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Abstract: Selective logging is a major cause of forest degradation in the tropics, but its precise scale,
location and timing are not known as wide-area, automated remote sensing methods are not yet
available at this scale. This limits the abilities of governments to police illegal logging, or monitor (and
thus receive payments for) reductions in degradation. Sentinel-1, a C-band Synthetic Aperture Radar
satellite mission with a 12-day repeat time across the tropics, is a promising tool for this due to the
known appearance of shadows in images where canopy trees are removed. However, previous work
has relied on optical satellite data for calibration and validation, which has inherent uncertainties,
leaving unanswered questions about the minimum magnitude and area of canopy loss this method
can detect. Here, we use a novel bi-temporal LiDAR dataset in a forest degradation experiment in
Gabon to show that canopy gaps as small as 0.02 ha (two 10 m × 10 m pixels) can be detected by
Sentinel-1. The accuracy of our algorithm was highest when using a timeseries of 50 images over
20 months and no multilooking. With these parameters, canopy gaps in our study site were detected
with a false alarm rate of 6.2%, a missed detection rate of 12.2%, and were assigned disturbance dates
that were a good qualitative match to logging records. The presence of geolocation errors and false
alarms makes this method unsuitable for confirming individual disturbances. However, we found
a linear relationship (r2 = 0.74) between the area of detected Sentinel-1 shadow and LiDAR-based
canopy loss at a scale of 1 hectare. By applying our method to three years’ worth of imagery over
Gabon, we produce the first national scale map of small-magnitude canopy cover loss. We estimate a
total gross canopy cover loss of 0.31 Mha, or 1.3% of Gabon’s forested area, which is a far larger area
of change than shown in currently available forest loss alert systems using Landsat (0.022 Mha) and
Sentinel-1 (0.019 Mha). Our results, which are made accessible through Google Earth Engine, suggest
that this approach could be used to quantify the magnitude and timing of degradation more widely
across tropical forests.

Keywords: Sentinel-1; synthetic aperture radar (SAR); radar; tropical forest; degradation; forest
degradation; change detection; selective logging; REDD+; Google Earth Engine

1. Introduction

There is an urgent need to accurately map and quantify forest degradation—which
we define as a localised loss of aboveground biomass (AGB) not big enough to result in
conversion to a non-forest state—across the tropics. This is for a number of reasons. Firstly,
as tropical forests transition under climate change to net carbon sources [1–4] and towards
potential ecosystem tipping points [5–8], a full picture of disturbance patterns will help to
constrain the global carbon budget [3]. Secondly, in some places, degradation is a precursor
to deforestation [9], so an ability to detect it could potentially prevent future forest loss.
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Thirdly, degradation involves the loss of carbon to the atmosphere and a reduction in
forest resilience to future disturbance events such as drought [3,10]. Finally, degradation
(and to a greater extent subsequent deforestation) has significant negative impacts on
biodiversity [11–13]. Degradation maps will therefore help to quantify concerns about
extinction rates [14,15] and to target measures aimed at protecting the high diversity of
life found in tropical forest ecosystems [16,17]. The tropics have experienced, and are
experiencing, rapid rates of land use change [18–20] as they are an important source of
timber, rubber, minerals and food products to the world economy [21–24]. There are
pledges to halt and reverse deforestation and forest degradation made by nations as part
of their Paris Agreement commitments, including plans by developed countries to fund
this transition [25]. However, in order to achieve this, robust, verifiable and unbiased
forest monitoring techniques must be made widely available to enable the targeting and
monitoring of pledges and funds [26,27].

The Sentinel-1 (S-1) mission funded by the European Union and operated by the
European Space Agency (ESA) is a promising tool for pantropical forest monitoring as it
provides regular, reliable and high resolution imagery over the entire tropical landmass.
The acquisition plan of S-1 is optimised for wide area coverage and guarantees a 12 day
revisit period even when one of the two satellites is out of operation [28]. A third and
fourth satellite are planned and funded, which would ensure continuity of data beyond
2030 [29], ensuring consistent forest monitoring into the future. Unlike optical wavelengths,
the C-band synthetic aperture radar (SAR) of S-1 can see through cloud and is only slightly
attenuated by even heavy rain, meaning that practically every image contains useful data
on the Earth’s surface [30]. This is especially important in the tropics, which include
many of the cloudiest terrestrial regions on Earth [31]. The resulting dense time series is
ideal for change detection as it allows high frequency changes (such as a sudden logging
event) to be resolved [32–34]. S-1 also has high spatial resolution (range resolution 3 m
and an azimuth resolution 20 m in the most commonly used interferometric wide-swath
mode [29]), a further advantage in degradation mapping as individual disturbances are
often small in scale: in this paper, we will show many logging disturbances are as small
as 0.01 ha (10 m × 10 m). Finally, the open access data policy of S-1 and its availability on
easy-to-use cloud platforms such as Google Earth Engine (GEE) and Microsoft’s Planetary
Computer lend themselves to transparent, verifiable (repeatable) analyses, suiting both the
scientific community and end users.

A growing body of work has demonstrated the potential of S-1 in tropical forests, in-
cluding applications such as land cover mapping [35,36] and deforestation detection [37–39].
In particular, a number of publications have focused on wide area mapping of forest dis-
turbances, much of this work stemming from the demonstration by Bouvet et al. [40] in
2018 that a S-1 shadowing effect can be used to detect patches of forest loss. An important
observation in that study is that the backscattering properties of deforested land may not
be significantly different to that of forest, especially once regrowth is underway, but a more
robust feature exists at the boundary between tall trees and an area that has been cut. Here,
there is a sudden change in height of the scattering surface. In places where this change has
a negative component in the range direction of a radar satellite, there exists a SAR shadow,
that is, a region where no backscatter can return to the sensor.

The S-1 shadow effect was initially used to reconstruct patches of deforestation in the
Peruvian Amazon, and was estimated to have a detection rate of 95% for patches greater
than 0.4 ha [40]. This result compared favourably to the University of Maryland (UMD)
forest alert system [41]: a platform widely regarded as the benchmark in terms of global
deforestation detection, but limited by the coarser pixel size (30 m, or 0.09 ha) and inability
to penetrate the clouds with the Landsat sensors it relies on for raw data. The possibility
of near real time (NRT) monitoring regardless of cloud cover, for example during the
wet season in the Congo Basin, led to further research aimed at delivering short latency
disturbance alert using Sentinel-1.
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Hoekman et al. laid down a framework for detecting the emergence of very small
features such as canopy gaps from selective logging, roads and canals [42]. The authors
highlight the fact that radar detects changes in forest structure—a more stable and reliable
metric than spectral features which quickly disappear due to regrowth [43]. Additionally,
Hoekman et al. used a physical model to suggest a relationship between S-1 shadows and
upper canopy loss: a relationship which we test empirically in this paper.

