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Abstract: In this study, we propose a tightly coupled integrated method of ultrawideband (UWB)
and light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) for
global navigation satellite system (GNSS)-denied environments to achieve high-precision positioning
with reduced drift. Specifically, we focus on non-line-of-sight (NLOS) identification and correction.
In previous work, we utilized laser point cloud maps to identify and exclude NLOS measurements in
real time to attenuate their severe effects on the integrated system. However, the complete exclusion
of NLOS measurements will likely lead to deterioration in the dilution of precision (DOP) for the
remaining line-of-sight (LOS) anchors, counterproductively introducing large positioning errors into
the integrated system. Therefore, this study considers the ranging accuracy and geometric distribution
of UWB anchors and innovatively proposes an NLOS correction method using a grey prediction
model. For a poor line-of-sight (LOS) anchor geometric distribution, the grey prediction model is
used to fill in the gaps by predicting the NLOS measurements based on historical measurements.
Including the corrected measurements effectively improves the original poor geometric configuration,
improving the system positioning accuracy. Since conventional filtering-based fusion methods are
exceedingly sensitive to measurement outliers, we use state-of-the-art factor graph optimization
(FGO) to tightly integrate the UWB measurements (LOS and corrected measurements) with LiDAR-
SLAM. The temporal correlation between measurements and the redundant system measurements
effectively enhance the robustness of the integrated system. Experimental results show that the
tightly coupled integrated method combining NLOS correction and FGO improves the positioning
accuracy under a poor geometric distribution, increases the system availability, and achieves better
positioning than filtering-based fusion methods with a root-mean-square error of 0.086 m in the plane
direction, achieving subdecimeter indoor high-precision positioning.

Keywords: integrated positioning; UWB; LiDAR-SLAM; NLOS correction; grey prediction model;
tightly coupled; FGO

1. Introduction

Reliable and stable positioning and navigation technology is a necessary foundation
and important guarantee for mobile robotics. With the booming development of robotics,
highly intelligent robots have assisted or replaced humans in some of their work (e.g.,
warehouse logistics robots or inspection robots), and mobile robot work scenarios are un-
dergoing increasingly challenging transformations from known to unknown, from simple
to complex, from static to dynamic, and from short-term to long-term positioning [1]. To
precisely locate robots in global navigation satellite system (GNSS)-denied scenarios, where
system reliability is critical, simultaneous localization and mapping based on light detection
and ranging (LiDAR-SLAM) technology is more widely used than other positioning and
sensing methods due to its long detection range, high accuracy, and high robustness to
light and weather [2,3].
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As an active sensing method, LiDAR-SLAM obtains a six-degree-of-freedom (6-DoF)
pose by matching scanned environmental features with a feature map while updating the
map for self-motion estimation. Laser point cloud-based pose estimation algorithms can be
divided into two categories [4,5], namely, matching-based [6–9] and feature-based [10–12]
algorithms. Iterative closest point (ICP)-based and normal distributions transform (NDT)-
based algorithms are the best-known matching-based methods. They provide relative
pose estimation by directly using a large volume of streaming raw scans in the form of
unorganized point clouds from the light detection and ranging (LiDAR) output, therefore
making them more costly in time and less computationally efficient. Feature-based meth-
ods have attracted extensive attention to improve the performance of LiDAR-SLAM with
limited computational resources. As the most well-known feature-based method, LiDAR
odometry and mapping (LOAM) distinguishes between geometric primitives (e.g., line
segments and planes) by evaluating the smoothness of local regions to associate consistency
among successive frames with the global map [13]. Lightweight and ground-optimized
LOAM (LeGO-LOAM) adds segmentation processing to refine different features based on
LOAM, which effectively improves the quality of feature extraction while reducing the
number of geometric primitives, further enhancing the accuracy and stability of LOAM po-
sitioning. These feature-based methods have relatively low power consumption and allow
for real-time applications. However, as a recursive navigation technology, its positioning
errors accumulate as the distance traveled increases [14]. In long-distance positioning using
only LiDAR-SLAM, such recursion errors cannot be ignored, and a closed-loop correc-
tion method is usually adopted to reduce its effects [15]. However, real-time closed-loop
detection is frequently computationally expensive and susceptible to outliers, and the
closed-loop conditions are difficult to satisfy in some unknown and large-scale scenarios.
Therefore, absolute positioning becomes an indispensable auxiliary solution to reduce the
dependence of LiDAR-SLAM on a closed-loop correction.

Common absolute positioning methods can be divided into two categories, namely, ac-
tive beacons (e.g., Wi-Fi [16], Bluetooth [17], active radio-frequency identification (RFID) [18],
and ultrawideband (UWB)) and passive beacons (e.g., passive RFID [19] and near field
communication (NFC) [20]). Among them, UWB, with its superior spatial resolution,
immunity to multipath errors, and strong signal penetration, makes it widely used for
high-precision positioning in GNSS-denied environments. However, realistic scenarios are
frequently dynamic and complex. Non-line-of-sight (NLOS) environments such as fixed
interior walls and moving objects (e.g., moving vehicles and pedestrians) can interfere
with or even interrupt the direct transmission of UWB signals to some extent, resulting
in excessive path delay in distance measurements. This positive bias is known as NLOS
error [21,22], which is the main error source for UWB ranging and positioning errors. To
improve spatial positioning accuracy, effectively and precisely addressing NLOS errors has
become a hot issue in the field of UWB positioning. At present, methods to improve UWB
positioning performance under NLOS conditions can be divided into two categories: NLOS
identification and NLOS mitigation [23,24]. NLOS identification is mainly performed using
distance estimation-based methods [25], channel statistics-based methods [26], and position
estimation-based methods [27] to distinguish between line-of-sight (LOS) and NLOS condi-
tions. After NLOS identification, the differentiated UWB measurements need to be applied
to NLOS mitigation for corresponding processing to reduce the negative impact of NLOS
errors on position estimation and obtain higher positioning accuracy. There are typically
two strategies. The first is to correct the ranging values, that is, estimate the ranging errors
and subtract them from the raw measurements, and then use the corrected ranging values
for positioning [28–31]. However, carefully isolating and studying each parameter affecting
the ranging errors is very challenging and error-prone [32]. The second strategy is to use
different residual formulas to adjust the weight of the NLOS measurements in the position-
ing module to achieve robustness to NLOS errors [33], but its positioning performance may
vary in different scenarios.
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Currently, the fusion of UWB and LiDAR-SLAM measurements at the system level falls
into two main categories: filtering-based [27] and graph optimization-based [34,35] methods.
Zhou et al. [34] estimated the sensor state by minimizing the sum of the Mahalanobis norms
of the UWB and LiDAR measurement residuals while automatically adjusting the weights
of the measurement residuals in the state estimation in accordance with the degradation
degree of sensor measurements as a way to mitigate the effect of degradation. Liu et al. [35]
proposed utilizing a two-step graph optimization framework to fuse odometry, UWB, and
LiDAR information for positioning and mapping in unknown and featureless environ-
ments. Even though both abovementioned schemes can achieve better positioning results
in a favorable environment, the effect of UWB NLOS errors on the integrated system is not
sufficiently considered. In our previous work [27], we innovatively proposed an NLOS
identification method with less environmental dependence and prior information. By
combining a laser point cloud map generated by LiDAR-SLAM and the position infor-
mation of UWB anchors, the LOS and NLOS receptions were distinguished in real-time.
Subsequently, using the identified UWB LOS measurements and LiDAR-SLAM solution
results, a UWB/LiDAR-SLAM tightly coupled positioning system based on a robust ex-
tended Kalman filter (REKF) was constructed. Nevertheless, we found that the positioning
accuracy of the integrated system is affected not only by the UWB ranging accuracy but also
by the geometric distribution of the UWB anchors. Completely excluding NLOS measure-
ments from the positioning is most likely to result in a poorer dilution of precision (DOP),
which in turn introduces a large positioning error into the positioning system, which is
seriously inconsistent with our expectations. Meanwhile, as a scheme for multisensor data
fusion, an extended Kalman filter (EKF) cannot provide high robustness because it only
considers the estimated value of the last epoch and the measured value of the current epoch,
ignoring a large amount of historical measurement information. Therefore, based on this
work, we further propose a factor graph optimization (FGO)-based UWB/LiDAR-SLAM
tightly coupled integrated system with NLOS identification and correction using a grey
prediction model. The main contributions of this study are as follows.

