodesy, crustal deformation monitoring, high
precision motion positioning, precision timing, atmospheric monitoring, and geodynam-
ics [1–12]. However, the fractional cycle bias (FCB) of a receiver and a satellite is absorbed
by the ambiguity parameter, which destroys the integer property of the ambiguity, causing
the ambiguity cannot be fixed and making the PPP positioning accuracy limited and the
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convergence time long. If the ambiguity degree can be correctly fixed, the PPP positioning
accuracy can be significantly improved, and the convergence time can be significantly
reduced. Therefore, in recent years, the PPP-related research has gradually shifted from
float to fixed ambiguity PPP. A method for fixing the PPP ambiguity has become one of the
research hotspots in the field of precise positioning.

The key to the fixed-ambiguity PPP is to separate the FCB of the receiver and satellite
effectively, thereby restoring the integer nature of the ambiguity. Ge et al. [13] accurately es-
timated the FCB using the inter-satellite single difference model from 450 reference stations
worldwide and achieved the fixed-ambiguity PPP at the user end, and also significantly
improved the positioning accuracy in the E-direction. Based on the work of Ge, Geng [14]
introduced the least-squares ambiguity decorrelation adjustment (LAMBDA) [15] algorithm
for searching undifferenced narrow-lane ambiguity to obtain an integer solution. Compared
with the static PPP float solution, the three-dimensional accuracy of the fixed-ambiguity
PPP was improved by 68%. Zhang and Li [16] thoroughly analyzed the ambiguity fixing
method of undifferenced PPP. By introducing the FCB datum, the single-difference FCB was
reduced to the undifferenced FCB, and the phase fractional bias estimation method of the
undifferenced model was proposed, obtaining the ambiguity resolution of undifferenced
PPP. Different from the FCB method, Laurichesse [17] proposed the integer-recovery clock
(IRC) method from the perspective of clock-difference estimation, which uses the satellite
clock difference to absorb the narrow-lane FCB at the satellite end, thus recovering the inte-
ger property of undifferenced ambiguity and achieving undifferenced ambiguity resolution
for PPP. In addition, Collins et al. [18] proposed the decoupled clock (DC) method based on
the IRC method to estimate the pseudorange clock difference and phase clock difference.
In this method, the carrier phase ambiguity was no longer affected by the pseudorange
hardware delay. Moreover, the undifferenced integer ambiguity was successfully fixed.
Geng [19] and Shi [20] compared the methods of Ge, Laurichesse, and Collins in detail
and proved their theoretical equivalence. In recent studies, the mentioned methods have
been improved and expanded to solve the problem of phase hardware delay. Geng [21]
proposed the models of phase clock error and phase bias, where the wide lane and phase
bias were estimated as only one set of values in a single day. Compared with the traditional
FCB model, the positioning accuracy of this method was improved by 20% in the east
direction. Qi et al. [22] proposed an improved fast FCB estimation method, which reduces
the computing time of traditional methods and improves the computational efficiency by
35%. Xiao et al. [23] proposed a Kalman filter-based FCB estimation method to process
the collected data on a time-by-time basis, which reduced the matrix dimensionality and
improved the FCB calculation speed significantly.

The combination of multi-GNSS observations can significantly increase the number
of visible satellite observations and enhance the strength of spatial geometry. It has been
demonstrated that the fusion of multi-GNSS observations can simultaneously improve the
convergence speed, positioning accuracy, and reliability of PPP [24–28]. On this basis, a
large number of in-depth studies on the fixed solution of multi-GNSS combinatorial PPP
have been conducted. The GPS PPP AR was extended to the GLONASS [29–31], BDS [32,33],
Galileo [34,35], and multi-GNSS [36]. The above approaches are all based on the combined
ionosphere-free (IF) model for PPP-AR. However, due to the increasing number of GNSS
signals and observations and the need to obtain more available information, a great interest
in uncombined positioning models has been shown in recent years, and these models
have been thoroughly studied. To address the problem that traditional FCB and integer
clock correction methods are difficult to apply directly to uncombined models, Schaer [37]
and Villiger et al. [38] proposed observable-specific signal bias (OSB) products, which
can directly interact with the original observations without requiring the user end to
consider the mathematical model and presentation of the server-generated products. This
innovation has greatly facilitated the PPP-AR development, allowing users to use multi-
frequency observations and different mathematical models for PPP-AR. Laurichesse and
Banville [39,40] have shown that users can fix ambiguity using OSB products. Liu [41] used
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the tri-frequency GPS observations provided by MGEX stations for OSB estimation and
UDUC PPP ambiguity resolution. Liu [42] analyzed the multi-frequency, multi-system
PPP-AR based on the undifferenced and uncombined positioning model using real-time
products from CNES.

Compared to the IRCs and DC methods, the FCB model has the advantages of sim-
plicity and consistency with the current datum of clock differences at each analysis center.
Therefore, a single epoch FCB estimation method has been proposed; the phase fractional
cycle bias has been estimated for BDS-3, GPS, and Galileo systems, and OSB conversion
has been conducted. In addition, a few studies on the IF and UDUC ambiguity resolution
have been conducted.

Motivated by the previous work, this paper presents an analytical study of the PPP-AR
for two positioning models based on the generated OSB products. Particularly, the relation-
ship between the hardware delays is analyzed, and the UDUC and IF models of the PPP
are derived from the original observation equations, indicating the reasons why the undif-
ferenced ambiguity cannot be fixed. In addition, the method for estimating a single-epoch
FCB is presented, and the conversion relationship between the FCB and the OSB product
is given. Further, the stability and accuracy of the generated OSB products are analyzed.
Furthermore, the OSB performance is verified by the PPP-AR experiments with different
system combinations, and the IF and UDUC positioning models are comprehensively
analyzed. Finally, the research results of this paper are discussed and summarized.

