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Abstract: Triple collocation analysis is an established technique for calculating the relative linear
intercalibration coefficients and observation error variances for physical quantities measured si-
multaneously in space and time by three different observation systems. A simple parameterized
error model is used. It relies on a few assumptions, one of which is that the observation errors are
independent of the magnitude of the observed quantities. This is referred to as error orthogonality.
Using an ocean surface vector winds data set of 44,948 collocations, this study shows that the violation
of error orthogonality does affect the calibration coefficients but has only a small second-order effect
on the observation error variances of the calibrated data.
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1. Introduction

Triple collocation is a powerful technique for calculating the observation error vari-
ances and linear intercalibration coefficients of a physical quantity measured by three
different observation systems at the same time and place. It was introduced by Stoffelen [1]
for ocean surface vector winds and later applied by [2] to estimate the accuracy of high-
resolution scatterometer wind products. In the past years the technique has been applied
on an increasing number of geophysical quantities like ocean surface wind speed [3], ocean
surface current [4], sea surface salinity [5], precipitation [6,7], soil moisture [8,9], ground-
water storage [10], etc. The list of references is far from complete, and the interested reader
is referred to the references and the references therein.

Triple collocation has been extended to include a generalization of the correlation
coefficient known from linear regression analysis [11]. Extensions to more than three
collocated measurement systems have also been proposed [4,12], but these fall outside the
scope of this paper.

Triple collocation relies on the following assumptions:

(1) Linear calibration is sufficient to describe the interrelations between the observation
systems;

(2) The observation errors are random with zero average after calibration;
(3) The observation errors are independent of the measured value (error orthogonality).

When deriving the triple collocation equations, one usually applies all approximations
as soon as possible in order to simplify the algebra, arguing that the sufficiency of linear
calibration can be judged from scatter plots and that error orthogonality is hard to check.
To the best of the authors’ knowledge, the effect of violation of error orthogonality (further
referred to as error non-orthogonality) has never been tested. The aim of this short paper
is to fill this gap. It will be shown that error non-orthogonality can be included in the
triple collocation covariance equations in an elegant and concise manner. The effect of
error non-orthogonality will be studied for a data set consisting of all buoy, OSCAT-25, and
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis
ERA5 forecast collocations in 2013 [12,13].
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The paper is organized as follows. Section 2 contains a brief description of the data
used. In Section 3 error orthogonality is included in the covariance equations for triple
collocation analysis. Representativeness errors are defined and included, and the method
of solution is briefly described. The results are presented and discussed in Section 4. The
paper ends with the conclusions in Section 5.

2. Data

The data set used in this work consists of 44,948 collocations of buoy surface winds
data obtained from ECMWF’s archive, called Meteorological Archival and Retrieval System
(MARS), reprocessed OSCAT winds on a 25 km grid, and ERA5 forecast winds, all in 2013.
OSCAT is a rotating pencil-beam Ku-band scatterometer carried by the Oceansat-2 satellite
operated by the Indian Space Research Organization (ISRO). Oceansat-2 was launched
23 September 2009, and delivered data from 16 December 2009 until instrument breakdown
on 14 February 2014. The data were reprocessed in 2021 at KNMI with the Pencil-beam
Wind data Processor (PenWP) and collocated with the buoy and ERA-5 forecasts. The
ERA5 forecasts were interpolated quadratically in time and bilinear in space to the time
and position of the OSCAT measurements. The forecasts had a minimum lead time of three
hours to avoid using forecasts in which the OSCAT data were assimilated. The collocation
criteria were a maximum difference of 30 min in time and 17.7 km (

√
1/2 times the grid

size) in position for the buoy and OSCAT measurements. See [14] for more information.

3. Methodology
3.1. Triple Collocation with Error Non-Orthogonality

The error model employed here is the canonical model

xi = ai(t + εi) + bi (1)

where xi is the measurement by system i, i = 1, 2, 3, ai the calibration scaling, bi the
calibration bias, t the common signal measured by all three systems (also referred to as
“truth”, but that term may be misleading as t is determined by the system with coarsest
resolution), and εi a random measurement error with zero average and variance σ2

i .

If εi consists of a constant part ε
(0)
i and a t-dependent part ε

(1)
i (t), εi = ε

(0)
i + ε

(1)
i (t),

the t-dependent part will be added to t in the error model (1). Compared with the other
systems, the calibration of system i will appear different because the dependency xi to
t has changed. The error model thus implicitly removes error non-orthogonality, and
it is not possible to retrieve ε

(1)
i (t) from it. As a consequence, any information on error

non-orthogonality must come from other sources.
Without loss of generality, system 1 can be chosen as the reference system relative to

which systems 2 and 3 will be calibrated, so a1 = 1 and b1 = 0.
Taking first moments (averages) Mi = 〈xi〉, where the brackets stand for taking the

average (arithmetic mean) over all measurements, one obtains

Mi = ai〈t〉+ bi (2)

since 〈εi〉 = 0 because the random measurement errors have zero mean. Since a1 = 1 and
b1 = 0, Equation (2) implies that