Stemming from the methods of [40,42], large scale forest disturbance alert maps
began to be published around the year 2020. This included maps in Gabon [44], French
Guiana [45], Vietnam, Laos and Cambodia [46,47] using a processing chain developed by
the French National Centre for Space Studies (CNES) and the Center for the Study of the
Biosphere from Space (CESBIO). An alternative algorithm implemented in GEE was used
by Reiche et al. to generate the Radar for Detecting Deforestation (RADD) alert system,
which now covers both the Congo and Amazon basins [48]. The main difference between
the two approaches is that CESBIO determines shadows by identifying pixels where a
radar change ratio (RCR) exceeds a certain threshold, while the RADD algorithm applies
a Bayesian method to estimate the probability of change in a pixel [49]. However, both
methods are underpinned by the shadow effect to some degree, and both use object level
analysis to combine pixels and provide timely alerts with low false alarm rates (2–9%).

The principal limitation of previous work has been a reliance on optical satellite data
for calibration and validation. For example, ref. [40] uses Sentinel-2 images to identify
disturbances; ref. [42] relies primarily on Sentinel-2 and Google Earth imagery; ref. [45]
uses manually interpreted SPOT, Pleiades, Landsat and Sentinel-2 data; ref. [48] uses
PlanetScope mosaics; and ref. [46] relies on Google Earth and Planet optical images as
reference data. In every case, the reference data have inherent and unknown uncertainty
about how it relates to the true amount and location of degradation, particularly with
respect to its missed detection rate for smaller disturbances. This has therefore made it
so far impossible to determine the minimum size of disturbance detectable by S-1 or to
test its ability to map a physical quantity of forest disturbance such as gross canopy cover
loss. This is not to understate the important of such NRT alert systems, which clearly
mark a considerable advance in the detection of tropical forest disturbance, but only to
highlight that further work is required to develop maps that quantify the full extent and
magnitude of degradation, through the use of reference data with known accuracy down
to the finest scales.

Here, we use two unoccupied aerial vehicle (UAV) LiDAR acquisitions separated by
approximately 1 year, collected over a logging concession in Gabon with experimental
plots where controlled different levels of trees were removed, and changes occurred in
a less controlled manner in the surrounding area [50]. This dataset, with known and
varied changes in canopy cover, enabled us to overcome the limitations of using satellite
images as reference data. This allows us to assess a S-1 algorithm against extremely precise
(centimetre precision) measurements of forest height and structural change [51,52]. Such
measurements leave negligible uncertainty in the location and size of canopy gaps as small
as individual ground range detected (GRD) S-1 pixels (0.01 ha), making it possible for the
first time to validate disturbances down to the scale of individual tree crowns. Furthermore,
it enables us to test for a relationship between canopy cover loss and S-1 shadows.

In comparing S-1 shadows to UAV LiDAR, we posed the following hypotheses: (1) that
S-1 would be capable of detecting canopy gaps caused by selective logging of individual
large trees; (2) that the best accuracy for such a detection algorithm would be obtained
by combining a long time series and avoiding spatial averaging; and (3) that a linear
relationship would exist between the area of detected S-1 shadow and gross canopy loss
due to selective logging. The aim of this paper was firstly to test these three hypotheses,
and then to demonstrate the potential of S-1 degradation mapping if NRT capability is
forgone for the sake of spatial resolution by estimating gross canopy cover loss and area of
human disturbance in all forested areas of Gabon for the year 2020.
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2. Materials and Methods
2.1. Field Site

Our study site is located in the Rougier-Gabon licensed logging concession in the
Ogooué-Ivindo department of Gabon (Figure 1) at a disused airstrip around 9 km from
Ivindo train station and village. Apart from the airstrip and adjoining access roads, the site
is forested. Field surveys of four 1-ha plots found stem densities of 271 to 366 ha−1 and
an average biomass density of 470 Mg ha−1 [53], which fits the general profile of African
tropical forests as low turnover and high biomass compared to those in the majority of Latin
American forests [54]. The region has a climate consisting of two dry seasons running from
June to September and December to February, frequent low-lying cloud [55] and annual
precipitation of less than 2000 mm. Satellite measurements [56] and nearby ground data [57]
show a drying and warming of the climate over the last few decades.

Figure 1. (left) Gabon is situated on the west coast of equatorial Africa and is densely forested,
with around 10% of this forest protected by National Parks. The location of the inset map is shown in
pink; (right) location of our field site (black box) in the Ogooué-Ivindo department, showing large
rivers (dark blue) and topography.

Logging operations in the area are certified by the Forest Stewardship Council (FSC-
C144419) and managed by Rougier Gabon, who fell Okoumé (Aucoumea klaineana) and
other approved species for commercial timber. With permission from Gabon’s Ministry for
the Protection of the Environment and Natural Resources, Forests and the Seas, a controlled
logging experiment took place between 24 January and 28 January 2020 in which a total
of 18 trees were felled according to low-impact logging practices in our four measured
plots, resulting in aboveground biomass losses ranging from 7% to 23% per ha [53]. The
area around the airstrip was later selectively logged as part of Rougier Gabon’s approved
extraction program between November 2020 and January 2021.

2.2. UAV LiDAR

UAV LiDAR data were obtained between 16 January and 23 January 2020 (prior to the
logging experiment) and again between 18 January and 21 January 2021 (after widespread
selective logging had occurred). A DELAIR DT26X fixed-wing UAV was flown at 110 m
altitude at an average speed of 17 ms−1 and loaded with a RIEGL miniVUX-1DL discrete-
return LiDAR, yielding a point density of 240 pts m−2. Following post-processing kinematic
correction, the geometric accuracy for both campaigns was estimated to be 1.8 cm based
on ground control points [50]. Top Canopy Height (TCH) was defined as the difference
between the lowest and highest returns in 25 cm cells after filtering for noise [50].

The change in TCH between the two field campaigns (Figure 2) was used to determine
the precise location and geometry of new canopy gaps. Areas of undergrowth clearance
were excluded and gaps were defined as spatially connected regions greater than 0.01 ha
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where TCH decreased by 10 m or more. In total, 261 canopy gaps were identified as having
appeared between the two field campaigns, covering 5.2% of the 310 ha analysed.

Figure 2. Canopy gaps caused by selective logging at our study site in Ivindo, Gabon. (a) UAV LiDAR
Top Canopy Height Change between January 2020 and January 2021 shows losses from controlled
logging plots (yellow boxes) and reduced-impact logging of the surrounding area; (b) view of a
canopy gap from below, taken less than 1 month after the disturbance; (c) view of a canopy gap from
above, taken 1 year after the disturbance. Arrows from (a) indicate locations of photos in (b,c).

2.3. Sentinel-1 Shadow Detection

Our algorithm follows the principle that where a tree crown disappears by anthro-
pogenic or natural causes, the reflective (to C-band SAR) surface of its upper branches and
leaves is replaced by a space devoid of radar scattering surfaces. Furthermore, the side look-
ing geometry of SAR and considerable height of most tropical forests mean that the ground
below the resulting canopy gap is shielded from the view of the sensor [40]. We therefore
expect a sudden, localised decrease in backscatter that is sustained for a long period (at least
while regrowth is confined to the understorey) and independent of absolute backscatter.