2. Methods
2.1. Undifferenced and Uncombined Observation Equations

In general, the original pseudorange and carrier phase observation equations can be
expressed as follows:

Ps
r,i = ρs

r + dtr − dts + ms
r · Zr + µi · Is

r,1 + br,Pi − bs
Pi
+ es

r,i (1)

Ls
r,i = ρs

r + dtr − dts + ms
r · Zr − µi · Is

r,1 + br,Li − bs
Li
+ λi · Ns

r,i + εs
r,i (2)

where s is the satellite; r is the receiver; i is the frequency number; P and L represent
the pseudorange and carrier phase observations, respectively; ρ is the geometric distance
between the satellite and the receiver; dtr and dts are the receiver and satellite clock errors
expressed in meters, respectively; ms

r is the mapping function of the tropospheric wet delay;
Zr represents the tropospheric wet delay in the zenith direction of the receiver, and the
zenith tropospheric dry delay is corrected using the Saastamoinen model; µi represents
the ionospheric influence factor, Is

r,1 represents the L1 frequency slant path ionospheric
delay; λi is the wavelength of the i frequency; Ns

r,i is the carrier phase ambiguity; br,∗ and
bs
∗ are the hardware delays at the receiver and satellite ends, respectively; e and ε denote

the observation noise and unmodelled error corresponding to the pseudorange and carrier
phase observations, respectively.

The GNSS observations are affected by error terms, including the antenna phase center
offset and variation, phase wind-up, relativistic effects, and tidal correction. It is assumed
that the mentioned errors have been corrected in advance using the correction models
presented in the relevant literature [43].

For convenience, the following expressions are defined:
αIFij =

f 2
i

f 2
i − f 2

j
, β IFij = −

f 2
j

f 2
i − f 2

j
, µi =

f 2
1

f 2
i

, αIFij + β IFij = 1

DCBs
ij = bs

Pi
− bs

Pj
, DCBr,ij = br,Pi − br,Pj

δDPBs
ij = δbs

Li
− δbs

Lj
, δDPBr,ij = δbr,Li − δbr,Lj

bs
∗IFij

= αIFij b
s
∗i
+ β IFij b

s
∗j

, br,∗IFij = αIFij br,∗i + β IFij br,∗j

(3)

where αIFij and β IFij denote the ionosphere-free combination factors; DCBs
ij and DCBr,ij are

satellite and receiver differential code biases, respectively; δDPBs
ij and δDPBr,ij represent
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satellite and receiver differential time-varying phase biases, respectively; bs
∗IFij

and br,∗IFij

denote ionosphere-free combinations of satellite and receiver hardware biases, respectively.
For specific pseudorange and phase hardware delays, the pseudorange hardware

delay is generally considered relatively stable, with only small variations throughout the
day. The pseudorange hardware delay can be divided into frequency-dependent and
frequency-independent components, which can be expressed as follows:{

br,P1 = a1 + b1
br,P2 = a1 + µ2 · b1

⇒
{

a1 = br,PIF12

b1 = β IF12 · DCBr,12
(4)

{
bs

P1
= a2 + b2

bs
P2

= a2 + µ2 · b2
⇒
{

a2 = bs
PIF12

b2 = β IF12 · DCBs
12

(5)

where a1 is the frequency-independent term absorbed by the receiver clock difference at
the receiver end, and b1 is the frequency-dependent term absorbed by the ionosphere; a2 is
the frequency-independent term absorbed by the satellite clock difference at the satellite
end, and b2 is a frequency-dependent term that can be corrected directly by the differential
code bias (DCB) product.

In contrast, the phase hardware delay has a distinctly time-varying character and can
be decomposed into a constant component and a time-varying component as follows:{

br,L∗ = ∆br,L∗ + δbr,L∗
bs

L∗ = ∆bs
L∗ + δbs

L∗
(6)

where “*” is a wildcard representing “1,” “2,” and “IF” corresponding to raw L1, raw L2,
and ionosphere-free combination, respectively; ∆ and δ denote the non-time-varying and
time-varying parts of the hardware delay, respectively; the constant parts ∆br,L∗ and ∆bs

L∗
are absorbed by the ambiguity.

As with the pseudorange hardware delay, the time-varying part can be subdivided
into frequency-dependent and frequency-independent components. Assuming that at the
receiver end, c1 is the frequency-independent part absorbed by the receiver clock difference,
and d1 is the frequency-dependent part absorbed by the ionosphere, and at the satellite
end, c2 is the frequency-independent part absorbed by the satellite clock difference, and
d2 is the frequency-dependent part absorbed by the ionosphere, it can be written that:{

δbr,L1 = c1 − d1
δbr,L2 = c1 − µ2 · d1

⇒
{

c1 = δbr,LIF12

d1 = −β IF12 · δDPBr,12
(7)

{
δbs

L1
= c2 − d2

δbs
L2

= c2 − µ2 · d2
⇒
{

c2 = δbs
LIF12

d2 = −β IF12 · δDPBs
12

(8)

Linearizing Equations (1) and (2) yields:

Ps
r,i = us

r · x + dtr,P − dts
P + ms

r · Zr + µi · I
s
r,1 + δgs

r,i + es
r,i (9)

Ls
r,i = us

r · x + dtr,P − dts
P + ms

r · Zr − µi · I
s
r,1 + λi · N

s
r,i + εs

r,i (10)

where 

Ps
r,1 = Ps

r,1 + β IF12 · DCBs
12

Ps
r,2 = Ps

r,2 − αIF12 · DCBs
12

dts
P = dts + bs

PIF12
+ δbs

LIF12
dtr,P = dtr + br,PIF12 + δbr,LIF12

Is
r,1 = Is

r,1 + β IF12 · DCBr,12 + β IF12 · (δDPBr,12 − δDPBs
12)