• To prevent the effect of a poor geometric distribution on the integrated system and
to improve the utilization of UWB measurements, we propose and implement an
NLOS correction method using a grey prediction model. First, LOS and NLOS anchors
are distinguished in real-time by the NLOS identification algorithm using a laser
point cloud. Then, the DOP value of the remaining LOS anchors after excluding
the NLOS anchors is calculated. If the DOP value is higher than a threshold, the
exclusion of the NLOS anchors is considered to have a great effect on the geometric
distribution of the UWB anchors and discarding these NLOS measurements will result
in compromised accuracy. At this point, we use the grey prediction model to predict
the NLOS measurements based on historical measurements to fill in the gaps of UWB
measurements and subsequently use the LOS and corrected measurements as the
inputs to the integrated system to maintain a highly accurate and robust navigation
state. Conversely, if the DOP value is less than the threshold, the LOS measurements
are directly used as the inputs to the integrated system. Experimental results show
that the NLOS correction method using the grey prediction model is reasonable and
effective, and it significantly improves the positioning accuracy of the system under a
poor geometric distribution.

• To make full use of historical measurement information to provide more accurate
and robust positioning results, we adopt an FGO-based fusion method instead of a
conventional filtering-based fusion method during the UWB and LiDAR data fusion
phase. In contrast to the filtering-based method, the FGO-based fusion method con-
nects all historical measurements via LiDAR-SLAM factors and further establishes
a global cost function to jointly optimize all historical and current information. The
temporal correlation between measurements and the redundant measurements of the
system enhance the robustness of the integrated system to outliers, multiple iterations
effectively help the system approach the optimal state estimation, and the introduction
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of a sliding window significantly reduces the scale of the solution and solves the
problem of real-time solution of the factor graph. A dynamic positioning experiment
demonstrates the superiority and accuracy of the FGO-based UWB/LiDAR-SLAM
integrated system.

The rest of this work is structured as follows. Section 2.1 provides an overview of the
overall system framework and details of the key components. Section 2.2 describes the
coordinate systems involved in the integrated system and carefully designs the external
parameter calibration scheme for the two types of sensors. The details of the proposed
UWB/LiDAR-SLAM tightly coupled integrated method combining NLOS correction and
FGO are described in Sections 2.3–2.6. Section 3 provides the experimental setup while
reporting and analyzing the results of the system performance tests. Finally, the work is
summarized, and future work is discussed in Section 4.

2. Methodology
2.1. Software Framework

The framework of the proposed FGO-based UWB/LiDAR-SLAM tightly coupled
integrated system with NLOS identification and correction using a grey prediction model is
shown in Figure 1. First, the temporal and spatial datums of both the UWB and LiDAR sen-
sors are unified by the robot operating system (ROS) and the calibrated external parameter
matrix (purple blocks in Figure 1). Second, the NLOS identification algorithm using the
laser point cloud in our previous work is adopted to distinguish the LOS measurements
from NLOS measurements in real-time (green blocks in Figure 1). Then, the DOP value
of the remaining LOS anchors is calculated and compared with a threshold. Suppose this
DOP value is higher than the threshold. In that case, the geometric distribution of the
remaining LOS anchors is considered poor, the NLOS measurements need to be predicted
using the grey prediction model, and the LOS and corrected measurements are used as the
inputs to the integrated system (yellow blocks in Figure 1). Alternatively, only the LOS
measurements are used for integrated navigation (blue blocks in Figure 1), effectively con-
trolling the geometric distribution on the effect of positioning accuracy. Finally, considering
that UWB measurements are also affected by signal multipath effects, intensity fading, and
other factors, an FGO-based UWB/LiDAR-SLAM integrated system is designed, effectively
enhancing the robustness of the integrated system to outliers by using the strong correlation
of historical measurements within a sliding window in the time dimension while reducing
the possibility of LiDAR-SLAM divergence (orange blocks in Figure 1). The red dashed
block in Figure 1 represents the contribution of this work.

2.2. Coordinate Frame

A reference datum (coordinate system) is a crucial concept in the study of navigation
systems. Sensor measurements, such as position, velocity, and attitude, are based on
a description of a reference frame, and the description varies in different frames. The
proposed integrated system has two different types of sensors, UWB and LiDAR. It is
essential to unify the sensor measurements based on a common coordinate system and
establish a functional relationship between the sensor measurements and navigation state
information to fuse the measurements of these two types of sensors (as shown in Figure 2).

• w-frame: the UWB coordinate system, with the indoor control point as the origin,
x-axis pointing right, y-axis pointing forward, and z-axis forming a right-handed
cartesian coordinate system with x-axis and y-axis.

• l-frame: the LiDAR coordinate system, moving with the vehicle [15], with the LiDAR
measurement center as the origin, x-axis pointing forward, y-axis pointing left, and
z-axis forming a right-handed cartesian coordinate system with x-axis and y-axis.