Importantly, we note that, in addition to the emergence of this shadow, a canopy gap
leads to a region of increased radar brightness caused by radar overlay at the far range
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edge of the gap [42]. In the case of very small canopy gaps, for example those caused
by the felling of an individual tree, the distance between the shadow and layover may
approach the sensor resolution. At this point, any spatial averaging of backscatter will
therefore risk destroying the disturbance signal as the two effects cancel each other out.
To solve this issue and detect the smallest possible disturbances, we minimised spatial
multilooking and instead used temporal averaging to mitigate speckle. This approach
relies on our assumption that the shadow signal might be at the limit of what is detectable
at SAR resolution over random noise, but persists for long enough that it will be visible in
a large number of post disturbance images, enabling the signal to be visible over the noise.

Building on the methods of [40,45,46], we quantified shadow emergence through a
radar change ratio (RCR) [58]. Our approach differed in that we made use of multiple
polarisations where previous studies tended to use VV only; analysed longer time series of
images after disturbance events compared to previous work that prioritised near real-time
capability; and adopted a purely pixel-based algorithm as opposed to reconstructing forest
loss patches as objects. To classify a pixel as shadow at time t in a sequence of images
separated by repeat period ∆t, we required that the backscatter σ in the n images after t
showed a significant decrease compared to the m previous images in both VV and VH
polarisations. Explicitly, pixels meeting the following condition were flagged as potential
shadows:

max
{
− (RCRVV + α), 0

}
· max

{
− (RCRVH + α), 0

}
> α2 (1)

where

RCRpol(t) =
1
n

t+n∆t

∑
t

σpol(t)−
1
m

t

∑
t−m∆t

σpol(t) (2)

and α is a threshold parameter determining how large a decrease in backscatter is required.
Equations (1) and (2) are given for σ in decibels, which is why the RCR is expressed as a
difference, and it assumed that there is no image exactly at time t.

We applied this algorithm to dual polarisation SAR images captured by ESA’s Sentinel-
1A satellite, obtained through GEE in ground range detected (GRD) format with a pixel
spacing of 10 m (equivalent number of looks of 4.3). As dictated by availability over
Gabon, all images were taken on descending passes with ∆t equal to 12 days. Apart
from two acquisitions found to be corrupted by signal interference on 31 January 2021,
all data between December 2018 and December 2021 in the 15 scenes intersecting Gabon
were used, totalling 1363 images. The imagery supplied by GEE was already calibrated
for thermal noise and corrected for geometric distortions using the 30 m SRTM digital
elevation model [59,60].

An advantage to using a change ratio is that the effects of terrain on the magnitude
of backscatter do not need to be corrected for, as shadow detections are triggered by a
relative decrease. As such, no additional pre-processing was applied to the S-1 images,
apart from an optional multilooking step using a 3 × 3 spatial window (equivalent number
of looks 38.7).

The condition in Equation (1) was tested for values of t every 12 days between Decem-
ber 2019 and February 2021. For every pixel that met the condition for at least one value
of t, the value of t for which the left-hand side of Equation (1) was greatest (i.e., the point
showing the largest decrease) was assigned as the most likely disturbance date, and where
this fell outside of the time between the UAV acquisitions when comparing to the LiDAR
data or the year 2020 when creating an annual product, the shadows were discarded. The
remaining flagged pixels were then confirmed as shadow if they connected to at least one
other shadow pixel.

Finally, non-forested areas were masked using ESA’s WorldCover 2020 product, a 10 m
resolution global land cover map based on Sentinel-1 and Sentinel-2 data [61]. As such,
forest is defined in our results as an area dominated by trees with at least 10% canopy
cover [62]. This step was performed after filtering out single-pixel shadows to avoid missed
detections around forest edges such as road expansion and new logging bays.



Remote Sens. 2022, 14, 4233 7 of 24

2.4. Accuracy Assessment

The optimum parameters for canopy cover loss mapping and detection of small
scale disturbances were investigated by comparing S-1 shadows to UAV derived canopy
gaps. Multilooking, the backscatter reduction threshold α, and the number of images
examined for a decrease in backscatter n were varied, while the number of images used
to estimate baseline backscatter m was fixed at 25. This value was chosen as it is large
enough to mitigate speckle effects and spans a time range of 10 months, so it is also likely
to smooth out seasonal effects without being unduly disrupted by long-term trends caused
by forest growth.

As our aim was to develop an accurate mapping system of canopy disturbances, we
tuned the threshold α between 0.4 and 1.0 such that the correlation between UAV canopy
loss and S-1 shadow area was maximised at a scale of one hectare. By this definition,
the optimum value of α varied depending on whether multilooking was applied and on
n, as would be expected given these parameters control the number of raw backscatter
measurements being averaged in either space or time, as shown in Table 1. S-1 pixels
were shifted 10 metres west, as this resulted in a better co-registration with the UAV data.
This slight misalignment is likely due to an error in georeferencing the SAR data in a hilly
area with tall trees (and therefore an imperfectly defined ground elevation in the 30 m
resolution shuttle radar topography mission data used to correct for terrain [63]), added to
the fact that shadows appear on the near-range side of a canopy gap. Our adjustment was
a simple one-dimensional translation and did not have any effect on the spatial pattern of
S-1 shadows.

Table 1. Threshold parameter α (backscatter reduction in decibels) resulting in the best correlation
between unoccupied aerial vehicle (UAV) LiDAR canopy cover loss and Sentinel-1 shadow area
depending on the value of n, the number of post-disturbance images, and whether 3 × 3 spatial
multilooking was applied.

n α (with Multilooking) α (no Multilooking)

5 1.00 0.83
10 0.80 0.64
15 0.68 0.56
25 0.64 0.49
30 0.64 0.45

In addition to analysing the correlation between S-1 shadows canopy loss at scales of
both 1 ha and 5 ha, we determined the false alarm rate and missed detection rate of our
algorithm. To do so, we first grouped spatially connected S-1 shadow pixels into objects.
The false alarm rate was defined as the area of S-1 objects that did not overlap with any
UAV canopy gap, divided by the total area of S-1 objects. The missed detection rate was
similarly defined as the area of UAV canopy gaps that did not overlap with any S-1 object,
divided the the total area of UAV canopy gaps. The overall accuracy was defined as the
percentage of the whole study area that was neither a false alarm nor a missed detection.

2.5. Degradation Mapping

Using the optimum parameters (n = 25/no multilooking, see Section 3.1) determined
by comparison to UAV LiDAR, the analysis was extended to cover the whole of Gabon,
detecting shadows in every S1 scene that overlapped the country. Consistency in the
estimated level of degradation in overlapping areas between scenes was assessed visually,
and only two scenes (those containing the towns of Mekambo and Lastoursville) showed
an obvious difference compared to the others. This was resolved by a small adjustment
of the threshold parameter α from 0.64 to 0.68, but the reason for such a discrepancy was
unclear, given that inspection of every S-1 image showed no signs of artifacts and that no
adjustment was required for other scenes in the same orbit. In areas where multiple scenes
overlap, the exact location of shadows differs due to differences in viewing geometry [40].