Ns
r,i = Ns

r,i + (∆br,Li − ∆bs
Li
− br,PIF12 + bs

PIF12
− µi · β12 · DCBr,12)/λi

δgs
r,i = −µi · β12 · (δDPBr,12 − δDPBs

12)− δbr,LIF12 + δbs
LIF12

(11)
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where us
r denotes the directional cosine of the receiver-satellite linkage; x is the number

of 3D coordinate corrections; dts
P represents the classical satellite clock difference product

provided by the IGS.
As shown in Equation (11), the precise satellite clock difference also contains the

time-varying components of the dual-frequency pseudorange hardware delay and the
phase hardware delay. In Equation (11), δgs

r,i is the composite of the time-varying parts of
the unparameterized satellite and receiver phase hardware delays, absorbed by the pseu-
dorange residuals. The magnitude of δgs

r,i is relatively small compared to the pseudorange
observation noise, so its effect can be ignored.

Based on Equations (9) and (10), the undifferenced and uncombined GNSS observation
equations can be developed, and the vector consisting of parameters to be estimated for
the dual-frequency observations of the model is expressed as:

X =
[
x, dtr,P, Zr, Is

r,1, Ns
r,1, Ns

r,2

]
(12)

When n satellites are continuously observed, the number of the corresponding ob-
servation equations is 4n, the number of parameters to be estimated is (5 + 3n), and the
number of degrees of freedom is (n − 5); then, at least five observable satellites are needed
to initialize the parameters.

2.2. Combined IF Observation Equations

To eliminate the effect of the first-order ionospheric term, according to Equations (9) and (10),
the pseudorange and carrier phase observation equations of the IF combination model can be
respectively expressed as follows:

Ps
r,IF = αIF12 Ps

r,1 + β IF12 Ps
r,2

= us
r · x + dtr,P − dts

P + ms
r · Zr + (−δbr,LIF12

+ δbs
LIF12

) + es
r,IF

(13)

Ls
r,IF12

= αIF12 Ls
r,1 + β IF12 Ls

r,2
= us

r · x + dtr,P − dts
P + ms

r · Zr + λIF12 · N
s
r,IF12

+ εs
r,IF12

(14)

where
Ns

r,IF12
= Ns

r,IF12
+ (∆br,LIF12

− ∆bs
LIF12
− br,PIF12

+ bs
PIF12

)/λIF12 (15)

The meaning of the symbols in Equations (1) and (2) is the same. The vector consisting
of parameters to be estimated for the combined IF model is expressed as:

X =
[
x, dtr,P, Zr, Ns

r,IF12

]
(16)

Therefore, when n satellites are continuously observed, the number of the correspond-
ing observation equations is 2n, the number of parameters to be estimated is (5 + n), and
the number of degrees of freedom is (n − 5); then, at least five observable satellites are
needed to initialize the parameters.

For the Global Positioning System (GPS), the combined wavelength without iono-
sphere is given by [44]:

λIF12 · N
s
r,IF12

= αIF12 λ1 · Ns
r,1 + β IF12 λ2 · Ns

r,2 =
77λ1

772 − 602 (77Ns
r,1 − 60Ns

r,2) (17)

where λIF12 = 77λ1
772−602 is the actual wavelength of an IF combination, and it is approximately

6.3 mm.
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Because the wavelengths of IF combinations are so short, they are generally divided
into wide and narrow lane combinations. After the wide lane ambiguity Ns

r,w has been
fixed to an integer and substituted into Equation (14), the following expression is obtained:

Ls
r,IF12

= us
r · x + dtr,P − dts

P + ms
r · Zr + λn · Ns

r,1 + br,n − bs
n + εs

r,IF12
(18)

where 
Ls

r,IF12
= Ls

r,IF12
+ β IF12 λ2 · Ns

r,w
br,n = ∆br,LIF12

− br,PIF12
bs

n = ∆bs
LIF12
− bs

PIF12

(19)

The (−δbr,LIF12
+ δbs

LIF12
) term in Equation (13) can be absorbed by the residual term,

so Equations (13) and (18) can be simplified as follows:{
Ps

r,IF = us
r · x + dtr,P − dts

P + ms
r · Zr + es

r,IF
Ls

r,IF = us
r · x + dtr,P − dts

P + ms
r · Zr + λn · Ns

r,1 + br,n − bs
n + εs

r,IF
(20)

2.3. FCB Estimation and FCB-OSB Conversion

As mentioned before, the FCB can be generally decomposed into a wide-lane (WL)
FCB and a narrow-lane (NL) FCB for estimation when a server uses the combined IF model
to solve the FCB. To calculate the WL- and NL-FCBs, it is necessary to obtain accurate float
ambiguities for WL and NL.

The WL float ambiguity can be resolved by the Hatch–Melbourne–Wübbena (HMW)
combination observable and multi-epoch smoothing to attenuate the effect of pseudorange
noise and improve estimation accuracy. The calculation formula of the HMW combination
is as follows:

Ls
r,w =

f1Ls
r,1− f2Ls

r,2
f1− f2

− f1Ps
r,1+ f2Ps

r,2
f1+ f2

= λw(
Ls

r,1
λ1
− Ls

r,2
λ2

)− λn(
Ps

r,1
λ1

+
Ps

r,2
λ2

)

= λwNs
r,w + λw(

br,L1−bs
L1

λ1
−

br,L2−bs
L2

λ2
)− λn(

br,P1−bs
P1

λ1
+

br,P2−bs
P2

λ2
)