• g-frame: the LiDAR-SLAM coordinate system, with the initial LiDAR-SLAM position
as the origin, whose axes coincide exactly with the l-frame at the initial LiDAR-
SLAM time.
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Considering the computational efficiency of the subsequent NLOS identification algo-
rithm using the laser point cloud, the g-frame is used as the fusion coordinate system in
this study. Therefore, the transformation matrix Tg

w from the w-frame to the g-frame needs
to be accurately obtained to unify the measurements. As shown in Figure 2, the LiDAR
sensor can provide precise point cloud data of the surrounding environment in the g-frame,
and the total station can also accurately observe the edges (lines or points) of buildings
in the w-frame. Accordingly, based on the common-view method, this study takes the
building edge points as the calibration objects and obtains the UWB anchor coordinates
xanchor =

(
xanchor, yanchor, zanchor) in the g-frame and the lever-arm vector ll with the laser

center pointing to the UWB mobile tag center in the l-frame by solving the transformation
matrix Tg

w through the observed multiple corresponding feature point pairs {pw, pg}.

2.3. UWB NLOS Identification Using a Laser Point Cloud Map

As an active sensor, LiDAR can take long-range, high-precision three-dimensional
(3-D) measurements of the surrounding environment. LiDAR visually represents objects
in the environment in the form of accurate, dense 3-D point clouds while using SLAM
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6-DoF pose estimation to register raw laser point clouds into the SLAM coordinate system
to obtain a globally consistent map.

Consequently, when positioning is performed in GNSS-denied scenarios, obstacles
(fixed interior walls or moving objects) in the NLOS region that are prone to UWB ranging
errors are known in the laser point cloud map in terms of their location and size, which is
reflected as many point-cloud clusters of varying sizes. Based on this NLOS assumption,
the UWB LOS and NLOS measurements can be effectively distinguished by combining
the UWB anchor coordinates in the SLAM coordinate system. The NLOS identification
algorithm using the laser point cloud consists of three modules: identification preprocessing,
point cloud search, and collision detection.

• Identification preprocessing module: LiDAR-SLAM is used to deduce the UWB mobile
tag coordinate xtag = (xtag, ytag, ztag) in accordance with the lever-arm vector ll and the
UWB anchor set uaall = {ua1, ua2, · · · , uan} iterated through to obtain the coordinates
of the UWB anchor to be identified for determining the NLOS identification search
direction. According to the distance, vertical azimuth, and horizontal azimuth between
the mobile tag and anchor, the search center points, and search times are calculated in
steps of 1 m.

• Point cloud search module: The global map is converted into a k-dimensional tree
(KD-tree) structure, and point clouds are searched for in the neighborhood with a
radius of 1 m. When the number of point clouds exceeds the set threshold, there may
be obstacle occlusion in the line-of-sight direction (i.e., the search direction for NLOS
identification); that is, the anchor may be an NLOS anchor.

• Collision detection module: To avoid misjudgment and improve the accuracy of
NLOS identification, whether the line-of-sight direction intersects with the searched
neighboring point cloud cluster is evaluated to distinguish between true and false
obstacles and further obtain the LOS anchor set ualos = {ua1, ua2, · · · , uas} and NLOS
anchor set uanlos = {ua1, ua2, · · · , uar}. More details of the NLOS identification
algorithm using the laser point cloud can be found in [27].

2.4. Calculation of the HDOP Value for the UWB LOS Anchor

To achieve satisfactory positioning performance of the UWB/LiDAR-SLAM integrated
system, in our previous work, the UWB LOS measurements filtered by NLOS identification
and the LiDAR-SLAM 6-DoF pose estimation were used as the measurement inputs to
the integrated system in a tightly coupled form. Unfortunately, we found that the posi-
tioning accuracy of the integrated system is affected not only by the accuracy of the UWB
measurements but also by the geometric distribution of the UWB anchors. Using only
the LOS measurements can counterproductively introduce a large positioning error to the
integrated system when the geometric distribution of the remaining LOS anchors is poor.

Consequently, this study draws on the concept of the DOP value in a GNSS to analyze
the goodness of the geometric distribution of the remaining LOS anchors when all NLOS
anchors are excluded. The DOP value includes the following parameters: the geometric
dilution of precision (GDOP), position dilution of precision (PDOP), horizontal dilution
of precision (HDOP), vertical dilution of precision (VDOP), and time dilution of precision
(TDOP) [36]. Since the ground in GNSS-denied environments is mostly flat, this study
focuses on the positioning of the integrated system in a two-dimensional (2-D) plane.
Figure 3 shows the effect of different geometric distributions on the 2-D positioning errors.
The thicker solid line represents the true ranging value, and the two nearby dashed lines
indicate the possible ranging errors. The intersection of the thick solid lines is the true
position of the mobile tag. The purple part represents the possible positioning area of the
system due to the presence of ranging errors. With the same ranging errors, a smaller HDOP
value represents a more uniform geometric distribution of the anchors (Figure 3a), better
positioning performance, and smaller positioning errors. Conversely, a larger HDOP value
represents a poorer geometric distribution of the anchors (Figure 3b), which significantly
expands the possible positioning area and increases the positioning error.
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The true distance ri between the UWB mobile tag (x, y) and the i-th LOS anchor(
xanchor

i , yanchor
i

)
can be expressed as follows:

ri =

√(
x− xanchor

i
)2

+
(
y− yanchor

i
)2

, i = 1, 2, · · · , s (1)

Using a Taylor series expansion of the observation equation at the approximate po-
sition of the mobile tag (x0, y0) and neglecting components above the second order, we
can obtain: r1 − r0,1

...
rs − r0,s

 =


∂r1
∂x

∂r1
∂y

...
...

∂rs
∂x

∂rs
∂y

[x− x0
y− y0

]
(2)

where 
∂ri
∂x = xi−x0√

(xi−x0)
2+(yi−y0)

2

∂ri
∂y = yi−y0√

(xi−x0)
2+(yi−y0)

2

(3)

where ei = [∂ri/∂x,∂ri/∂y] denotes the directional cosine from an unknown point to a
known point in both the x and y directions, and J =

[
eT

1 , · · · , eT
s
]T denotes the Jacobian

matrix of the distance equation.
The error covariance matrix Q and the HDOP value can be obtained as follows: Q =

(
JTJ
)−1

=

[
q11 q12
q21 q22

]
HDOP =

√
tr(Q) =

√
q11 + q22

(4)

where qij denotes the covariance of the i-th measurement with the j-th measurement. The
HDOP value is only related to the relative position of the mobile tag and the LOS anchors,
independent of the selected coordinates. This positional relationship is the geometric
distribution of the UWB system.