Remote Sens. 2022, 14, 4233 8 of 24

Therefore, the shadows from only one scene (with no particular preference) were used in
these areas, as averaging would have led to an overestimation of canopy loss.

The shadows at each time step (12 days apart) throughout 2020 were converted from
10 m binary pixels to an estimate of fractional canopy cover loss at the scale of one hectare.
This was done by multiplying the fraction of shadows appearing in each 1 ha cell by a scalar
conversion factor. The conversion factor was defined as the value that gave an unbiased
estimate of the total area of canopy cover loss over our field site, and was equal to 0.8748
(the use of a linear conversion is justified by our results in Section 3).

It is clear that some canopy cover loss is anthropogenic in nature (for example spread-
ing patterns within neatly defined blocks and linear features), and some more likely natural
events. In order to separate these two, we trained a random forest (RF) algorithm to classify
Gabon’s forested areas into regions disturbed by humans and those not disturbed in 2020.
The RF contained 11 decision trees and was trained on an 80% split of 13,525 ha of regions
classified by visual interpretation of canopy cover loss patterns, combined with situational
data such as proximity to towns, roads, National Parks, and known logging areas. Three
input layers were used for the classification: (1) canopy cover loss in a 1 ha pixel; (2) total
canopy cover loss in a 500 m radius circle around a pixel; and (3) the difference in canopy
loss in a 500 m circle radius between the highest and lowest values throughout the year.
These layers therefore considered direct impacts, spatial correlations and temporal corre-
lations, respectively, to determine the likelihood of human disturbance. The remaining
20% of the manually classified data was used to estimate the error matrix and accuracy of
the classification.

Finally, the temporal patterns of anthropogenic degradation were highlighted. This
was done by taking the median date of canopy loss in each 1 ha pixel that was classified as
disturbed and had an annual loss greater than 2%.

3. Results
3.1. Canopy Gaps Most Accurately Quantified Using 25 Post-Disturbance Images

Areas of S-1 shadow corresponded closely to canopy gaps detected by LiDAR, and the
best validation results were obtained using 25 post-event images and by skipping the
multilooking step. As shown in Figure 3, shadows were spatially offset relative to canopy
gaps by up to 20 m in random directions, and multiple canopy gaps sometimes merged
into a single shadow and vice versa. The spatial patterns, however, indicated that overlap
between a shadow and a canopy gap was a good indicator that they corresponded to the
same physical event.

For n = 25 and with no multilooking, our S-1 change detection algorithm had an
accuracy of 99.0% and a false alarm rate—taking into account all canopy gaps down to
0.01 ha—of 6.5%. As shown in Figure 4, this was slightly higher than the false alarm rate
of 4.2% obtained when using multilooking. However, not multilooking led to a more
significant decrease in the missed detection rate (12.2% compared to 25%). The missed
detection rate was slightly improved by increasing the number of post-event images to 30,
but this was counteracted by an increase in false alarms. Multilooking always resulted in a
lower false alarm rate but more missed detections (Figure 4) for a given n. With respect to
disturbances larger than 0.1 ha, n = 10 was sufficient to ensure all 37 canopy gaps were
detected as long as multilooking was applied. No combination of parameters caused a
false alarm greater than 0.1 ha in size.
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Figure 3. Sentinel-1 shadows overlaid in orange (using 25 post-logging images and no multilooking)
against UAV LiDAR measured canopy gaps (grey) for two subsets of the study area. Example
(a) shows offsets between shadows and canopy gaps in different directions, and a single shadow
covering two canopy gaps. In (b), there are examples where a single canopy gap is covered by
multiple shadows.

Figure 4. Area based accuracy of Sentinel-1 shadow at detecting canopy gaps in 310 ha of forest, 5.2%
of which was classified as disturbed from multi-temporal UAV LiDAR data. Accuracy, false alarm
rate and missed detection rate are shown as a function how many post-event images were made
available to our radar change algorithm (n). A further distinction is made between results with or
without a 3 × 3 multi-looking filter.

3.2. Canopy Gaps Detected down the Scale of Individual Trees

Our S-1 shadow detection algorithm picked up the majority of canopy disturbance
caused by gaps smaller than 0.05 ha (when using n = 25 and no multilooking). We found
65% of disturbed area in gaps between 0.01 and 0.05 ha was correctly identified, and 69%
of S-1 pixel area in shadows of this size corresponded to true canopy gaps. Top canopy
height obtained using the UAV LiDAR confirmed that many of these smaller gaps were
the result of single tree disturbances. For gaps between 0.05 and 0.1 ha, 90% of area was
correctly identified and 95% of S-1 shadow area corresponded to true detections, while no
errors were made at all for gaps larger than 0.1 ha (see Table A1 for all size-stratified false
alarm and missed detection rates for different algorithm parameters, and Figure A1 for an
example of a single tree crown removal).
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The detection rate of individual disturbances is shown as a function of gap size in
Figure 5. Most gaps smaller than 175 m2 (0.0175 ha) were not detected—as might be
expected given that we filtered out isolated 10 m × 10 m pixels—but there appears to be a
sharp increase in detection rate around 200 m2 (0.02 ha), and a steady increase with a gap
size beyond that point. The number of detections reaches 90% at around 500 m2 (0.05 ha)
and 100% at 1000 m2 (0.1 ha).

Figure 5. Percentage of canopy gaps detected by Sentinel-1 shadow algorithm using 25 post-event
images and no multilooking. Canopy gaps are classed by size, and the number of gaps in each class
is indicated by N.

3.3. Canopy Cover Loss Quantified by Linear Relationship to S-1

A linear relationship was observed between the area of UAV canopy cover loss and
the area of S-1 shadows detected when considering larger pixels. Holding n at 25 and not
multilooking gave the highest correlation: at a scale of 1 ha, r2 was 0.74, which fell slightly
to 0.70 if n was reduced to 15 and to 0.69 if multilooking was used. In general, multilooking
led to slightly weaker relationships, but the difference was less pronounced for lower n.
For example, at n = 10, r2 was 0.65 with multilooking and 0.67 without it. The weakest
relationship had r2 = 0.57, and was obtained when only five post-event images were used.

As shown in Figure 6, the linear relationship between canopy cover loss and S-1
shadows held when aggregating to a scale of 5 ha, with an r2 of 0.71 (see Figure A2 for
scatter plots of all tested algorithm parameters). The root mean square error (RMSE) of the
fraction of canopy disturbed at 1 ha was 0.03, and reduced to 0.01 at 5 ha. Our data show
no obvious deviation from a linear relationship up to canopy cover loss levels of around
25% per ha or 10% per five ha; we cannot test the relationship beyond this point as we have
no UAV training data where greater proportions of 1 or 5 ha boxes were disturbed.
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Figure 6. Fractional area of Sentinel-1 pixels classed as disturbed vs. area of canopy gaps identified
using multitemporal UAV LiDAR. The total number of samples is 310 at a scale of 1 ha (left), or 60 at
a scale of 5 ha (right). In each case, the squared Pearson correlation coefficient (r2) is shown, and the
straight line shows y = 1.1431x, the conversion factor required for S-1 to give an unbiased estimate of
canopy cover loss over the whole study site.