= λwNs
r,w + br,w − bs

w

(21)

where br,w = λw(
br,L1
λ1
− br,L2

λ2
)− λn(

br,P1
λ1

+
br,P2
λ2

)

bs
w = λw(

bs
L1

λ1
−

bs
L2

λ2
)− λn(

bs
P1

λ1
+

bs
P2

λ2
)

(22)

The WL float ambiguity in Equation (21) is expressed by (Ns
r,w + br,w

λw
− bs

w
λw

).
After the WL ambiguity is fixed, it can be substituted into Equation (20) to obtain

the narrow lane float ambiguity (Ns
r,1 +

br,n
λn
− bs

n
λn
). Based on Equations (20) and (21), for

a continuous observation arc, the float ambiguity of both wide and narrow lanes can be
expressed in the following form:

Rs
r = Ñs

r − Ns
r = Br − Bs (23)

where Rs
r is the fractional part of the float ambiguity; Ñs

r represents the undifferenced float
ambiguity; Ns

r represents the integer part of the float ambiguity Ñs
r ; Br =

br
λ∗

is the receiver
end’s FCB, and Bs = bs

λ∗
is the satellite end’s FCB.
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If m satellites are observed by a network of n stations, then the float ambiguity of each
station-satellite continuum of the arc should be combined to construct the following system
of equations: 

R1
1

...
Rm

1
R1

2
...

Rm
2
...

R1
n
...

Rm
n



=



1 0 · · · 0 −1 · · · 0

1 0
. . . 0 0 · · · −1

0 1 · · · 0 −1 · · · 0

0 1 · · · 0 0 · · · −1
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 −1 · · · 0

0 0 · · · 1 0 · · · −1





Br,1
Br,2

...
Br,n
B1

s
B2

s
...

Bm
s


(24)

Since the FCBs of the receiver and satellite ends are linearly correlated through the
one-to-one relationship, and Equation (24) has a rank loss of one, the zero-mean constraint
is selected as a datum constraint in this study, which can be expressed as follows.

0 = B1
s + B2

s + · · ·+ Bm
s (25)

With the increase in the user demand for real-time fixed ambiguity and the stan-
dardization of data formats by the International Radio Technical Committee for Maritime
Services (RTCM) Working Group 104, the fractional cycle biases of the wide and narrow
lanes have evolved into the phase biases of each frequency to provide real-time data for
users to achieve fixed-ambiguity PPP. According to Equation (22), the fractional cycle bias
of the satellite end’s wide lane has the following form:

bs
w = −αn · bs

P1
− βn · bs

P2
+ αw · bs

L1
+ βw · bs

L2
(26)

From Equations (19) and (26), the fractional cycle bias and the observable-specific
signal bias of the satellite can be converted to each other as follows:


DCBP1P2

DCBP1C1
0

bs
wl

bs
nl

 =


1 −1 0 0 0
1 0 −1 0 0

αIF β IF 0 0 0
−αnl −βnl 0 αwl βwl
−αIF −β IF 0 αIF β IF




b̂s
P1

b̂s
P2

b̂s
C1

b̂s
L1

b̂s
L2

 (27)

where αnl =
f1

f1+ f2
, αwl =

f1
f1− f2

, αIF =
f 2
1

f 2
1− f 2

2
, and β∗ = 1− α∗; “*” denotes subscripts “nl”,

“wl”, and “IF”; b̂s
C1

is the pseudorange hardware delay for the C1 code on the satellite end.
Once the server has successfully estimated the WL- and NL-FCBs for the BDS-3/GPS/Galileo

system, the FCB can be converted to the OSB at each frequency using Equation (27). The OSB prod-
uct at each frequency point is added directly to the original observations into Equations (9) and (10)
using the client, which yields: {

P̂s
r,i = Ps

r,i + b̂s
Pi

L̂s
r,i = Ls

r,i + b̂s
Li

(28)

The ambiguity-fixed solution can be obtained by the IF combination model or the
UDUC model. The specific flowchart is shown in Figure 1.
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A single-epoch FCB estimation method is proposed in this study. The specific steps
of the proposed method are as follows. First, a combined IF PPP solution is obtained for
each reference station using the fixed coordinates to obtain the IF float ambiguity and the
WL float ambiguity files. Next, the WL- and NL-FCBs are estimated by the FCB estimation
module, where the WL-FCB is stable over a day, so one value is estimated per day, but the
NL-FCB is estimated for each epoch. For multi-system FCB estimation, the FCBs of WL
and NL are estimated in a system-by-system manner to reduce the computational load.
The FCB product introduces the DCB for datum constraints to generate the OSB products,
which includes the phase bias for each frequency. It should be noted that to improve the
robustness and accuracy of a solution, the IGG3 [45] anti-variance method is added to the
least squares estimation for calculation. For the WL-FCB, an arc segment with a continuous
observation time of not less than 45 min is selected for smoothing to obtain the WL floating
ambiguity. Then, the least squares equation is derived to obtain the initial value of the
WL-FCB. The back-substitution equation removes residuals with absolute values greater
than 0.25 cycles of the WL ambiguity. Next, the residuals are edited, and the least squares
calculation is re-run until the absolute values of the residuals for the FCB are less than
0.25 cycles or the number of iterations is greater than 10 to obtain the WL-FCB. For the
NL-FCB, the first epoch is performed in a similar way to the WL-FCB estimation method.
In the second epoch, the NL-FCB is estimated using the NL-FCB of the previous epoch
as the initial value for residual editing and performing the least squares estimation. Due
to the stability property of the FCB between adjacent epochs, the number of least squares
iterations is significantly reduced for the second epoch of the FCB estimation, as well as for
the following epochs, which can increase the speed of the FCB estimation. Except for the
first epoch, the NL-FCB estimation process does not require the initial value calculation
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and can proceed directly to the least squares estimation step. Only one NL-FCB value is
estimated per epoch. This method can also be used for real-time FCB estimation.