2.5. UWB NLOS Correction Using the Grey Prediction Model

If the HDOP value of the remaining LOS anchors fluctuates less and is lower than a
threshold, subsequently, when fusing the data with LiDAR-SLAM, all NLOS measurements
can be excluded, and only the filtered LOS measurements will be used as the measurement
input. Otherwise, considering that the NLOS anchors have a great effect on the geomet-
ric distribution of the UWB anchors, excluding the NLOS anchors will lead to a poorer
geometric distribution, which will impact the positioning accuracy.

This study proposes an NLOS correction method using a grey prediction model to im-
prove the reliability of the positioning system [37]. When the HDOP value of the remaining
LOS anchors is higher than a threshold, all existing NLOS measurements are discarded,
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and the NLOS measurements are instead predicted using a grey prediction model based on
a small number of historical measurements to obtain the corrected measurements, which
are used together with the LOS measurements as the inputs to the integrated system. The
inclusion of the corrected measurements better improves the geometric configuration of the
original LOS anchors and minimizes the HDOP value of the positioning system, thereby
effectively improving the positioning accuracy and robustness of the system. The NLOS
correction method process using the grey prediction model is as follows.

1. The UWB measurements are organized into the following matrix form:

R(0) =


r(0)1,1 r(0)1,2 · · · r(0)1,m

r(0)2,1 r(0)2,2 · · · r(0)2,m
...

...
...

...
r(0)n,1 r(0)n,2 · · · r(0)n,m

 (5)

where R(0) denotes the nonnegative original time series; the subscripts n and m denote the
number of UWB anchors and measurements, respectively; r(0)i,u denotes the u-th historical
measurement of the i-th UWB anchor; and this study uses m = 6.

2. A first-order accumulated generation operation on the original data is performed to
obtain a new data sequence with an approximate exponential law, aiming to reduce
the impact of randomness and volatility on the data:

R(1) =


r(1)1,1 r(1)1,2 · · · r(1)1,m

r(1)2,1 r(1)2,2 · · · r(1)2,m
...

...
...

...
r(1)n,1 r(1)n,2 · · · r(1)n,m

 (6)

where r(1)i,u =
u
∑

v=1
r(0)i,v .

3. The consecutive neighborhood sequence C(1) of sequence R(1) is as follows:

C(1) =


c(1)1,2 c(1)1,3 · · · c(1)1,m

c(1)2,2 c(1)2,3 · · · c(1)2,m
...

...
...

...
c(1)n,2 c(1)n,3 · · · c(1)n,m

 (7)

where c(1)i,v = γr(1)i,v + (1− γ)r(1)i,v−1, and γ = 0.5.

4. The grey differential equation of the GM(1,1) model is established according to the
approximate exponential law:

r(0)i,v + µc(1)i,v = τ (8)

where c(1)i,v denotes the background value of the grey differential equation and µ and τ
denote the development coefficient and the grey action quantity, respectively, which can be
solved for using the least squares (LS) method:[

µ
τ

]
=
(

BTB
)−1

BTY (9)
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where

Y =


r(0)i,2

r(0)i,3
...

r(0)i,m

 B =


−c(1)i,2 1

−c(1)i,3 1
...

...
−c(1)i,m 1

 (10)

where Y denotes the historical measurement vector, and B denotes the sequence matrix.

5. The whitening function for the differential equation is constructed using the solution
to the above equation:

dr(1)

dt
+ µr(1) = τ (11)

Thereby, the time response sequence of the grey differential equation is obtained as:

r̃(1)i,v =

(
r(0)i,1 −

τ

µ

)
e−µ(v−1) +

τ

µ
, v = 2, 3, · · · , m + 1 (12)

6. Finally, the inverse transformation operation of Equation (12) is performed to obtain
the prediction function of the original sequence of the i-th UWB anchor as follows:

r̃(0)i,v = r̃(1)i,v − r̃(1)i,v−1 = (1− eµ)

(
r(0)i,1 −

τ

µ

)
e−µ(v−1), v = 2, 3, · · · , m + 1 (13)

The GM(1,1) model established by the UWB historical measurements (epoch 1 to
epoch m) can be used to predict the NLOS measurement (epoch m + 1) when the HDOP
value of the remaining LOS anchors is higher than the threshold. Meanwhile, after ob-
taining the corrected measurement (epoch m + 1), the initial measurement of the original
sequence is discarded, and the remaining measurements (epoch 2 to epoch m) and the
new measurement (epoch m + 1) are formed into a new sequence. The relevant parame-
ters of the grey prediction model are recalculated to better accommodate the volatility of
the measurements.

2.6. UWB/LiDAR-SLAM Integrated Model Based on Factor Graph Optimization

Filtering [38–40] and graph optimization [41–43] are the two main schemes for mul-
tisensor data fusion. A Bayesian filtering-based method finds the best estimate of the
current state through prediction-measurement-correction, which has the advantages of
low computational complexity and high accuracy. As an information transfer model, the
optimization methods represented by factor graphs model the observed data as a kind of
factor graph network with data association. Unlike the former, which only considers the
state information of the last epoch and the measurements of the current epoch, the factor
graph performs nonlinear optimization of the overall or partial state data set based on all
or part of the historical measurements and the current measurements. Due to the temporal
correlation between measurements and the redundant measurements of the system, the
integrated system tends to achieve more accurate and robust state estimations.

The framework of the FGO-based UWB/LiDAR-SLAM integrated system is shown
in Figure 4, where both the UWB LOS and corrected measurements are tightly coupled to
LiDAR-SLAM without loop closure using FGO. The navigation system states are repre-
sented by the variable nodes (hollow circles), and the a priori information, state transitions,
and measurement processes are represented by the factor nodes (solid circles). As seen, the
graphical representation makes the system highly versatile and extensible, allowing for the
flexible combination of sensor information with different measurement frequencies and
effectively coping with sensor failure or the introduction of new sensor information.
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The goal of multisensor data fusion is to find the optimal posterior state of the system
given the sensor measurements, which is a typical maximum a posteriori (MAP) estimation
problem [41,44]. In this study, the measurements include UWB and LiDAR-SLAM mea-
surements. Assuming that the UWB and LiDAR-SLAM measurements are independent of
each other, the state estimation problem of the UWB/LiDAR-SLAM integrated system can
be formulated as the following MAP problem:

χ∗ = argmax
χ

∏ P(z |x ) (14)

where χ denotes the set of system states to be estimated; x =
[
pg

l qg
l

]T
6×1 denotes the

state vector; pg
l and qg

l denote the 3-D translation and rotation (denoted by a quaternion)
between the l-frame and g-frame, respectively; χ∗ denotes the set of system optimal states;
z denotes the sensor measurements associated with state x.

