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Abstract: The classical multiple signal classification (MUSIC) algorithms mainly have two limitations.
One is an insufficient number of snapshots, which usually causes an ill-posed sample covariance
matrix in many real applications. The other limitation is the intense space-colored and time-white
noise, which also breaks the separability between signal and noise subspaces. In the case of the
insufficient sample, there are few signal components in the non-zero delay sample covariance
matrix (SCM), where the space-colored and time-white noise components are suppressed by the
temporal method. A set of non-zero delay sample covariance matrices are constructed, and a
nonlinear object function is formulated. Hence, the sufficient non-zero delay SCMs ensure that enough
signal components are used for signal subspace estimation. Then, the constrained optimization
problem is converted into an unconstrained one by exploiting the Lagrange multiplier method.
The nonlinear equation is solved by Newton’s method iteratively. Moreover, a proper initial value
of the new algorithm is given, which can improve the convergence of the iterative algorithm. In
this paper, the noise subspace is removed by the pre-projection technique in every iteration step.
Then, an improved signal subspace is obtained, and a more efficient MUSIC algorithm is proposed.
Experimental results show that the proposed algorithm achieves significantly better performance
than the existing methods.

Keywords: non-zero delay SCM; pre-projection technique; subspace; MUSIC; space-colored and
time-white noise

1. Introduction

Spatial spectrum estimation is an important research field in array signal process-
ing [1–53]. In the past few decades, spatial spectrum estimation has been widely used in
radar, wireless communication, sonar, hyperspectral image processing [54,55], and many
other areas [2,3,5]. The core of this technique is to estimate the parameters of targets [5–9].

The spatial spectrum of the MUSIC algorithm has high resolution [1,4]. Usually, the
MUSIC algorithm [1] estimates the subspace by eigenvalue decomposition (EVD) of a
single sample covariance (correlation) matrix [1,3,5,10,30]. Meanwhile, the uniformity or
consistency of the smallest eigenvalues is used to determine the dimension and select the
basis vectors of the noise subspace. One of the key elements of MUSIC is the orthogonality
between signal and noise subspaces, which is used to design the spatial spectrum func-
tion [1,3,5]. Then, the function peaks are determined by scanning multiple local maximum
points with suitable step sizes, and the locations of the peaks correspond to the direction
of arrival (DOA) [1–3,5,6,8,13,18,20]. It can be seen that the performance of the classical
MUSIC algorithm depends heavily on the accuracy of the estimated subspace [1,2,5].

The signal subspace is spanned by the eigenvectors associated with the largest eigen-
values of the sample covariance matrix (SCM), and its dimension should be equal to the
number of targets [5,8–10]. Similarly, the noise subspace is formulated by the eigenvectors
associated with the smallest eigenvalues of the SCM. If insufficient snapshots are received,
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the SCM will be deficiently estimated, and the uniformity of all the corresponding smallest
eigenvalues will be broken, resulting in significant performance degradation of the relative
algorithms [2,3,6,9,21,23,40].

In recent years, machine learning (ML) and deep learning (DL) have received consid-
erable attraction [5,6,8,10]. ML and DL adopt learning-based and data-driven architectures,
which can learn the non-linear relationship between input and output data. DOA esti-
mation via DL is considered in [5], where a multilayer perception (MLP) architecture is
proposed to deal with two target signals. In [6], the authors study the same problem by
exploiting the sparsity of the received signal in the angular domain and designing a deep
convolutional neural network (CNN). A single target case is assumed in [8], and a cognitive
radar scenario is considered, where DL is applied for sparse array selection and DOA
estimation. However, the computational complexity of algorithms [5,6,8,10] dramatically
increases with the number of targets.

Many DOA estimation algorithms [10–13,16,23,33,48–52] have been proposed in the
corresponding period. In [10], the conjugate subspace is introduced into two-dimensional
MUSIC (2D-MUSIC), and a half spatial spectrum search strategy is applied to reduce
computation complexity, but the algorithm is only suitable for uncorrelated sources.
In [9,20], the authors utilize compressive sensing and sparse representation [48–52] to
resolve the two-dimensional DOA estimation problem. Several two-dimensional DOA
estimation algorithms based on the L-shaped planar array (with a larger aperture) are
proposed [12,19,20,25,32,33,35,36], which have low computational complexity. In [30], the
auto-correlation and cross-correlation information is used, and an efficient algorithm is pro-
posed to deal with the DOA estimation problem. In [31], the augmented covariance matrix
is employed, and then the two-dimensional DOA estimation problem is converted into
two one-dimensional estimation problems. In [13,24,25], a non-circular high-order singular
value decomposition (HOSVD) algorithm is developed for DOA estimation. However, the
computational complexity of the algorithm [13,24,25,48–52] is very high.