3.4. Temporal Match between S-1 Shadows and Logging Experiment

The estimated timing of S-1 shadows in our study area matched the time of known
forest disturbances. Shadows overlapping canopy gaps created between 24 January and 28
January 2020 as part of our controlled logging experiment appeared predominantly at the
start of the year, as shown in Figure 7. For other shadows in the area, most identified as
appearing after October. This matches communication from Rougier Gabon that recorded
this parcel of the concession to have been logged in November and December 2020.

Figure 7. Median date of Sentinel-1 detected shadows intersecting canopy gaps caused by a con-
trolled selective logging experiment in late January (blue) and those caused by later logging of the
surrounding area (orange). The histograms are normalised, and are in agreement with Rougier Gabon
records, indicating the area was disturbed in November and December.

Figure 7 shows that some of the disturbances in the experimental logging plots were
detected by Sentinel-1 around the same time as the wider area was logged. This is likely to
be a true detection as the felled logs in these plots were removed and more trees around
the plots were logged at this time, causing further disturbance to the canopy. Outside of
the main disturbance period towards the end of the year, there is a low level of shadow
emergence throughout the year, which is to be expected given both the natural dynamics
of a tropical rainforest and the non-zero level of false alarms generated by our algorithm
(Figure 4).
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3.5. Degradation Maps of Gabon for the Year 2020

Application of our S-1 algorithm across Gabon produced a plausible map of canopy
cover loss showing the location and extent of degradation in 2020, as well as enabling a
quantification of human and natural degradation levels. Our RF classification of the map
into disturbed and undisturbed regions performed extremely well, miss-classifying only
2 ha of undisturbed forest as disturbed out of a testing dataset of 2705 ha, corresponding
to an overall accuracy of 99.9%. An overview of the canopy loss map and disturbance
map is given in Figure 8, which shows the highly heterogeneous nature of the degradation
patterns. Both maps can be viewed online at https://harrycarstairs.users.earthengine.app/
view/fodex-gabon-2020, accessed on 18 April 2022.

Figure 8. (a) Gross canopy cover loss per 1 ha cell across Gabon estimated by Sentinel-1 shadows for
the year 2020; (b) classification of Gabonese forest into undisturbed (green) and disturbed (yellow)
areas, created by considering spatiotemporal patterns of canopy loss.

Across Gabon, we estimate that around 3% of forested areas were disturbed in the year
2020 (including 1-ha cells degraded directly and those in close to proximity to high levels of
degradation). Within national parks, anthropogenic disturbance was much lower at 0.4%.
The gross area of canopy cover lost according to our map was 0.31 Mha, representing 1.3%
of the country’s 24.2 Mha of forested land. It should be noted that this is not an estimate of
net canopy cover change, as our algorithm makes no estimate of canopy cover gains.

Our classification allows us to compare levels of canopy cover loss in what we classify
as disturbed and undisturbed forest. We find these differ by an order of magnitude,
with disturbed areas losing 9.6% of their canopy cover compared to 1% in undisturbed areas.

A larger scale example of our canopy cover loss and disturbance maps is given in
Figure 9 for a region including Ivindo National Park and our field site. The losses around
the field site are clearly visible, as are other logging parcels to the North and East that do
not encroach beyond the boundary of the national park. South of the Ogooue river, another
logging concession is visible by its clear boundaries (e.g., unnaturally straight lines) and
appears to more heavily logged than the field site. Two other patterns are visible: in the
national park, there are only smaller and less intense clusters of degradation; and, in the
northeast corner, degradation fans out around the edges of a town (Makokou) and the
roads leading into it.

Four examples of temporal degradation patterns are shown in Figure 10. In regions of
remote forest, the timing of disturbance appears to be systematic across large, contiguous
blocks. Within these blocks, there are distinct boundaries between patches disturbed
at different times of the year, patches that spread uniformly in time, and relatively few
anomalies to these patterns. Some linear disturbances (Figure 10d) show a remarkably

https://harrycarstairs.users.earthengine.app/view/fodex-gabon-2020
https://harrycarstairs.users.earthengine.app/view/fodex-gabon-2020
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strong relationship between distance along the feature and the time of disturbance. Around
towns and roads, however, temporal patterns are less ordered (Figure 10b). Here, we
observe much less of a relationship between the timing of degradation events in adjacent
pixels, and very few large scale trends.

Figure 9. (a) Gross canopy cover loss per 1 ha cell in and around Ivindo National Park (marked by
grey boundary), estimated by Sentinel-1 shadows for the year 2020; (b) classification of the same
area into undisturbed (green) and disturbed (yellow) forest. The field site where UAV LiDAR was
obtained is indicated in pink.

Figure 10. Median time of S-1 detected disturbances within 1-ha pixels for the year 2020. Example (a)
shows the region surrounding our field site (yellow box) and the boundary with Ivindo National
Park (grey line). Example (b) shows a more populated area in the north of Gabon where disturbances
around the road network (black lines) are more randomly distributed in time. Examples (c,d) show
clear large scale patterns in disturbance timing.
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3.6. Comparison to RADD and UMD Products

Here, we compare our Sentinel-1 algorithm to two published products: the RADD
disturbance alerts [48], based on S-1; and the UMD forest loss maps [41], based on Land-
sat. The majority of disturbances at our study site were not detected by RADD. Out of
261 canopy gaps identified in the UAV data (37 of which were larger than the minimum
mapping unit of 0.1 ha for RADD), only six were intersected by alert pixels assigned to
dates between the two UAV acquisitions. In total, these RADD alert pixels covered an area
of 0.65 ha, less than 5% of the 16.09 ha of canopy loss. If alerts assigned to dates up to
the end of 2021 are included, eight gaps are detected by alert pixels covering an area of
2.23 ha. Excluding gaps smaller than 0.1 ha, this still corresponds to a missed detection rate
of 68.1%. The Landsat-based UMD product [41] did not detect any forest loss in the study
area in the year 2020.

Over the whole of Gabon, the gross area of canopy cover loss we estimate is signifi-
cantly higher than the areas of disturbance detected by the UMD and RADD alert systems,
as shown in Table 2. This is despite the fact that both UMD and RADD pixels can include
partial canopy losses, meaning this is an absolute upper bound to the area of canopy loss
they detect.

Table 2. Area of pixels containing forest change in Gabon for the year 2020 estimated by this product
(canopy cover loss from S-1), the Radar for Detecting Deforestation (RADD) product (disturbance
alerts from S-1), and the University of Maryland (UMD) product (forest loss from Landsat).