For any factor graph, the MAP problem can be reduced to maximizing the product of
all factor graph potentials [45]:

χ∗ = argmax
χ

∏ φ(x) (15)

where φ(x) denotes the factor associated with the measurements.
In an FGO-based integrated model, the sensor measurements are all considered as

factors φ(x) associated with the particular state x, each of which represents an error function
that should be minimized. Supposing that all sensor measurements are disturbed by
Gaussian noise with a zero mean, the negative logarithm of φ(x) is proportional to the error
function associated with the measurement and is defined as follows:

φ(x) ∝ exp
(
−1

2
‖h(x)− z‖2

Λ

)
(16)

where h(x) and z denote the observation functions and actual measurements of different po-
sitioning systems, respectively; the Mahalanobis norm is ‖·‖2

Λ = (·)TΛ−1(·) = ‖Λ−1/2·‖2
2,

which takes into account the effect of the observation accuracy; Λ denotes the covariance
matrix of the observation process, in which the UWB and LiDAR-SLAM uncertainties are
determined based on the ranging accuracy and the degree of matching, respectively; and
‖·‖2 denotes the Euclidean norm of the vector.

Taking the negative logarithm of Equation (15) and discarding the coefficient terms,
the MAP problem can be transformed into a nonlinear least squares (NLS) problem:
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χ∗ = argmin
χ

(
κ

∑
j=1

n
∑

i=1
‖h
(
xj, xanchor

i
)
− zuwb

j,i ‖
2

Λuwb
+

λ

∑
k=2
‖h(xk−1, xk)− zlidar

k−1,k‖
2
Λlidar

)

= argmin
χ


κ

∑
j=1

n

∑
i=1
‖euwb

j,i ‖
2

Λuwb︸ ︷︷ ︸
UWB factor

+
λ

∑
k=2
‖elidar,p

k−1,k ‖
2

Λlidar,p +
λ

∑
k=2
‖elidar,q

k−1,k ‖
2

Λlidar,q︸ ︷︷ ︸
LiDAR−SLAM factor


(17)

where the superscripts κ and λ denote the number of UWB measurement residuals and
LiDAR-SLAM measurement residuals; the superscript n denotes the number of UWB
anchors; the subscripts j and k denote the indexes of UWB factors and LiDAR-SLAM factors
in the factor graph; the subscript i denotes the index of UWB anchors; xanchor

i denotes
the UWB anchor coordinates; euwb

j,i denotes the measurement residuals associated with

the UWB sensor (residuals of ranging); and elidar,p
k−1,k and elidar,q

k−1,k denote the measurement
residuals associated with the LiDAR sensor (residuals of translation and rotation). The
error functions with UWB and LiDAR-SLAM factors are as follows:

euwb
j,i = ‖pg

lj
+ ll − xanchor‖

2
− rmeas

elidar,p
k−1,k =

(
qg

lk−1

)−1
⊗
(

pg
lk
− pg

lk−1

)
− pmeas

elidar,q
k−1,k =

(
qg

lk−1

)−1
⊗ qg

lk
⊗ (qmeas)−1

(18)

where ⊗ denotes the multiplication operator of the quaternion; rmeas denotes the actual
UWB measurements; and pmeas and qmeas denote the actual LiDAR-SLAM measurements.

By minimizing the above objective function, the maximum a posteriori solution χ∗ of
the state set can be obtained, and thus, multisensor data fusion can be realized. Considering
that the computation amount will increase significantly with the increase in the factor
graph scale as new measurement information is continuously added over time, this study
adopts a sliding window method [46] to maintain the relative stability of the number of
optimized variables by discarding the earliest historical variables in the window while
adding new variables.

3. System Performance Testing and Analysis
3.1. Platform Description and Experimental Setup

We build an integrated positioning experimental platform to test the proposed NLOS
correction method using the grey prediction model and the FGO-based UWB/LiDAR-
SLAM integrated system. All algorithms are implemented and evaluated on a computer
with an Intel(R) Core(TM) 2.30 GHz i7-10875H central processing unit (CPU), 32 GB of
RAM, and an Nvidia GeForce RTX 2060 graphics card, running a 64-bit Linux (Ubuntu
18.04) operating system. As shown in Figure 5, a Velodyne VLP-16 scanner is installed in
the center of the experimental platform, and a Time Domain UWB PulsON440 module
and 360◦ total reflection prism are installed above the laser scanner. The centers of all
three are on the same plumb line; therefore, the effect of the lever-arm on the integrated
navigation in the 2-D plane can be ignored. The specifications of the UWB and LiDAR
sensors are shown in Table 1. Considering the high-precision performance of the Leica
TS50 automatic tracking total station, it is assumed that its measured UWB anchor 3-D
coordinates and the starting coordinates of the UWB mobile tag and LiDAR sensor when
the experimental platform is stationary are error-free. In the dynamic test, the total station
automatically tracks the total reflection prism and provides the reference with an accuracy
of 0.6 mm± 1 ppm every 0.1 s.

A dynamic experiment is conducted in an underground parking lot of a shopping
mall, and the experimental scenario and layout are shown in Figure 6. We deploy six UWB
anchors in a 40 m × 40 m area to better demonstrate the UWB positioning accuracy fluctua-
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tion under a poor geometric distribution. The presence of many moving objects (passing
pedestrians and vehicles) and stationary objects (wall pillars (70 cm× 70 cm) and stationary
vehicles) in the underground parking lot makes the environment very challenging. For
the total station to effectively track the experimental platform and provide an accurate
reference trajectory, an evaluation dataset is obtained using ROS by an experimenter push-
ing the experimental vehicle along a travel lane (purple route) at a speed of 0.5 m/s. The
parking space areas are not planned into the travel route considering the continuity of the
reference trajectory.
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Table 1. Specifications of the UWB and LiDAR sensors. The mark—means without this property.