Initially, the design of the above algorithms [10–25] assumes that the space-colored
and time-white noise is not present in observations. However, the received data vectors are
sometimes contaminated by space-colored and time-white noise in real applications [48–52],
such as radar and sonar. Hence, the performance of these algorithms [10–25] may be
severely degraded in this case [34,36–52].

Several DOA estimation algorithms that can work in space-colored and time-white
noise circumstances have been developed [37–50]. In [37], the authors formulate the
DOA estimation problem as an off-grid sparse model and handle it by sparse Bayesian
learning. The joint DOA and direction of departure (DOD) estimation method [38] is
proposed, which can eliminate space-colored and time-white noise by three-transmitter
configurations. The joint DOD and DOA estimation method is studied in [40], which
utilizes the multi-dimension structure inherent in observations to eliminate the impact of
space-colored and time-white noise. In [39], the interrelationship between the two one-
dimensional estimating signal parameters via rotational invariance techniques (ESPRIT) is
exploited to automatically obtain paired DOA and DOD estimation without decreasing
the performance of angle estimation. These algorithms [36,38,39,43,44] use a non-zero
delay SCM to handle angle estimation problems and perform well under spatial colored
noise circumstances.

The space-colored and time-white noise can be eliminated by exploiting the uncor-
related temporal property [36,38–41,44]. Some signal components may be missing in one
non-zero delay SCM, especially for an insufficient number of snapshots. Fortunately, in
the non-zero delay SCM sets, the probability of missing a signal component is extremely
small. Thus, a set of non-zero delay SCMs has been developed to obtain an accurate signal
subspace. In this paper, the pre-projection technique is employed to remove the adverse
effect of the pure noise subspace. Based on this, an efficient MUSIC algorithm with an
accurate subspace is developed in this paper, and a suitable initial value is calculated for
the new subspace estimation algorithm.
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The rest of the paper is organized as follows. Problem formulation is presented in
Section 2.1, where the classical MUSIC is overviewed, and in Section 2.2, the motivations of
our work are introduced. Then, the iterative subspace estimation algorithm and an efficient
MUSIC algorithm are formulated. Section 3 shows the experimental results. Section 4 gives
the discussion of this paper. Section 4 concludes this paper.

2. Materials and Methods
2.1. Problem Formulation

Without losing generality, this paper considers a uniform linear array (ULA) composed
of M omnidirectional antennas. There are P narrow-band far-field plane waves that impinge
on the system with different DOAs. The received data vector at the l-th snapshot is
represented as

x(l) = Aθs(l) + n(l) (1)

where A = [a1(θ1), a2(θ2), · · · , aP(θP)] ∈ CM×P, ap
(
θp
)
∈ CM×1 is the signal steering

vector (SSV) of the p-th far-field point source, θ = [θ1, θ2, · · · , θP] are the DOAs of the
targets, and (•)T is the transpose operator. s(l) ∈ CP×1 is the transmitted source vector
sequence, and n(l) ∈ CM×1 represents the space-colored and time-white noise vector
sequence.

Usually, it is assumed that the space-colored and time-white noise vector sequences
(at different snapshots) are complex and conform to Gaussian distribution. Moreover,
n(l) ∈ CM×1 is equipped with zero-mean and unknown covariance C ∈ CM×M.

E
{

n(li)n
(
lj
)H
}
=

{
C i = j
0 i 6= j

(2)

where E(•) and (•)H, respectively, denote the expectation operator and complex conjugate
transpose operator.