Forest Disturbance This Product RADD UMD

Total Losses (ha) 3.1 × 105 1.9 × 104 2.2 × 104

Most RADD alerts for the year 2020 were located in areas also flagged by our algorithm
as having high levels of degradation, while there was less overlap with UMD forest loss.
The majority of canopy loss we detect is spatially separate from either RADD or UMD
alerts. We illustrate this in Figure 11, which shows the overlap between 1-ha cells containing
disturbances greater than 10% for each of the three products.

We found a temporal discrepancy between our estimated disturbance dates and those
given by RADD. In general, we predicted an earlier disturbance date. Figure 11 shows that,
in 1-ha cells across Gabon (where the products overlap), the median date of disturbance is
sometimes as much as six months later.

Figure 11. Comparison of forest degradation products for Gabon in 2020. (left) area of 1-ha cells
where more than 10% was affected by canopy cover loss in our product (FODEX), forest disturbance
in RADD Sentinel-1 alerts, forest loss in Landsat based UMD data, and their respective overlaps.
(right) For areas where FODEX and RADD detected losses, the difference in estimated date of
the disturbance.
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4. Discussion

By using UAV LiDAR to create a highly accurate reference dataset of selective logging,
we have demonstrated the potential of S-1 SAR timeseries to map degradation down to
fine scale canopy disturbances well below 0.1 ha. Our algorithm detected the emergence of
new SAR shadows using a change ratio, and we found a strong linear relationship between
the area of shadow pixels and canopy cover loss, making it possible to quantify the full
extent and severity of forest degradation. This approach to degradation mapping was
easily scalable, as we demonstrated by creating an experimental product covering the entire
forested area of Gabon (24.2 Mha). Furthermore, spatial and temporal patterns in this
product can be used to create a convincing separation of anthropogenic disturbances from
natural forest dynamics.

4.1. Trade Off between Timeliness and Accuracy

The most accurate S-1 algorithm we tested relied on having a time-series of 50 im-
ages to estimate shadow emergence in single S-1 GRD pixels without any further spatial
averaging (Figure 4). Although maps using this method could be updated every 12 days
as new S-1 imagery becomes available, the nature of the algorithm would necessitate a
10 month delay between a degradation event and its final quantification. Attempting to
quantify degradation sooner than this led to higher false alarm rates and missed detection
rates, particularly with respect to smaller disturbances. By increasing the number of post-
degradation images used to detect a drop in backscatter, it became possible to smooth out
the effects of speckle within an individual 10 m pixel, instead of relying on multilooking
which achieves this at the cost of spatial resolution. Multilooking still improved accuracy
for shorter timeseries, especially for larger canopy gaps: only when 25 post-event images
were available did it appear beneficial to analyse shadows at the individual pixel level.
Overall, it appears there is a trade-off situation between timeliness and accuracy, and that
sacrificing NRT capability makes it possible to fully utilise Sentinel-1’s spatial resolution
and detect disturbances smaller than 0.05 ha.

If we consider only disturbances greater than 0.1 ha, however, these were detected
perfectly (no false alarms or missed detections) after 4 months of S-1 imagery using our
algorithm. This observation is in line with the results of previous studies that found
high accuracy for S-1 forest alert products when applying a minimum mapping unit of
0.1 ha [40,45,46,49]. We suggest, therefore, that both approaches are important: NRT
systems should be used as a means of rapidly identifying the location of large disturbances;
and these should be backed up in due course by accurately quantified maps of canopy loss
when enough S-1 imagery is available to discern the smallest possible changes. As there was
still a strong relationship between canopy cover loss and S-1 shadows using 10 post-event
images (r = 0.82 for 1 ha cells), it would also be reasonable to produce provisional quantified
degradation maps after four months where there is a need for more rapid assessments.

Our long time-series approach also appeared to result in better temporal accuracy
than current NRT systems. For example, we compared our field data to the RADD alerts,
and found that many disturbances occurring between January 2021 and January 2022 were
assigned to dates later in 2022 (sometimes up to 200 days after the second UAV flight). This
contrasts to our S-1 algorithm which differentiated extremely well between two waves of
disturbance in 2021 (Figure 7) and appears to have an accuracy of around a month. Over
the whole of Gabon, the RADD alert system generally estimated later disturbance dates
than our algorithm, perhaps because it relies on a single pixel value to trigger the alert [48],
which may mask smaller but persistent changes in backscatter. While a full quantification
of temporal accuracy was not possible as precise reference data for disturbance dates was
not available, it appears that NRT products may not always provide the best indication of
when a disturbance occurred.

For our study area, increasing the number of post logging images to 30 led to an
increase in false alarms. This may be due to gradual changes from forest growth and
regrowth causing a significant enough change over this period to SAR backscatter that
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the shadow threshold is breached. This should be investigated further in faster growing
forests (for example in parts of the Amazon) where this effect may be stronger and a shorter
observation period would be available, or additional processing would be required to filter
out gradual changes in backscatter.

It should be noted that the delay of our product is due to the number of images
required, so it is proportional to the revisit period of the satellite. If, for example, a C-
band satellite with a 6-day revisit time was available, this could reduce the time between
degradation and quantification to five months.

4.2. Detection of Fine Scale Disturbances

We have shown that the removal of a single canopy tree in a tropical forest can lead to
a detectable signal in S-1 backscatter. UAV LiDAR highlighted the importance of detecting
such events, as we found that, in an area of selectively logged forest, more than half of
canopy gaps were smaller than 0.05 ha and 62% of disturbed area was caused by gaps
below 0.1 ha: a degradation mapping tool that excluded these disturbances could severely
underestimate degradation, and miss whole regions of degradation typified by multiple
small clearances. For comparison, many previous attempts to detect selective logging from
satellite data have worked at the 0.09 ha scale of Landsat pixels [64–67]. Although there is
evidence that disturbances as small as 25% of a Landsat pixel can be detected [68], this relies
on a cloud free image being available from the short period during which the disturbed
area shows bare ground and therefore a strong optical difference to the canopy, which is
likely to lead to high missed detection rates in cloudy tropical regions. Previous studies
using S-1 have typically applied a minimum mapping unit of 0.1 ha or larger [40,45,46,48]
in order to prioritise accuracy of individual disturbances.

Our UAV data allowed us to study canopy gaps that would have been impossible to
identify using any known passive optical satellite: no cloud free optical images (openly
available or commercial) were found within six months of our selective logging experiment,
by which time the majority of disturbance would have turned green again [43]. Multi-
temporal UAV LiDAR is therefore a crucial stepping stone between field inventories and
satellite remote sensing of tropical forests. While the fieldwork comes with challenges (e.g.,
cost, locating suitable take-off/landing zones in an area being logged, and maintaining
relatively newly developed technology in a new environment), we have shown that it
is feasible and effective, and provides rich data. We recommend an effort to continue
collecting this kind of data to aid the development of satellite degradation products.

We have shown that, when considering smaller disturbances, it is possible to process
S-1 data entirely using pixel based operations, thereby reducing computing cost compared
to object based methods. We found the minimum detectable size to be around 0.02 ha
(Figure 5), which is two S-1 GRD pixels. Including shadows consisting of single S-1 GRD
pixels led to excessive false alarms, which should be expected given the fact that the pixel
size of 10 m is less than the azimuth resolution of the raw radar images: real SAR shadows
are therefore likely to affect the backscatter in multiple pixels even if they are smaller than
10 m.