Parameter UWB LiDAR

Ranging principle TW-TOF TOF
Wave band 3.1–4.8 GHz c/905 nm 1

Range ability <80 m <100 m

Ranging accuracy LOS 5 ± 1 cm ±3 cmNLOS uncertain

Field of view
Horizontal — 360◦

Vertical ±15◦

Angular resolution Horizontal — 0.2◦

Vertical 2◦

Sampling frequency 2 Hz 10 Hz
1 c denotes the speed of light.
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3.2. Evaluation of the UWB NLOS Identification and Correction Algorithm

To evaluate the effectiveness of the proposed NLOS correction method using the grey
prediction model, the time-synchronized UWB raw, LOS, and corrected measurements
are all variously used as the inputs to the LS positioning method, and the following three
methods are obtained for comparison:

• LS positioning using the raw measurements (LS);
• LS positioning using the LOS measurements (NLOS identification + LS, NI-LS);
• LS positioning using the LOS and corrected measurements (NLOS identification + NLOS

correction + LS, NINC-LS).

Figure 7 shows a comparison of the three UWB measurements with the reference
measurement. The error curves between the measurements after discarding the zero value
and the reference value are shown in Figure 8 (the subgraphs above the figures are enlarged
details of the error curves). Table 2 reports the statistical results of the ranging errors for the
three measurements. ‘RMSE’ in the table stands for the root mean square error, and ‘Max’
stands for the maximum error. Figure 9 shows the UWB positioning trajectories solved
using the LS, NI-LS, and NINC-LS methods. Figure 10 shows the positioning errors of these
three methods in the X, Y, and plane directions and the cumulative distribution function
(CDF) of the plane errors. The specific evaluations are shown in Table 3. ‘Availability’ in
the table is calculated by dividing the number of solved positions by the total number
of measurements.
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It can be observed that the experimental scenario of the underground parking lot is
challenging for the UWB positioning system. During the travel process, there are many
measurement outliers in the UWB raw measurements due to obstacle occlusion. Anchors
1, 2, and 6 have lower ranging accuracy due to their poor surrounding environments
(all are located near wall columns), with RMSEs of 0.8178 m, 1.3146 m, and 1.2918 m,
respectively. Anchor 2 astonishingly has a maximum ranging error of 36.5315 m. Although
the placements of anchors 3, 4, and 5 are more ideal, the RMSEs also reach 0.5012 m,
0.4089 m, and 0.4225 m, which are far below the accuracy level under the UWB line-of-
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sight. After filtering using the NLOS identification algorithm, the data quality of LOS
measurements is significantly improved. Compared with the raw measurements, the
ranging accuracy of UWB anchors is improved by 92.88%, 95.98%, 88.47%, 79.24%, 78.34%,
and 93.84%. Correspondingly, the NI-LS method using LOS measurements has been
considerably improved. Compared with the LS method, the RMSEs of the positioning errors
in the X, Y and plane directions are reduced by 85.04%, 76.28%, and 79.60%, respectively,
and the maximum errors are reduced by 92.80%, 92.05%, and 92.24%, respectively.
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Table 2. Performance of different UWB measurements. Four decimal places are given to better
compare the difference between the LOS and corrected measurements.

Anchor 1 Anchor 2 Anchor 3 Anchor 4 Anchor 5 Anchor 6

Raw
measurements

RMSE (m) 0.8178 1.3146 0.5012 0.4089 0.4225 1.2918
Max (m) 14.9990 36.5315 13.7858 6.4413 7.1004 10.6643

LOS
measurements

RMSE (m) 0.0582 0.0529 0.0578 0.0849 0.0915 0.0796
Max (m) 0.3179 0.2901 0.3291 0.2933 0.3656 0.2948

Corrected
measurements

RMSE (m) 0.0584 0.0551 0.0568 0.0852 0.0912 0.0809
Max (m) 0.3179 0.2901 0.3291 0.2933 0.3656 0.3156

Nevertheless, we find that the solved trajectory of NI-LS still partially deviates from
the reference trajectory, as shown in the purple dashed region in Figure 9. Taking the cyan
point as an example, when the experimental platform moves to the current position, it
receives the measurement from anchors 1, 2, 3, 5, and 6, of which anchor 2 is identified
as an NLOS anchor. Interestingly, although the ranging accuracy of the remaining LOS
anchors generally reaches the subdecimeter level (0.138 m, 0.110 m, 0.136 m, and 0.020 m),
the plane error of its solved position still reaches 0.487 m. This result indicates that using
only the filtered LOS measurements as the input to the positioning system may still fail
to meet the needs for indoor high-precision positioning. This is because the excessive
rejection worsens the geometric distribution of the system, and the complete exclusion of
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the NLOS measurements reduces the system’s availability by 2.81%. Figure 11 shows a
comparison between the HDOP value and the NI-LS method error. After effective data
quality control, the positioning error of the system is approximately positively correlated
with the HDOP value, and variances within different intervals (e.g., 0–50 s) are caused
by different levels of ranging accuracy. Therefore, to ensure the robustness of the system,
considering the geometric distribution of the remaining LOS anchors during the positioning
solution is essential.
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Table 3. Accuracy evaluation of the LS, NI-LS, and NINC-LS methods.

LS NI-LS NINC-LS

RMSE (m)
X 0.635 0.095 0.079
Y 0.721 0.171 0.106

Plane 0.961 0.196 0.132

Max (m)
X 6.165 0.444 0.444
Y 12.131 0.965 0.825

Plane 12.903 1.001 0.846
Availability 99.65% 96.84% 100%

The corrected ranging values obtained using the proposed method are shown in
Figure 9. Based on the threshold judgment principle, the method corrects some of the NLOS
measurements to obtain the corrected measurements. Table 2 shows that the corrected
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measurements maintain almost the same ranging accuracy as the LOS measurements, and
the NINC-LS method using the LOS and corrected measurements subsequently achieves
a corresponding improvement. In the purple dashed region where the NI-LS solution is
worse, the NINC-LS method significantly improves the overall performance of the system
under the poor geometric distribution, making it more closely fit the reference trajectory.
Compared with the LS and NI-LS methods, the RMSEs of the positioning errors in the X,
Y, and plane directions are reduced by 87.56%, 85.30%, and 86.26% and 16.84%, 38.01%,
and 32.65% for the NINC-LS method, respectively. The RMSE in the plane direction is
reduced to 0.132 m, which provides solid evidence for the rationality and effectiveness of
the proposed method. However, the maximum error improvement is not obvious. Figure 12
shows the number of NLOS measurements for the NI-LS and NINC-LS methods. After
correction using the proposed method, the number of NLOS measurements is less than or
equal to 3. While outputting high-precision positioning results, the system’s availability
reaches 100%, even better than the raw measurement value (99.65%).
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3.3. Evaluation of the UWB/LiDAR-SLAM Integrated Positioning Algorithm

The solved trajectories are compared with those of the single sensor, and five other
UWB/LiDAR-SLAM integrated positioning methods to test the effectiveness of the pro-
posed FGO-based UWB/LiDAR-SLAM tightly coupled integrated system with NLOS
identification and correction using the grey prediction model (NLOS identification + NLOS
correction + tightly coupled + FGO, NINC-FGO).