Moreover, it is assumed that the source and noise vectors are mutually independent
of each other. Then, the ideal covariance matrix of the received data vectors can be
expanded into

R = E
{

x(l)x(l)H
}
= ARsA + C (3)

where Rs = E
{

s(l)s(l)H} ∈ CP×P. In practice, the ideal covariance matrix is unavailable.
Hence, many studies employ the sample covariance matrix instead of the expected covari-
ance matrix to estimate signal and noise subspaces in most cases. The sample covariance
matrix (SCM) is given by

R̂ =
1
L

L

∑
l=1

x(l)x(l)H (4)

where L is the number of snapshots.
The eigenvalue decomposition (EVD) of R̂ is expressed as

R̂ = UΛUH =
_
Us

_
Λs

_
U

H

s +
_
Un

_
Λn

_
U

H

n (5)

where Λ =

[_
Λs 0

0
_
Λn

]
= diag(λ1, · · · , λM) ∈ CM×M consists of the eigenvalues of

SCM that are arranged in descending order λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, and U =[
_
Us,

_
Un

]
∈ CM×M is the corresponding eigenvector matrix. The diagonal matrix

_
Λs =

diag(λ1, · · · , λP) ∈ CP×P is formed by the first P largest eigenvalues, and the diagonal

matrix
_
Λn = diag(λP+1, · · · , λM) ∈ C(M−P)×(M−P) consists of the last M − P smallest

eigenvalues. Here,
_
Us ∈ CM×P is constructed by the eigenvectors associated with the
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first P largest eigenvalues, and
_
Un ∈ CM×(M−P) is formed by the eigenvectors associated

with the last M − P smallest eigenvalues. Since R̂ is at least a positive semi-definition

matrix,
_
Us ∈ CM×P and

_
Un ∈ CM×(M−P) must be the unitary matrix. Thus, we have

_
U

H

s
_
Us = IP ∈ CP×P,

_
U

H

s
_
Un = 0 ∈ CP×(M−P), and

_
U

H

n
_
Un = IM−P ∈ C(M−P)×(M−P),

where IP is a P × P identity matrix.
Furthermore, if there is a significant difference between the first P largest eigenvalues

and the last M − P smallest eigenvalues, in the conventional additive white Gaussian noise
case, the eigenvalues related to pure noise (eigenvalues related to signal) can be easily

distinguished according to the obvious difference. Then, the noise subspace
_
Un ∈ CM×P

(signal subspace Us ∈ CM×P) is obtained.
For example, the classical MUSIC algorithms assume that the first P largest eigenvalues

and the last M − P smallest eigenvalues are non-uniform and approximately uniform,
respectively. In this desired case, the first P largest eigenvalues are associated with the
signal power plus partial noise power. The last M − P smallest eigenvalues are only
associated with the pure noise power. Thus, the dimension M− P of the noise subspace
_
Un is determined by evaluating the uniformity of the eigenvalues (corresponding to pure
noise), where the uniformity satisfies λP+1 = λP+2 = · · · = λM. Under such a case, the

columns of
_
Us ∈ CM×P and

_
Un ∈ CM×(M−P) represent the basis vectors of the signal and

the noise subspaces, respectively. Correspondingly, the eigenvector matrix
_
Us ∈ CM×P and

_
Un ∈ CM×(M−P) are called the signal and noise subspaces, respectively.

In real applications, there is a desired relation

aH(θ)Un ≈ 0 (6)

where a(θ) is the signal steering vector (SSV). The spatial spectrum scanning function of
the MUSIC algorithm is given by

max
θ

PMUSIC(θ) =
1

aH(θ)UnUH
n a(θ)

(7)

Interestingly, the first few largest peaks of PMUSIC(θ) are particularly sharp. Therefore,
the MUSIC algorithm can achieve super-resolution in comparison with the beamform-
ing technique.

Remark 1: It can be seen from experiments that the DOA estimate almost equals the actual one if
the estimated noise subspace is accurate enough. However, there are two limitations: insufficient
snapshots and intense space-colored and time-white noise. Insufficient snapshots will lead to the
ill-posed R̂ and will make all the eigenvalues of R̂ non-uniform. For this case, a clear difference
between the first P largest eigenvalues and the last M− P smallest eigenvalues does not exist. Hence,
it is challenging to divide the signal subspace and the noise subspace correctly. More seriously,
strong space-colored noise will cause one or more eigenvalues of the first P largest ones only related
to noise, while the eigenvalues related to the signal (plus noise) are presented in the M− P last
smallest ones. Therefore, the signal and the noise subspaces are overlapped and undivided. A method
for estimating the signal subspace or noise subspace more accurately is urgently needed for MUSIC.