The OSB products obtained by Equation (27) for all frequencies are added directly
to the original observations, and the ambiguity-fixed solution can be solved using the
combined IF model or the uncombined model. For the combined IF model, as shown in
the flowchart in Figure 1, the integer ambiguity of the WL is combined with the IF floating
ambiguity to obtain the floating ambiguity of the NL. Then, the ambiguity of the NL is
obtained by the LAMBDA method, and the fixed solution is obtained by constraining the
normal equation. For the UDUC combination, ambiguities N1 and N2 are not calculated
directly; namely, N2 is expressed based on N1 and Nw through the relationship among N1,
N2, and Nw. When the integer ambiguity of the WL is obtained, a more accurate N1 floating
ambiguity is obtained by constraining the constraint equation. Finally, the ambiguity of N1
is obtained by the LAMBDA method, and the fixed solution is calculated by constraining
the normal equation.

3. Results
3.1. Station Distribution and Processing Strategy

Observations from 117 MGEX stations with a sampling interval of 30 s were selected
to estimate the OSB products of the BDS-3, GPS, and Galileo systems from DOY 300 to
306 days in 2021. The accuracy of the OSB products was assessed in terms of the OSB time
series, residual distribution, and fixed ambiguity. Twenty-two MGEX stations were selected
for the user-end experimental validation. The distribution of MGEX stations is shown in
Figure 2, where blue dots denote the reference stations used in the BDS-3/GPS/Galileo
OSB estimation, and red triangular dots represent the reference stations used in the user
end ambiguity fixed verification. As mentioned above, the PPP solution was obtained for
each station to achieve the floating ambiguity file required for the OSB calculation. Table 1
shows the PPP solution strategy and the frequency information for each system.
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Table 1. The PPP solution strategy and frequency parameters for each system.

Item Setting

Observation GPS (G): L1&L2; Galileo (E): E1&E5a; BDS-3
(C): B1I&B3I

Orbit, clock, and ERP CODE final products

DCB Corrected for using Chinese Academy of
Sciences (CAS) products

PCO/PCV IGS14 atx(G/C), M20.atx(E)
Phase wind-up Model correction

Tropospheric delay Saastamoinen + GPT2w + Estimate
Ionospheric delay IF model; Estimated as a random walk process

Receiver clock error Estimated as a white noise process; one
receiver clock per constellation

Elevation mask angle 10◦

Stochastic model Elevation model
Solid tide, extreme tide, and ocean tide Model correction

Phase ambiguity Partial ambiguity fixing

Parameter estimation method

Extended Kalman Filter
(constrained station coordinates (X, Y, and Z
from SINEX (Solution INdependent EXchange

Format) file))

3.2. Analysis of Experimental Results for OSB Products

The multi-system OSB products were generated by the software developed by the
Chinese Academy of Surveying and Mapping (CASM). The plots of the OSB products at
all frequencies obtained by DOY 301 in 2021 are presented in Figures 3–5; to distinguish
satellites, they were arranged from bottom to top according to the satellite number, with
0.2 ns spacing between satellites. As shown in Figures 3 and 4, the phase bias on each
frequency of the GPS and Galileo systems varied relatively smoothly throughout the day.
The E14 and E18 satellites were excluded from the OSB estimation since the number of
epochs in the continuous arc segment did not reach the preset threshold. The average
STD values for the L1 and L2 frequencies of all GPS satellites were 0.014 ns and 0.018 ns,
respectively, as shown in Table 2; the average STD values for the E1 and E5a frequencies
of the Galileo satellites were 0.014 ns and 0.019 ns, respectively. The average STD of the
phase bias at each frequency was slightly larger for the BDS-3 system than for the other two
systems. The average STD values for B1I and B3I frequencies were 0.035 ns and 0.043 ns,
respectively. Overall, the stability of the phase bias products was significantly better than
0.05 ns at each frequency for all three systems.
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Table 2. Average STD values of the BDS-3/ GPS/ Galileo’s OSB for DOY 301, 2021.

System BDS-3 GPS Galileo

Frequency B1I B3I L1 L2 E1 E5a
STD (ns) 0.035 0.043 0.014 0.018 0.014 0.019

The residual distribution of the FCB estimates was used as one of the criteria for
testing the quality of the FCB product. Figures 6 and 7 show the distributions of residuals
for the GPS, Galileo, BDS-3 systems for the WL-and NL-FCBs, respectively. The probability
that the residuals of the three systems’ WL-FCBs fall within ±0.25 cycles was better than
96%, indicating that most of the WL ambiguities could be reliably repaired. For the BDS-3,
GPS, and Galileo systems, the percentage values of NL residuals within ±0.25 cycles were
96%, 97%, and 97%, and 94%, 95%, and 95% within ±0.15 cycles, respectively. In addition,
the mean values of the residuals for all three systems were close to zero for both WL- and
NL-FCBs, which further verified the reliability of the FCB results.
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3.3. Analysis of Positioning Accuracy and Convergence Performance of Different
Institutional Products

To verify the usability of the OSB products from the Chinese Academy of Surveying
and Mapping (CASM), they were compared with the OSB products post-processed by the
CNES (based on GFZ rapid orbit/clock solutions) and the OSB products provided by the
PRIDE Lab at Wuhan University. For the purpose of brevity, “CASM_OSB”, “GBM_OSB”,
and “WUM_OSB” denote the OSB products from the Chinese Academy of Surveying and
Mapping, CNES, and PRIDE Lab, respectively. It should be noted that in PPP ambiguity
resolution, the same precise orbit and clock products were used as on the service to
ensure product consistency. The CASM_OSB product corresponded to the center for orbit
determination in Europe’s (CODE) precise orbit and clock products, the GBM_OSB product
corresponded to the GeoForschungsZentrum’s (GFZ) rapid orbit and clock products, and
the WUM_OSB product corresponded to the precise orbit of the Wuhan Analysis Centre
and precise clock products generated by the PRIDE Lab. Detailed information on the OSB
products is shown in Table 3.