Our threshold ratio was small (0.64 dB reduction) compared to those used in previous
studies (typically at least 3 dB reduction [40,46]), and this may have allowed the detection of
sub-resolution sized shadows (noting that the physical size of a SAR shadow is a different
quantity to both the canopy gap area and the area of pixels classed as containing a shadow).
We can imagine a situation where a small canopy gap leaves a SAR shadow that is strong,
say −5 dB compared to the original backscatter value, but extends only a few metres in
the range direction of a SAR sensor. The resulting pixel will be a mixture of the shadow
and other surrounding scattering components, so will see a drop of less than 5 dB, but if
the shadow is real, it will be a consistent decrease that is detectable using our long time
series approach.

Considering that, even for the most accurate parameters, the false alarm and missed
detection rates were 6.5% and 12.2%, respectively, it is clear that the result of our algorithm
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should not be used as firm evidence of a single canopy gap smaller than 0.1 ha. Addi-
tionally, as Sentinel-1 has an azimuth resolution of 20 m and GRD georeferencing adds
error in hilly regions, we estimate that our shadow mapping has a spatial uncertainty
of up to 20 m and should therefore not be used for precision mapping of any particular
disturbance. The strength of our approach lies in the fact that the errors appear to be
randomly distributed and therefore become small when scaling up to larger areas: with
these errors known, good estimates of the degradation occurring in a district, logging
concession, national park or region can be estimated, as well as their temporal evolution
through a year.

Some canopy gaps were missed: sometimes this occurred following the removal of
crowns that were already in the shadow of a taller tree before they were removed. Other
factors which are likely to affect the sensitivity of S-1 to canopy gaps include the orientation
(relative to radar range direction), shape, and depth of gaps, which in turn are driven by
the heterogeneity and average height of a forest canopy as well as average crown size.
An in-depth analysis of these factors was not appropriate given the limitations of a single
field site, but future work should investigate these factors using comparable canopy gap
data from another tropical forest with different physical characteristics.

Some parts of the tropics are generally covered by both S-1 satellites with different
pass directions. In such areas, the different viewing angles would pick up different different
shadows: this may be useful for delineating larger patches of forest loss ([40]) and poten-
tially reduce the missed detection rate; in the case of small gaps, it would possibly lead to
an overestimation if shadows from both passes were added together. Instead, it may be
better to use one pass direction or another depending on which gives a preferable viewing
angle, thereby avoiding slopes facing the sensors where the signal quality is poorer ([53]).

4.3. Relationship between S-1 Shadows and Canopy Cover Loss

Our shadow detection algorithm is strongly correlated to UAV canopy cover loss
at a 1 ha scale (r2 = 0.74) when 25 post-event images are used. Both our accuracy and
correlation assessments can be considered conservative estimates due to the fact that
some errors in our S-1 product will be temporal rather than spatial. For example, some
disturbances which occurred before the first or after the second UAV flight may be included,
while disturbances just after the first or just before the second UAV flight may be excluded,
which due to the fact our algorithm prioritises spatial resolution over temporal resolution.
This is likely, given that logging activities were occurring at the field site around the times
of both UAV flights. These errors should not be important for annual statistics, where they
would only lead to a small mixing of disturbance attribution between successive years.

We may underestimate the area disturbed in larger canopy gaps where bare ground
is visible to the sensor—here soil moisture and regrowth could cause the backscatter to
quickly return to previous value. In this case, an object based algorithm may be more
appropriate, with the potential to use multiple pass directions or the increase in backscatter
on the far range edge of a clearing to delineate its edges [40]. On the other hand, our
threshold parameter may already be small enough to differentiate directly between canopy
and areas of regrowth—field data with larger cleared patches will be required to test this in
future studies.

It may be that the type of degradation has an influence on the relationship between
S-1 shadow and canopy loss, as the typical form of canopy disturbance may be different
depending on the activity (for example small scale mining, agriculture or road building).
This should be tested using reference data from different forms of degradation. The more
dynamic, faster growing forests of Amazonia may require different algorithm parameters,
and may have a higher uncertainty as backscatter values will be less stable over long
periods of time. Seasonal effects and weather events should be well controlled for by
the use of 25 images spanning 10 months either side of a disturbance event. This should,
however, be tested in areas with strong seasonality such as flooded forests and peat forests
where soil moisture may cause significant backscatter variations. Our relationship was
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built entirely on canopy gaps, but forest degradation and loss also occur at forest edges.
The response of S-1 in this scenario would be more dependent on viewing angle, so a more
complicated approach and multiple pass directions may be required.

Our algorithm predicts gross canopy cover loss with a root mean square error (RMSE)
of 0.03 at a 1 ha scale. It therefore gives a clear indication of human disturbance, which
leads to losses of 10–20%, but would not be suitable for identifying subtle graduations
at the 1 ha scale between very low levels of degradation. Aggregating to 5-ha, however,
we find the relationship improves for areas with low levels (<5%) of degradation and the
RMSE lowers to 0.01. This shows that our approach is promising for accurate quantification
of degradation levels at larger scales. We estimate the area of gross canopy cover loss
in Gabon for 2020 to be 0.31 Mha. The uncertainty in this figure from propagating the
3% errors at 1 ha scale would be just ±150 ha. However, this assumes that the errors are
randomly distributed over a variety of conditions not tested in our field data, as discussed
above, so we expect that the true uncertainty is higher than this.

4.4. Potential for Wide Area Quantification of Degradation

Figure 8 indicates highly clustered disturbances across Gabon, as would be expected
given the fact that majority of the country’s forest is either national park or allocated
as a logging concession. Our map shows very clear signs of selective logging activities
including large parcels of remote, disturbed forest with clear boundaries that are disturbed
methodically through the year. New logging roads are also highlighted, many of which
can be linked directly to the patches of selective logging. In addition, our map shows some
other patterns of disturbance around more densely populated areas, which we suggest are
the result of small scale agricultural expansion. We chose to limit our initial map to Gabon
as it has a low population density, a large area of protected forest, and the vast majority of
forest disturbance is due to selective logging across large concession areas. We recommend
that, to apply our method to countries with different drivers and patterns of degradation or
different forest structures, additional bi-temporal laser-scanning data would be necessary
for validation.

Overall, our results are in agreement with Gabon having much higher levels of forest
degradation than deforestation. The area we classify as having been locally disturbed in
2020 is about 35 times that which was deforested according to the UMD product. Our
figure of 1% gross annual canopy cover loss is consistent with plot data [69] that estimates
natural tree mortality rates in this area to be around 1%. Although the distribution of tree
canopy sizes is skewed towards smaller canopies, this is counteracted by an increasingly
mortality rate with size, suggesting that a figure of 1% canopy cover loss is reasonable.