2.2. Proposed Algorithm
2.2.1. Enhanced MUSIC Algorithm

The main motivation for this work is twofold. On the one hand, in the ideal case, the
complex vector sequences n(l) are spatial colored and conform to temporal-white Gaussian
distribution with an unknown covariance matrix C = C(0) = E

{
n(l)n(l)H} 6= 0 . How-

ever, the non-zero delay covariance matrix is C(τ) = E
{

n(l)n(l − τ)H
}
= 0 (τ 6= 0). The

classical MUSIC algorithm uses R to estimate the subspace, which requires C = σ2
nIM (σ2

n
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denotes the noise power), i.e., the separability between the signal and the noise subspaces.
If ARsA is not a full-rank matrix, the smallest eigenvalues of R are uniform. However, if C
is a common complex matrix, then the smallest eigenvalues of R are often non-uniform.
Thus, the separability between the signal subspace and the noise subspace is broken, which
significantly degrades the accuracy of the estimated signal subspace or the noise subspace.
However, the non-zero delay covariance matrix is C(τ) = E

{
n(l)n(l − τ)H

}
= 0 (τ 6= 0),

which indicates that a less negative impact of the noise component is imposed on the
non-zero delay SCMs R(k) = E

{
x(l)x(l + k)H

}
. Hence, an improved subspace can be

extracted from the non-zero delay SCMs.
On the other hand, experiments show that the signal components may be missing in a

non-zero delay SCM, but the signal components always exist in the set of non-zero delay
SCMs when the number of received samples is insufficient. Hence, a more accurate signal
subspace can be obtained in this case by using the non-zero delay SCMs instead of only a
non-zero delay SCM.

However, the expected non-zero delay SCM is also unavailable. Referring to relation
(4), this paper uses the following non-zero delay SCM instead of the ideal non-zero delay
SCM to obtain the subspace

R̂(k) =
1

L− k

L−k

∑
l=1

x(l)x(l + k)H (8)

R̂(k) is also an autocorrelation matrix (R̂(k) = R̂(−k)), if the samples are composed of
stationary random processes. Hence, when k ≥ 0, only the non-zero delay SCMs need to
be calculated.

The non-zero delay SCMs R̂(k) are reformulated as

R̂(k) ≈ AR̂s(k)AH + Ĉ(k) (9)

In random theory, Ĉ(k) ∈ CM×M should be equal to the zero matrix. However, since
only limited samples are used to construct R̂(k), Ĉ(k) is not equal to the null matrix in
practice. Let matrix Us ∈ CM×P consist of the basis vectors of the signal subspace, and
the matrix Un ∈ CM×(M−P) be formed by all the basis vectors of the noise subspace. Then,[
Us, Un

][
Us, Un

]H
= IM and A = UsT, where T ∈ CP×P denotes a matrix with full rank.

Let B(k) = UH
s AR̂s(k)AHUs ∈ CP×P, C1(k) = UH

s Ĉ(k)Us ∈ CP×P, C2(k) = UH
s Ĉ(k)UH

n ∈
CP×(M−P), C3(k) = UH

n Ĉ(k)Us ∈ C(M−P)×P, and C4(k) = UH
n Ĉ(k)Un ∈ C(M−P)×(M−P).

Moreover, (9) can be further expressed as
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The above expression shows that the pure noise part in (10) can be removed by such 
pre-projection. 

Inspired by (12), this paper builds the following objective function to take full ad-
vantage of multiple non-zero delay SCMs and the pre-projection technique: 

( ) ( )
2H

1
H
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.

K

k

P

J k

s t
=

 =

 =

E E R E

E E I
 (13)

where M P×∈E   is the signal subspace with full column rank, and it can be obtained by 
solving (13). Let { }tr •  represent the matrix trace operator. Then, the following uncon-
strained optimization relation can be deduced by using the Lagrange multiplier method: 

( ) ( ) ( ){ } ( ){ }H H H H

1

ˆ ˆ, tr tr
K

P
k

J k k
=

   = − −   E Λ E E E E E E I ΛR R   (14)

where Λ  is the Lagrange multiplier matrix. Let the gradient of ( ),J E Λ  with respect to 
HE  be equal to zero, and we have the following characteristic equation: 

( ) ( ) ( ) ( )H H H H

1

ˆ ˆ ˆ ˆ
K

k
k k k k

=

 + − = 
 
R EE R R EE R E EΛ 0  (15)

(10)