This section compares in detail the differences in the PPP-AR for the OSB products of
the three institutions. Figures 8 and 9 show GPS static and kinematic average positioning
errors for seven days at 22 stations using products from different institutions. In the static
mode, daily observables were separated into six four-hour-long observable sessions for
experiments. In addition, the average convergence time and the success rate of fixed
ambiguity were also evaluated. The convergence time criterion adopted in this study
referred to 20 consecutive epochs with fixed ambiguity and positioning accuracy of better
than 10 cm in the E, N, and U directions. The fixed ambiguity success rate referred to
the percentage rate of the number of epochs whose ambiguity was correctly fixed to the
number of all epochs. Unless stated otherwise, results were evaluated based on the above
assessment indicators. Due to the space limitation, only the float and fixed PPP solutions
for the IF model are presented in this section.
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Table 3. Overview of the OSB products (The websites were accessed on 20 April 2022).

Institution Orbit Clock Website for
OSB Products

CASM (CASM_OSB) CODE’s precise orbit CODE’s precise clock Not released yet

CNES (GBM_OSB) GFZ’s rapid orbit GFZ’s rapid clock

ftp://ftp.ppp-wizard.
net/PRODUCTS/

POST_PROCESSED/
(accessed on

20 April 2022)

WUM (WUM_OSB) WUM’s precise orbit WUM_PRIDE’s
precise clock

ftp://igs.gnsswhu.
cn/pub/whu/

phasebias/xxxx/
bias/ (accessed on

20 April 2022)
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Regardless of the mode type, static or kinematic mode, the PPP-AR of the OSB products
of the three institutions could improve the accuracy of the PPP solution and shorten
the convergence time. In addition, it was proved that the positioning accuracy of fixed-
ambiguity PPP in the E direction was improved most significantly. Specifically, as shown
in Table 4, in GPS static mode, the CASM_OSB improved the E-direction by 50% (from
1.0 cm to 0.5 cm) and reduced the convergence time by 47% (from 33.0 min to 17.4 min).
The GBM_OSB improved the E-direction by 44% (from 0.9 cm to 0.5 cm) and reduced the
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convergence time by 52% (from 32.5 min to 15.5 min). The WUM_OSB improved in the
E-direction by 44% (from 0.9 cm to 0.5 cm) and reduced the convergence time by 37% (from
24.2 min to 15.2 min). The average fixed ambiguity success rates for the three institutions
were 91%, 91%, and 91%; thus, they were all above 90%. In the GPS kinematic mode,
the CASM_OSB improved the E-direction by 49% (from 2.3 cm to 1.2 cm) and reduced
the convergence time by 47% (from 58.8 min to 31.2 min). The GBM_OSB improved the
E-direction by 48% (from 2.1 cm to 1.1 cm) and reduced the convergence time by 56% (from
57.0 min to 25.2 min). Finally, the WUM_OSB improved in the E-direction by 50% (from
2.0 cm to 1.0 cm) and reduced the convergence time by 48% (from 46.0 min to 23.8 min).
The average ambiguity fixed success rates for the three institutions were 93%, 94%, and
93%; they were all above 90%.

Table 4. The RMS results of positioning error and convergence time of the GPS-only and GCE
float/fixed PPP static (left) and kinematic (right) of different institutions on DOY 300-306, 2021, for
22 stations.

Static Kinematic

E (cm) N (cm) U (cm) T (min) E (cm) N (cm) U (cm) T (min)

G

CASM
Float 1.0 0.5 1.4 33.0 2.3 1.5 3.9 58.8
Fixed 0.5 0.4 1.3 17.4 1.2 1.1 3.3 31.2

CNES
Float 0.9 0.4 1.4 32.5 2.1 1.5 3.8 57.0
Fixed 0.5 0.4 1.3 15.5 1.1 1.1 3.1 25.2

WUM
Float 0.9 0.5 1.3 24.2 2.0 1.5 3.7 46.0
Fixed 0.5 0.5 1.3 15.2 1.0 1.1 3.0 23.8

GCE

CASM
Float 0.7 0.5 1.4 15.5 1.4 0.9 2.9 22.9
Fixed 0.4 0.4 1.3 7.8 0.8 0.8 2.7 16.4

CNES
Float 0.7 0.4 1.4 14.0 1.5 1.0 3.1 21.5
Fixed 0.5 0.4 1.3 9.0 0.8 0.8 2.7 16.0

WUM
Float 0.7 0.5 1.3 13.5 1.3 0.9 2.7 18.3
Fixed 0.4 0.4 1.3 6.0 0.7 0.7 2.3 15.5

As shown in Table 4, the CASM’s OSB products were comparable in terms of perfor-
mance to those of the CNES and WUM institutions and can be used in the user end PPP-AR.