By comparison, the total area of RADD alerts in Gabon for 2020 was below 0.02 Mha.
This value is much lower than our estimated canopy loss because the RADD system
prioritises low false detections rather than overall accuracy in quantifying degradation,
and because it omits any disturbances below 0.1 ha (which we have shown are important
drivers of degradation in areas of selective logging). Over three quarters (77%) of RADD
alerts occurred within areas we classified as disturbed, and inspection of the remaining
RADD alerts outside of disturbed areas suggests the majority of these are also human
disturbances, and were classed as undisturbed in our map due mainly to a difference in
temporal allocation. This highlights the strength of the RADD alert system in its ability
to pick out areas likely to be affected by human activities, while also showing the need
for more sensitive algorithms if we are to fully quantify both anthropogenic and natural
forest degradation.

Regularly updated maps of forest cover will be important for degradation mapping.
We used a map for the year 2020, and others are available based on a range of satellite
products. To avoid double counting, degradation products must be carefully explicit about
what is included and excluded. For example, we found some overlap between our product
and pixels classed as forest loss in the Landsat-based UMD product (Figure 11). A minimum



Remote Sens. 2022, 14, 4233 19 of 24

time between multiple disturbances of the same pixel will also need to be determined for
long-term degradation mapping, which may be a function of forest and disturbance type.

Our map of Gabon required some manual calibration to ensure consistency between
scenes. Going forward, an automated approach towards image quality assurance, scene
calibration and mosaicking should be developed as a step towards an operational product.

Maps of anthropogenic disturbance should be improved by using industrial or gov-
ernment data for example on forest concessions and mining activity, instead of relying on
interpretation of degradation patterns. Some natural disturbances may be included in our
map of disturbed regions, as large areas of windfall of landslides would present a similarly
intense, temporally concentrated pattern of damage to anthropogenic disturbances. Com-
bining canopy loss maps with other mapping techniques will help to differentiate these
kinds of degradations.

5. Conclusions

We have presented an algorithm to estimate annual gross canopy cover loss due to
small scale disturbances in tropical forest. The algorithm relies on the power of a long time
series to detect small but persistent decreases in Sentinel-1 backscatter caused by the radar
shadows that emerge from new canopy gaps as small as 0.02 ha. A linear relationship was
found between the area of Sentinel-1 shadow and canopy loss for intensities between 0 and
25% loss per hectare, but further work is required to verify if this relationship continues
beyond 25%, and if it is affected by factors such as forest height, type, terrain or seasonality.
Given these issues that are addressed, our algorithm could be used to create spatially
contiguous, quantified maps of forest degradation, something we have demonstrated
for the country of Gabon. Such maps would be an important step towards measuring
AGB change across the tropics, monitoring logging activities, and verifying decreases
in degradation for carbon payment schemes, as well as providing insights into natural
forest dynamics.

Author Contributions: Conceptualization, H.C., E.T.A.M. and M.D.; methodology, H.C.; validation,
H.C.; formal analysis, H.C.; resources, E.C. and M.O.E.; data curation, I.M., C.A. and A.M.D.;
writing—original draft preparation, H.C.; writing—review and editing, E.T.A.M., I.M., C.A. and
M.D.; visualization, H.C.; supervision, E.T.A.M. and M.D.; project administration, E.T.A.M.; funding
acquisition, E.T.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Tropical Forest Degradation Experiment (FODEX)—
European Research Council Grant No. 757526.

Data Availability Statement: The code and data required to reproduce our results are available
at https://code.earthengine.google.com/?accept_repo=users/harrycarstairs/FODEX_S1_Gabon_
2020, accessed on 18 April 2022. Our results for canopy cover loss in Gabon 2020 can be viewed on an
interactive map at https://harrycarstairs.users.earthengine.app/view/fodex-gabon-2020, accessed
on 18 April 2022.

Acknowledgments: We would like to thank the staff of Rougier Gabon, including Evanillho Téodoro
Muaño Bondjale and Aimé Manfoumbi, for hosting us in Ivindo and cooperating to make our
fieldwork there possible. While in Gabon, we also received invaluable support from Alfred Ngo-
manda, Lee White, the Agence Nationale des Parcs Nationaux (ANPN), the Ministry of Water and
Forests, the Sea and the Environment, the Research Institute for Tropical Ecology (IRET), and our
field assistants, especially Joseph Amelim Boukandja, from the Ivindo community. We thank the
Natural Environment Research Council (NERC) Geophysical Equipment Facility for the loan of
GNSS receivers.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

https://code.earthengine.google.com/?accept_repo=users/harrycarstairs/FODEX_S1_Gabon_2020
https://code.earthengine.google.com/?accept_repo=users/harrycarstairs/FODEX_S1_Gabon_2020
https://harrycarstairs.users.earthengine.app/view/fodex-gabon-2020


Remote Sens. 2022, 14, 4233 20 of 24

Appendix A

Table A1. Area based accuracy of Sentinel-1 shadow at detecting canopy gaps in 310 ha of forest,
5.2% of which was classified as disturbed from multi-temporal UAV LiDAR data. The canopy gaps
are split into small (0.01 to 0.05 ha, N = 134), medium (0.05 to 0.1 ha, N = 90), and large (0.1 to
0.5 ha, N = 37). Results are shown according to how many post-event images were made available
(n). A further distinction is made between results with or without a 3 × 3 multi-looking filter, and the
best results are highlighted in bold.

n Multi-Look Accuracy False Alarm Rate (% Area) Missed Detection Rate (% Area)
(Images) (%) Total Small Medium Large Total Small Medium Large

5 x 97.5 28.1 52.3 9.7 0.0 25.3 54.9 26.7 5.1
X 97.6 12.6 33.8 10.2 0.0 38.8 73.0 48.4 7.4

10 x 98.3 16.2 45.4 6.2 0.0 17.4 45.1 12.2 5.1
X 98.3 8.7 30.8 14.6 0.0 24.8 56.8 29.3 0.0

15 x 98.4 14.7 53.1 6.1 0.0 13.1 37.2 9.1 1.8
X 98.6 6.7 37.6 9.7 0.0 19.9 53.1 18.6 0.0

25 x 99.0 6.5 30.5 5.5 0.0 12.2 35.3 9.8 0.0
X 98.8 4.2 30.3 10.6 0.0 17.0 48.0 14.3 0.0

30 x 98.8 10.1 44.4 5.9 0.0 11.2 31.7 9.4 0.0
X 98.8 5.9 38.5 18.0 0.0 14.6 40.0 13.0 0.0

Figure A1. UAV LiDAR Top Canopy Height in January 2020 and January 2021 showing the removal
of a canopy tree, overlaid with the area of shadow detected by our S-1 algorithm.
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Figure A2. Area of Sentinel-1 Shadow per 1 ha cell vs. area of UAV LiDAR detected canopy gap.
Results are separated for various values of n, the number of post-event images used in to estimate
S-1 shadows, and according to whether 3 × 3 spatial multilooking was applied. In each case, the
correlation coefficient r, root mean square error (RMSE) and ratio of S-1 shadows to UAV canopy gap
area (slope) is indicated.
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