When some signal components of R̂(k) do not exist, B(k) is not a full-rank matrix. To
avoid this undesired situation, a fused matrix is defined in this paper:
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where Λ  is the Lagrange multiplier matrix. Let the gradient of ( ),J E Λ  with respect to 
HE  be equal to zero, and we have the following characteristic equation: 

( ) ( ) ( ) ( )H H H H

1

ˆ ˆ ˆ ˆ
K

k
k k k k

=

 + − = 
 
R EE R R EE R E EΛ 0  (15)

(11)
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Note that the above equation is derived based on UH
s Un = 0, UH

s Us = IP, and
UH

n Un = I(M−P)×(M−P). It can be seen from (10) and (11) that the presence of the second
term on the right side may reduce the accuracy of the estimated signal subspace.

If E = Us, the pre-projection expression EHR̂(k)E is written as
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The above expression shows that the pure noise part in (10) can be removed by such 
pre-projection. 

Inspired by (12), this paper builds the following objective function to take full ad-
vantage of multiple non-zero delay SCMs and the pre-projection technique: 

( ) ( )
2H

1
H

ˆmax

.

K

k

P

J k

s t
=

 =

 =

E E R E

E E I
 (13)

where M P×∈E   is the signal subspace with full column rank, and it can be obtained by 
solving (13). Let { }tr •  represent the matrix trace operator. Then, the following uncon-
strained optimization relation can be deduced by using the Lagrange multiplier method: 

( ) ( ) ( ){ } ( ){ }H H H H

1

ˆ ˆ, tr tr
K

P
k

J k k
=

   = − −   E Λ E E E E E E I ΛR R   (14)

where Λ  is the Lagrange multiplier matrix. Let the gradient of ( ),J E Λ  with respect to 
HE  be equal to zero, and we have the following characteristic equation: 
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1

ˆ ˆ ˆ ˆ
K

k
k k k k

=

 + − = 
 
R EE R R EE R E EΛ 0  (15)

(12)

The above expression shows that the pure noise part in (10) can be removed by such
pre-projection.

Inspired by (12), this paper builds the following objective function to take full advan-
tage of multiple non-zero delay SCMs and the pre-projection technique: maxJ(E) =

K
∑

k=1

∥∥EHR̂(k)E
∥∥2

s.t EHE = IP

(13)

where E ∈ CM×P is the signal subspace with full column rank, and it can be obtained by
solving (13). Let tr{•} represent the matrix trace operator. Then, the following uncon-
strained optimization relation can be deduced by using the Lagrange multiplier method:

J
(
E, Λ̃

)
=

K

∑
k=1

tr
{[

EHR̂H
(k)E

][
EHR̂(k)E

]}
− tr

{(
EHE− IP

)
Λ̃
}

(14)

where Λ̃ is the Lagrange multiplier matrix. Let the gradient of J
(
E, Λ̃

)
with respect to EH

be equal to zero, and we have the following characteristic equation:{
K

∑
k=1

R̂H
(k)EEHR̂(k) + R̂(k)EEHR̂H

(k)

}
E− EΛ̃ = 0 (15)

It can be seen that it is difficult to obtain the analytical solution to the nonlinear
Equation (15). Hence, (15) should be solved by the iterative formula:{

K

∑
k=1

R̂(k)V(n− 1)VH(n− 1)R̂H
(k) + R̂H

(k)V(n− 1)VH(n− 1)R̂(k)

}
V(n) = V(n)Λ (16)

where V(n− 1) is the result of the (n−1)-th iteration.
Fix V(n− 1), and then Equation (16) describes an EVD of{

K
∑

k=1
R̂(k)V(n− 1)VH(n− 1)R̂H

(k) + R̂H
(k)V(n− 1)VH(n− 1)R̂(k)

}
. It is well known

that Newton’s method approximately solves the stationary point at each step, as does our
method (16).