3.4. Comparative Analysis of Positioning Accuracy and Convergence Time Based on CASM’s
Product under IF and UDUC Models

To illustrate the stability of different systems and positioning model CASM_OSB
products for the PPP-AR, the static and kinematic positioning errors of the YEL2 station
DOY 301 are presented in Figures 10 and 11, respectively. In Figures 10 and 11, the left panel
shows the IF model, and the right panel shows the UDUC model. The results demonstrate
that regardless of the used model, the IF model or the UDUC model, the GCE multi-system
PPP-AR in the static and kinematic modes had the smoothest positioning accuracy, followed
by the GE and GC, with a single GPS being worse than the first three. In the kinematic
mode, the 3D RMS values corresponding to the IF models GCE, GE, GC, and G were 1.3 cm,
1.5 cm, 1.6 cm, and 1.6 cm, with the convergence times of 9.0 min, 12.0 min, 10.0 min, and
23.0 min, respectively. The 3D RMS values corresponding to the UDUC models GCE, GE,
GC, and G were 1.3 cm, 1.5 cm, 1.5 cm, and 1.6 cm, with the convergence times of 8.5 min,
10.5 min, 14.0 min, and 25.0 min, respectively. In the static mode, the convergence times
corresponding to the IF models GCE, GE, GC, and G were 2.8 min, 3.7 min, 4.3 min, and
6.0 min, respectively. The convergence times corresponding to UDUC models GCE, GE,
GC, and G were 3.2 min, 3.7 min, 5.5 min, and 6.8 min, respectively. The convergence times
of the GCE multi-system for the IF model and the UDUC model were both reduced by a
factor of two compared to a single GPS system.
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To analyze the advantages of different system IF models and the UDUC model PPP-AR
further, seven-day data from all stations were processed to calculate the average solution
for all stations and days. The PPP-AR positioning accuracy and convergence time for
different systems’ IF and UDUC models were calculated. As shown in Figure 12 (static) and
Figure 13 (kinematic), the PPP-AR positioning accuracy and convergence time results for
different systems were comparable under both models. The GCE multi-system performed
best in terms of both the positioning accuracy and the convergence time, and it was followed
by the GE and GC systems, while the single-GPS performs worse than the dual (GC, GE)
and triple (GCE) systems in terms of positioning accuracy and convergence time. The fixed
ambiguity success rate has been one of the commonly used metrics for the evaluation of
OSB product performance and positioning models. To save space, only the GCE system’s
static and kinematic fixed ambiguity success rates for the IF model and the UDUC model are
given in Figures 14 and 15. The static mode was 95% and 95%, respectively; the kinematic
mode was 97% and 96%, respectively, thus further demonstrating the equivalence of the IF
model and the UDUC model under PPP-AR.
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For quantitative analysis, the average positioning error and convergence time of the
PPP and PPP-AR for different systems under the IF and UDUC models for both static and
kinematic modes are given in Tables 5 and 6, respectively.

Table 5. The RMS results of position differences and convergence time of the IF model (left) and the
UDUC model (right) G, GC, GE, and GCE static float/fixed PPP on DOY 300-306, 2021, for 22 stations.

IF UDUC

E (cm) N (cm) U (cm) T (min) E (cm) N (cm) U (cm) T (min)

G
Float 1.0 0.5 1.4 33.0 1.3 0.6 1.5 46.9
Fixed 0.5 0.4 1.3 17.4 0.5 0.5 1.4 18.0

Improvement (%) 51 13 6 47 61 17 10 62

GC
Float 0.8 0.5 1.5 19.8 0.9 0.6 1.6 29.9
Fixed 0.5 0.5 1.3 11.6 0.5 0.5 1.5 13.1

Improvement (%) 36 5 8 40 44 13 5 56

GE
Float 0.8 0.5 1.4 19.9 0.9 0.6 1.4 29.6
Fixed 0.4 0.4 1.3 9.1 0.5 0.5 1.4 11.1

Improvement (%) 52 14 4 54 50 16 5 62

GCE
Float 0.7 0.5 1.4 15.5 0.8 0.6 1.4 22.8
Fixed 0.4 0.4 1.3 7.8 0.4 0.5 1.4 9.2

Improvement (%) 45 14 5 50 45 17 4 60
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Table 6. The RMS results of position differences and convergence time of the IF model (left) and
the UDUC model (right) G, GC, GE, and GCE kinematic float/fixed PPP on DOY 300-306, 2021, for
22 stations.

IF UDUC

E (cm) N (cm) U (cm) T (min) E (cm) N (cm) U (cm) T (min)

G
Float 2.3 1.5 3.9 58.8 2.6 1.7 4.2 78.5
Fixed 1.2 1.1 3.3 31.2 1.2 1.2 3.3 34.9

Improvement (%) 49 27 16 47 54 30 22 56

GC
Float 1.5 1.1 3.2 31.3 1.7 1.3 3.4 49.1
Fixed 1.0 1.0 3.0 17.7 1.1 1.1 3.2 20.3

Improvement (%) 33 10 7 44 37 18 6 59

GE
Float 1.7 1.1 3.3 31.5 1.9 1.2 3.4 49.3
Fixed 0.9 0.9 2.8 19.0 1.0 1.0 2.9 21.4

Improvement (%) 49 18 14 40 47 20 15 57

GCE
Float 1.4 0.9 2.9 22.9 1.5 1.0 3.0 31.5
Fixed 0.8 0.8 2.7 16.4 0.9 0.9 2.8 16.4

Improvement (%) 40 16 9 28 38 11 8 48

Based on the results in Tables 5 and 6, the following conclusions can be drawn:

(1) For the PPP solution, the IF model provided slightly better positioning accuracy and
convergence time than the UDUC model. This could be because the UDUC model
needed to estimate ionospheric delay and had more parameters to be estimated than
the IF model;

(2) For the PPP fixed solution, the CASM OSB products could effectively improve the
positioning accuracy and convergence time of the PPP when used in the PPP-AR.
The most significant improvement in the positioning accuracy was observed in the
E direction, with an average improvement of 46% for the IF model and 50% for the
UDUC model in the static mode. The improvements under both models were above
45%. Further, for the IF model, the convergence time improved by an average of 48%,
and for the UDUC model, an average improvement was 60%. In the kinematic mode,
the localization accuracy under the IF model in the E direction improved by 43%
on average, and that of the UDUC model improved by 44% on average; thus, they
were both above 40%. The average improvements in the convergence time under the
IF and UDUC models were 40% and 55%, respectively. Furthermore, an interesting
conclusion was drawn: the IF model and the UDUC model PPP-AR had comparable
positioning accuracy and convergence time.