• NINC-LS;
• LeGO-LOAM without loop closure;
• Tightly coupled + REKF (REKF);
• NLOS identification + tightly coupled + REKF (NI-REKF) [27];
• NLOS identification + NLOS correction + tightly coupled + REKF (NINC-REKF);
• Tightly coupled + FGO (FGO);
• NLOS identification + tightly coupled + FGO (NI-FGO).

Figure 13 shows a comparison of the trajectories estimated using the different methods
with the reference trajectory. The positioning errors of these eight methods in the X, Y, and
plane directions and the CDF of the plane errors are shown in Figure 14. Table 4 reports
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the positioning performance of each method. In the table, the red, blue, and green results
represent the best, second-best, and third-best accuracies, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

reduced to 0.132 m, which provides solid evidence for the rationality and effectiveness of 
the proposed method. However, the maximum error improvement is not obvious. Figure 
12 shows the number of NLOS measurements for the NI-LS and NINC-LS methods. After 
correction using the proposed method, the number of NLOS measurements is less than or 
equal to 3. While outputting high-precision positioning results, the system’s availability 
reaches 100%, even better than the raw measurement value (99.65%). 

 
Figure 12. Number of NLOS measurements for the NI-LS (blue) and NINC-LS (red) methods. 

3.3. Evaluation of the UWB/LiDAR-SLAM Integrated Positioning Algorithm 
The solved trajectories are compared with those of the single sensor, and five other 

UWB/LiDAR-SLAM integrated positioning methods to test the effectiveness of the pro-
posed FGO-based UWB/LiDAR-SLAM tightly coupled integrated system with NLOS 
identification and correction using the grey prediction model (NLOS identification + 
NLOS correction + tightly coupled + FGO, NINC-FGO). 
 NINC-LS; 
 LeGO-LOAM without loop closure; 
 Tightly coupled + REKF (REKF); 
 NLOS identification + tightly coupled + REKF (NI-REKF) [27]; 
 NLOS identification + NLOS correction + tightly coupled + REKF (NINC-REKF); 
 Tightly coupled + FGO (FGO); 
 NLOS identification + tightly coupled + FGO (NI-FGO). 

Figure 13 shows a comparison of the trajectories estimated using the different meth-
ods with the reference trajectory. The positioning errors of these eight methods in the X, 
Y, and plane directions and the CDF of the plane errors are shown in Figure 14. Table 4 
reports the positioning performance of each method. In the table, the red, blue, and green 
results represent the best, second-best, and third-best accuracies, respectively. 

 
Figure 13. Trajectories of the eight methods: NINC-LS (yellow), LeGO-LOAM (green), REKF (grey), 
NI-REKF (cyan), NINC-REKF (magenta), FGO (orange), NI-FGO (blue) and NINC-FGO (red). 
Figure 13. Trajectories of the eight methods: NINC-LS (yellow), LeGO-LOAM (green), REKF (grey),
NI-REKF (cyan), NINC-REKF (magenta), FGO (orange), NI-FGO (blue) and NINC-FGO (red).

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 14. Positioning errors of the NINC-LS (yellow), LeGO-LOAM (green), REKF (grey), NI-REKF 
(cyan), NINC-REKF (magenta), FGO (orange), NI-FGO (blue) and NINC-FGO (red) methods: (a) X 
direction, (b) Y direction, (c) plane direction, and (d) CDF of the positioning errors. 

Table 4. Accuracy evaluation of the NINC-LS, LeGO-LOAM, REKF, NI-REKF, NINC-REKF, FGO, 
NI-FGO and NINC-FGO methods. 

  NINC-LS 
LeGO-
LOAM 

REKF NI-REKF 
NINC-
REKF 

FGO NI-FGO 
NINC-
FGO 

RMSE (m) 
X 0.079 0.097 0.081 0.080 0.071 0.111 0.068 0.062 
Y 0.106 0.091 0.085 0.073 0.069 0.101 0.063 0.060 

Plane 0.132 0.133 0.117 0.108 0.099 0.150 0.092 0.086 

Max (m) 
X 0.444 0.239 0.383 0.299 0.262 2.584 0.294 0.259 
Y 0.825 0.343 0.578 0.295 0.295 1.955 0.297 0.270 

Plane 0.846 0.419 0.595 0.361 0.358 2.645 0.327 0.303 
Availability  100% 100% 100% 100% 100% 100% 100% 100% 

CDF 
(<0.1 m) 

 60.31% 24.47% 57.36% 58.60% 63.44% 74.95% 75.23% 77.93% 

As seen in Table 4, the REKF method significantly improves the positioning perfor-
mance of the integrated system by adjusting the measurement noise covariance matrix to 
reduce the contribution of abnormal measurements to parameter estimation when the 
UWB raw measurements polluted from NLOS errors are used directly as the input to the 
integrated system. It outperforms the NI-LS method (RMSEs in the X, Y, and plane direc-
tions are reduced by −2.53%, 19.81%, and 11.36%, respectively) and LeGO-LOAM (RMSEs 
in the X, Y, and plane directions are reduced by 16.49%, 6.59%, and 12.03%, respectively). 
However, the FGO method, which assigns the same weights to measurements of different 
qualities, achieves a positioning accuracy inferior to that of a single sensor (NINC-LS or 
LeGO-LOAM methods). Furthermore, if we define the availability as the error below 0.1 
m due to the temporal correlation between measurements and the redundant system 
measurements, the FGO method (74.95%) is far superior to the REKF method (57.36%). 

The advantages of the integrated positioning methods are manifested when the raw 
measurements are filtered once using the NLOS identification method. Both the NI-REKF 
and the NI-FGO methods achieve better accuracy than that of a single sensor. Compared 
with the conventional integrated model (REKF or FGO methods), the RMSEs of the posi-
tioning errors in the X, Y, and plane directions are reduced by 1.23%, 14.12%, and 7.69% 
and 38.74%, 37.62%, and 38.67%, respectively. Meanwhile, the NI-FGO method outper-
forms the NI-REKF method, reducing the RMSEs of the positioning errors in the X, Y, and 
plane directions by 15.00%, 13.70%, and 14.81%, respectively. 

Comparing the six UWB/LiDAR-SLAM integrated positioning methods, whether the 
REKF-based integrated framework or the FGO-based integrated framework, the proposed 
methods (NINC-REKF and NINC-FGO methods), which use the LOS and corrected 

Figure 14. Positioning errors of the NINC-LS (yellow), LeGO-LOAM (green), REKF (grey), NI-REKF
(cyan), NINC-REKF (magenta), FGO (orange), NI-FGO (blue) and NINC-FGO (red) methods: (a) X
direction, (b) Y direction, (c) plane direction, and (d) CDF of the positioning errors.