Thus, the new iterative algorithm is proposed and described as follows.
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Let V(0) = [v1(0), v2(0), · · · , vP(0)] ∈ CM×P denote the initial value of the new
algorithm, where a proper initial matrix V(0) consists of the first P left singular vectors of
R̃ =

[
R̂(1), · · · , R̂(K)

]
. Without losing generality, the (n − 1)-th iteration is represented as

G =

{
K

∑
k=1

R̂(k)V(n− 1)VH(n− 1)R̂H
(k) + R̂H

(k)V(n− 1)VH(n− 1)R̂(k)

}
(17)

The eigenvalue decomposition of G is formulated as

G = U(n)Λ(n)UH(n) (18)

where Λ(n) = diag([λ1(n), λ2(n), · · · , λM(n)]), λ1(n) ≥ λ2(n) ≥ · · · λM(n) ≥ 0, and
U(n) is the eigenvector matrix of G. V(n) is composed of the first P columns of U(n), and
it can be expressed as

V(n) = U(:, 1 : P) (19)

Thus far, one iteration from V(n− 1) to V(n) has been completed. The iterative
process can be repeated until the algorithm meets the convergence condition. This paper
sets the threshold as ε (0 < ε < 1). When

∥∥V(n)VH(n)−V(n− 1)VH(n− 1)
∥∥

F ≤ ε, the
iteration terminates. Hence, the estimated signal subspace is expressed as Vs = V(n), and
the spatial spectrum of the enhanced MUSIC algorithm can be given by

PPROPOSED(θ) =
1

aHVnVH
n a

=
1

aH(I−VsVH
s )a

=
1

aHa− aHVsVH
s a

(20)

Algorithm 1 illustrates the details.
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2.2.2. Computational Complexity

The computational load of the conventional MUSIC algorithm mainly consists of three
parts: building the zero-delay SCM R̂, estimating noise subspace, and scanning operators.
Constructing R̂ requires M2L flops (a flop indicates a floating-point multiplication [1,10,15]).
Calculating the noise subspace needs O

(
M3) + M2P flops, and scanning one direction

needs 2M + M2 flops.
Similarly, the computational complexity of the new algorithm consists of three parts.

Constructing non-zero delay SCMs needs M2
K
∑

k=1
(L− k) = M2K 2L−K−1

2 flops, calculating

the signal subspace requires 2M2KP +O
(

M3) flops in a single iteration, and the remaining
computational complexity is 2M + M2 (in one direction).

Since the number of targets is very small, the new and classical MUSIC algorithms
have the same order of computational complexity. The new algorithm usually takes
3–5 iterations to reach the convergence threshold, and it can obtain a more accurate sub-
space and higher resolution at the cost of higher computational complexity. With the
continuous improvement of modern computing power, the increased computational com-
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plexity of the new algorithm is acceptable, and the proposed algorithm can achieve better
performance in the presence of spatial color noise.

3. Results

Twenty elements are uniformly distributed on the ULA, where the space of adjacent
elements is a half wavelength. The noise is complex time-white Gaussian, where the
covariance matrix C is a random matrix on each simulation. Ten non-zero delay sample
covariance matrices are constructed in the simulation, and it is assumed that there are
three targets with plane wave-fronts impinging on the system from −30◦, 0◦, and 50◦,
respectively. In the experiments, 100 independent runs are used to obtain each point of the
curve. The performance of [50–52,54,55], MUSIC, and the proposed algorithm is shown in
this section.

3.1. Experiment 1: Subspace Accuracy

The formulation of the signal subspace [1,3,5] is given by

Ũs = A
(

AHA
)− 1

2 (21)

where A ∈ CM×P is the array manifold matrix. The projection matrix of Ũs is expressed
as Ps = ŨsŨ

H
s . Similarly, the n-th independent simulation estimated signal subspace is

denoted as V̂n, and the corresponding projection matrix is represented as P̂n = V̂nV̂H
n .

Hence, the accuracy of the signal subspace is expressed as

10 log10

√√√√( 1
N

N

∑
n=1

∥∥Ps − P̂n
∥∥2

F

)
(22)

Figure 1 illustrates the accuracy of the signal subspace versus signal–noise ratio (SNR).
It can be seen from Figure 1 that the proposed algorithm can improve the subspace accuracy
up to 1dB when the number of snapshots is fixed at 40. The accuracy of the signal subspace
versus snapshots is shown in Figure 2. Obviously, the curves of Figure 2 indicate that
the proposed algorithm achieves better performance than the conventional one, and it
increases the accuracy by around 1dB when the input SNR is−10dB. It also can be seen that
the subspace accuracy of the proposed algorithm is the same as that of the conventional
algorithm at the lowest (the highest) input SNR. The most important and meaningful
observation is that the proposed algorithm can achieve better performance at a moderate
input SNR, and many systems work in this case. Two factors lead to this result. One factor
is that the proposed algorithm employs sufficient non-zero delay SCMs estimating the
subspace, while the conventional algorithm only uses an SCM (which is contaminated by
spatial colored noise) to calculate the subspace. The other factor is that the pre-projection
technique is introduced in the new algorithm.
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3.2. Experiment 2: The Number of Iterations of the Proposed Algorithm