(3) The single-system fixed-ambiguity PPP solution showed more significant improve-
ment compared to the PPP float solution. In the static mode, the average positioning
accuracy improvements of the GPS system in the E, N, and U directions were 56%,
15%, and 8%, respectively. In the kinematic mode, the average positioning accuracy
improvements of the GPS system in the E, N, and U directions were 52%, 28%, and
19%, respectively. Comparing the positioning accuracy and convergence time results
of different system combinations showed that the GCE multi-system combination
outperformed the other system combinations. Specifically, the average positioning
accuracy in the E, N, and U directions for the static PPP fixed solution was 0.4 cm,
0.4 cm, and 1.4 cm, respectively, with an average convergence time of 8.5 min. The
average positioning accuracy in the E, N, and U directions for the kinematic PPP fixed
solution was 0.9 cm, 0.9 cm, and 2.8 cm, respectively, with an average convergence
time of 16.4 min.

4. Discussion

According to the results, the CASM’s OSB products were comparable in terms of
performance to those of the CNES and WUM institutions and can be used in the PPP-AR
with different positioning models on the user end. Based on the results, the average STD
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of the OSB at each frequency for the GPS and Galileo systems varied relatively smoothly
throughout the day. The average STD of the OSB at each frequency for the BDS-3 system
was slightly larger compared to the GPS and Galileo systems, with an average STD of
0.035 ns and 0.043 ns for B1I and B3I frequencies, respectively. The BDS-3 system used the
same strategy as the GPS and Galileo systems for the FCB estimation but did not consider
the differences between the MEO and IGSO satellites of the BDS-3, and there was no PCV
product correction in the BDS-3 system. In addition, the accuracy of satellite orbit and clock
products could also be the reason for this phenomenon. As the number of stations available
for observing BDS-3 satellites increased, the accuracy of the precise orbit and clock products
of the BDS-3 satellites also increased. The accuracy of the OSB at each frequency of the
BDS-3 system is expected to improve further due to the above possible reasons.

The IF model of the dual-frequency PPP solution had slightly better positioning
accuracy and convergence time than the UDUC model, which could be due to the need for
the UDUC model to estimate the ionospheric delay.

Although the UDUC model has many parameters to estimate, the PPP-AR’s posi-
tioning accuracy and convergence time are comparable to those of the IF model; also, the
UDUC model can retain the ionospheric information. The estimated ionospheric informa-
tion can be used for studying ionospheric modeling and inversion and differential code
bias estimation. The current systems can broadcast observation information at three or
even more frequencies, but the multi-frequency uncombined ambiguity fixed results could
be even better.

5. Conclusions

The OSB can interact directly with the original observations, providing complete
flexibility for the PPP-AR. In this study, the OSB estimation method is derived in detail.
Moreover, the OSB product generation is performed for the GPS, Galileo, and BDS-3
systems, and its performance is evaluated using 117 globally distributed MGEX stations. In
addition, a detailed theoretical derivation of the relationship between the UDUC and IF
models is given, and a comparative analysis of the PPP-AR of the two positioning models
is conducted.

The conclusions made based on the obtained results are as follows:

(1) The stability of the CASM-generated OSB products is better than 0.05 ns and can
be used for the PPP ambiguity resolution. For both static and kinematic modes, the
GPS PPP-AR has comparable positioning accuracy and convergence time with the
WUM and CNES, and the average fixed-ambiguity success rate is above 90% for all
three institutions.

(2) The IF model of the PPP solution has slightly better positioning accuracy and conver-
gence time than the UDUC model. This could be because the UDUC model needs to
estimate the ionospheric delay and has more parameters to estimate. However, the
IF and UDUC models’ PPP-AR values have comparable positioning accuracy and
convergence time. The CASM OSB products for the PPP-AR can effectively improve
the positioning accuracy and convergence time of the PPP. The most significant im-
provement in positioning accuracy is achieved in the E direction, with an average
improvement of more than 45% and 40% for both models in the static and kinematic
modes, respectively. The convergence times of the IF and UDUC models are improved
by an average of 48% and 60% in the static mode and by 40% and 55% in the kinematic
mode, respectively.

(3) The single system fixed-ambiguity PPP solution shows more significant improvement
compared to the PPP float solution. The possible reason for this could be that the
single system PPP float solution is less accurate than the dual- and multi-systems,
resulting in a more significant fixed-ambiguity PPP solution. In the static mode, the
average improvement in the GPS positioning accuracy in the E, N, and U directions
is 56%, 15%, and 8%, respectively. Similarly, in the kinematic mode, the average
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improvement in the GPS positioning accuracy in the E, N, and U directions is 52%,
28%, and 19%, respectively.

(4) Comparing the positioning accuracy and convergence time of different system com-
binations for PPP-AR shows that the GCE multi-system combination is superior to
the other system combinations. Specifically, the average positioning accuracy in the
E, N, and U directions for the static PPP fixed solution is 0.4 cm, 0.4 cm, and 1.4 cm,
respectively, with an average convergence time of 8.5 min. The average positioning
accuracy in the E, N, and U directions for the kinematic PPP fixed solution is 0.9 cm,
0.9 cm, and 2.8 cm, respectively, with an average convergence time of 16.4 min.

The proposed OSB estimation method can also be applied to the multi-frequency OSB
generation, which could be investigated in future work. In addition, the multi-frequency
UDUC PPP-AR could be further studied considering inter-frequency clock biases.
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