Table 4. Accuracy evaluation of the NINC-LS, LeGO-LOAM, REKF, NI-REKF, NINC-REKF, FGO,
NI-FGO and NINC-FGO methods.

NINC-LS LeGO-
LOAM REKF NI-REKF NINC-

REKF FGO NI-FGO NINC-
FGO

RMSE (m)
X 0.079 0.097 0.081 0.080 0.071 0.111 0.068 0.062
Y 0.106 0.091 0.085 0.073 0.069 0.101 0.063 0.060

Plane 0.132 0.133 0.117 0.108 0.099 0.150 0.092 0.086

Max (m)
X 0.444 0.239 0.383 0.299 0.262 2.584 0.294 0.259
Y 0.825 0.343 0.578 0.295 0.295 1.955 0.297 0.270

Plane 0.846 0.419 0.595 0.361 0.358 2.645 0.327 0.303
Availability 100% 100% 100% 100% 100% 100% 100% 100%

CDF
(<0.1 m) 60.31% 24.47% 57.36% 58.60% 63.44% 74.95% 75.23% 77.93%

As seen in Table 4, the REKF method significantly improves the positioning perfor-
mance of the integrated system by adjusting the measurement noise covariance matrix
to reduce the contribution of abnormal measurements to parameter estimation when the
UWB raw measurements polluted from NLOS errors are used directly as the input to the
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integrated system. It outperforms the NI-LS method (RMSEs in the X, Y, and plane direc-
tions are reduced by −2.53%, 19.81%, and 11.36%, respectively) and LeGO-LOAM (RMSEs
in the X, Y, and plane directions are reduced by 16.49%, 6.59%, and 12.03%, respectively).
However, the FGO method, which assigns the same weights to measurements of different
qualities, achieves a positioning accuracy inferior to that of a single sensor (NINC-LS or
LeGO-LOAM methods). Furthermore, if we define the availability as the error below
0.1 m due to the temporal correlation between measurements and the redundant system
measurements, the FGO method (74.95%) is far superior to the REKF method (57.36%).

The advantages of the integrated positioning methods are manifested when the raw
measurements are filtered once using the NLOS identification method. Both the NI-REKF
and the NI-FGO methods achieve better accuracy than that of a single sensor. Compared
with the conventional integrated model (REKF or FGO methods), the RMSEs of the posi-
tioning errors in the X, Y, and plane directions are reduced by 1.23%, 14.12%, and 7.69% and
38.74%, 37.62%, and 38.67%, respectively. Meanwhile, the NI-FGO method outperforms
the NI-REKF method, reducing the RMSEs of the positioning errors in the X, Y, and plane
directions by 15.00%, 13.70%, and 14.81%, respectively.

Comparing the six UWB/LiDAR-SLAM integrated positioning methods, whether the
REKF-based integrated framework or the FGO-based integrated framework, the proposed
methods (NINC-REKF and NINC-FGO methods), which use the LOS and corrected mea-
surements as the inputs to the integrated system, achieve optimal results in their respective
frameworks. Such improvements illustrate that the proposed methods for controlling the
sensor data quality (NLOS identification + NLOS correction) can effectively improve the
positioning performance of the UWB/LiDAR-SLAM integrated system. Compared with
the REKF and NI-REKF methods, the RMSEs of the NINC-REKF method in the X, Y, and
plane directions are reduced to 0.071 m, 0.069 m, and 0.099 m, respectively. Compared
with the FGO and NI-FGO methods, the RMSEs of the NINC-FGO method in the X, Y, and
plane directions are reduced to 0.062 m, 0.060 m, and 0.086 m, respectively. Similarly, the
NINC-FGO method achieves better results than the NINC-REKF method (RMSEs in the X,
Y, and plane directions are reduced by 12.68%, 13.04%, and 13.13%, respectively), and even
the NI-FGO method outperforms the NINC-REKF method (RMSEs in the X, Y, and plane
directions are reduced by 4.23%, 8.70%, and 7.07%, respectively), which fully demonstrates
the superiority of the FGO-based UWB/LiDAR-SLAM integrated model.

Since the system models are designed based on a tightly coupled model, the availability
of the six integrated methods is 100%. Similarly, if we define the availability as the error
below 0.1 m, then it can be seen from Figure 14d that the FGO-based integrated models
all outperform the REKF-based integrated models. The availability of the NINC-FGO
method is as high as 77.93%, which is better than that of any other method. In summary,
the NINC-FGO method performs best when both accuracy and availability are considered,
which fully verifies the superiority and accuracy of the proposed UWB/LiDAR-SLAM
integrated system.

4. Conclusions

A UWB/LiDAR-SLAM integrated system is an effective solution to address the dif-
ficulty of precise positioning in GNSS-denied environments. However, the existence of
UWB NLOS errors will affect the accuracy and effectiveness of the integrated system to
varying degrees. For better fusion, we do the following. First, we use our previous work on
UWB NLOS identification and exclusion to strictly control the data quality of the system
input. Second, considering that the system positioning accuracy is affected not only by
the ranging accuracy but also by the geometric distribution of UWB anchors, we calculate
the HDOP value of the remaining LOS anchors to evaluate the layout accuracy. Then,
for a poor geometric distribution, we propose an NLOS correction method using a grey
prediction model. The high accuracy and robustness of the integrated system are effectively
maintained by increasing the measurements. Finally, an FGO-based UWB/LiDAR-SLAM
tightly coupled integrated system is designed. The evaluations of the dynamic positioning
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experiment show the following. (1) The corrected measurements constructed using the grey
prediction model maintain almost the same ranging accuracy as the LOS measurements.
The NINC-LS method using the LOS and corrected measurements as the system inputs
also achieves satisfactory results, with the RMSE in the plane direction reduced to 0.132
m and the availability of errors below 0.1 m reaching 60.31%, proving the effectiveness of
the proposed NLOS correction method. (2) The proposed FGO-based integrated models
are all superior to the REKF-based integrated models. The NINC-FGO method takes the
optimal positioning effect and robustness, with an RMSE of 0.086 m in the plane direction
and 77.93% availability of errors below 0.1 m, thus fully demonstrating the superiority of
the proposed method. In the future, our work will include the integration of the existing
integrated system with low-cost inertial measurement units (IMUs) to enhance the accuracy
and robustness of the positioning system in highly dynamic and degrading environments.
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