Figure 3 shows the number of iterations versus the input SNR, where the number
of snapshots is set as 40. The number of iterations versus the number of snapshots is
illustrated in Figure 4, where the input SNR is fixed at −10dB. It can be seen from Figures 3
and 4 that the new algorithm needs more iterations to reach the convergence condition
in the low input SNR region. In this experiment, 100 independent runs are performed to
obtain each point of the curve, so the number of iterations is not an integer. Interestingly,
the proposed algorithm only takes a few steps to meet the iteration end condition in most
cases. Moreover, the noise level of many radar systems is from −15 dB to 10 dB. Overall,
the new algorithm only takes a few steps to meet the final iteration in most cases.
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3.3. Experiment 3: Root Mean Square Error

The root mean square error (RMSE) is given by

10 log10

P

∑
p=1

1
P

√√√√ 1
N

N

∑
n=1

(
θ̂p(n)− θp

)2
(23)

where N = 100 represents the number of independent trials; P = 3 denotes the number of
targets; θp is the actual DOA of the p-th far-field target; θ̂p(n) is the n-th estimated DOA of
the p-th far-field target.

Figure 5 shows the RMSE versus the input SNR, where the number of the snap-
shots is fixed at 40. Figure 6 exhibits the RMSE versus the number of snapshots, where
SNR = −10dB.
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It can be seen from Figures 5 and 6 that our algorithm outperforms the conventional
MUSIC algorithm, the algorithms proposed in 50, 51, and other existing algorithms. The
classical SBLA method fails to work, and the performance of the MUSIC algorithm and
other existing algorithms degrades severely under the case of spatial colored and temporal-
white Gaussian noise.

By contrast, our algorithm gives higher resolution and is more robust against the
spatial colored and temporal-white Gaussian noise. The reason that the MUSIC, SPICE,
and other existing algorithms have a low resolution is that they do not consider the spatial
colored and temporal-white Gaussian noise.

The sparse Bayesian algorithm does not need prior knowledge such as the number of
sources and does not require a few snapshots.

However, the RMSE is heavily dependent on the size of the overcomplete basis vectors.
Moreover, these algorithms have lower computational efficiency than subspace-based
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algorithms because they use time-consuming nonlinear iterative steps. The RMSE of the
proposed algorithm is superior to that of MUSIC owing to its better subspace.

In addition, the spatial colored noise significantly impacts the performance of the
Bayesian algorithm.

3.4. Experiment 4: Spatial Spectrum

Twelve elements are uniformly distributed on the outer circular array, where the radius
is 0.9 of the wavelength. Another six sensors are equally located in the inner circular array,
where the radius is 0.5 of the wavelength. This study constructs 10 non-zero delay sample
covariance matrices. In the first three experiments, 100 independent runs are performed to
obtain each point. It is assumed that four targets with plane wave-fronts impinge on the
system from (18◦, 15◦), (58◦, 15◦), (18◦, 35◦), and (58◦, 35◦), respectively.

Figure 7 shows the spatial spectra of both algorithms at different input SNRs, where
the number of snapshots is 30. Figure 8 shows the spatial spectra at different snapshots
when the input is −5dB. It can be seen from Figures 7 and 8 that the estimated spatial
spectra of the new algorithm are higher than those of the conventional MUSIC algorithm
under the same circumstance. The proposed algorithm has a higher resolution than the
classical MUSIC algorithm.

3.5. Experiment 5: Probabilities of Successful Discrimination (PSD)

In the first case, the elevation is fixed at 30◦, and the azimuth difference between the
two targets is gradually increased. In the second case, the azimuth at 100◦ is specified, and
the elevation difference of both targets is continuously expanded. Since the step size is set
at 1◦, when the error is less than 2◦, successful discrimination is obtained (the configuration
of the experiment is the same as that in Experiment 4).

Figures 9 and 10 show the PSD of the new and conventional MUSIC algorithms. It can
be seen that the resolution of the proposed algorithm is superior to that of the conventional
algorithm.
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