〈t〉 = M1 (3)

Substituting this back in Equation (2) yields

bi = Mi − ai M1 (4)

so that the calibration biases b2 and b3 are known once we know the calibration scalings.
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To find the calibration scalings and the error variances σ2
i one must take second

moments Mij =
〈

xixj
〉
:

Mij = aiaj
〈
(t + εi)

(
t + ε j

)〉
+ aibj〈t + εi〉+ ajbi

〈
t + ε j

〉
+ bibj (5)

The terms with averaging brackets 〈 〉 are handled as follows. From Equation (3) it
follows that 〈t + εi〉 = M1. Further〈

(t + εi)
(
t + ε j

)〉
=
〈

t2
〉
+ τj + τi + eij (6)

where τi = 〈tεi〉 and eij =
〈
εiε j
〉
. Note that τi = 0 when the errors do not depend on the

measured value, the usual assumption. In the literature this is called error orthogonality,
so let’s call τi the error non-orthogonality of system i. Further, note that σ2

i = eii. The
calibration biases are removed by substituting Equation (4), and the result is

Mij = aiaj

〈
t2
〉
+ aiaj

(
τj + τi + eij

)
+ Mi Mj + aiaj M2

1 (7)

Introducing covariances Cij =
〈
(xi −Mi)

(
xj −Mj

)〉
= Mij − Mi Mj and common

variance T =
〈
t2〉−M2

1, Equation (7) yields the covariance equations

Cij = aiaj
(
T + τi + τj + eij

)
(8)

The usual form of the covariance equations is Cij = aiaj
(
T + eij

)
. In Equation (8), two

extra terms appear because the approximation of error orthogonality was not made. It
should be noted here that the covariances Cij are not unbiased; they can be made unbiased
by multiplying them by a factor n/(n− 1), with n the number of collocations. When n is
large, as is the case in this study with 44,948 collocations, the factor can safely be neglected.

For triple collocation, the error variances σ2
i = eii follow from the three diagonal

covariance equations as

σ2
i =

Cii

a2
i
− T − 2τi (9)

The three off-diagonal equations read

C12 = a2(T + τ1 + τ2 + e12) (10a)

C13 = a3(T + τ1 + τ3 + e13) (10b)

C23 = a2a3(T + τ2 + τ3 + e23) (10c)

Equations (10a)–(10c) are usually solved by assuming τi = eij = 0, and the solution reads

T =
C12C13

C23
, a2 =

C23

C13
, a3 =

C23

C12
(11)

From Equations (10a)–(10c), it is clear that error non-orthogonality’s and error covari-
ances will affect the calibration scalings and common variance, and this may in turn affect
the error variances.

3.2. Representativeness Errors

If the spatial, temporal or geophysical representation of the three systems is different,
representativeness errors must be taken into account [1,2,15]. Suppose that the systems
are ordered in decreasing spatial resolution with system 1 the buoys (calibration refer-
ence), system 2 the scatterometer, and system 3 the ERA-5 forecasts. Then systems 1 and
2 will measure a common signal r2 that is not observed by system 3 because of its coarser
resolution. This common signal is called the representativeness error or, sometimes, the
representativeness signal. It will appear as an error correlation e12 = r2 in Equation (10a).
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The representativeness errors in this study are estimated from differences in spatial vari-
ances [15,16]. For the OSCAT and ERA5 data mentioned above, they are 0.181 m2 s−2 for
the zonal wind component u and 0.145 m2 s−2 for the meridional wind component v.

3.3. Method of Solution

The triple collocation Equations (9) and (10) are solved in an iterative algorithm
that starts by assuming that the systems are well intercalibrated. In each iteration the
covariances Cij are recalculated using the calibration coefficients from the previous iteration
(or their starting values for the first iteration). Then the calibration coefficients are updated
and outliers may be removed, see [15] for more details. The iteration converges in about
7 steps. The final values for the observation error variances σ2

i are for the calibrated data;
those for the uncalibrated data can be obtained by dividing by a2

i .
As representativeness errors and error non-orthogonalities must be obtained from

other sources than the triple collocation analysis itself, they can be moved to the left-hand
side of Equations (10a)–(10c), so the covariance Equation (8) become

Cij −
τi + τj + eij

aiaj
= aiajT (12)

With the replacement

Cij → Cij −
τi + τj + eij

aiaj
(13)

the covariance equations can be solved as usual. In the solution scheme employed here,
the calibration coefficients are known in each iteration, at least approximately, so the
replacement Equation (13) can be applied without problems. Therefore, the effect of error
non-orthogonalities can be studied in the same way as that of representativeness errors or
error correlations by incorporating them in the covariances in each iteration step.

4. Results and Discussion

The effect of error non-orthogonality is studied by assuming that one of the observation
systems contains an error non-orthogonality τ that ranges from −1 m2 s−2 to +1 m2 s−2,
a range that is considerable with respect to the representativeness errors and the error
variances. This is repeated for all three systems.

Figure 1a,b show the effect of error non-orthogonality in the buoys, τ1, on the cal-
ibration biases, Figure 1c,d that on the calibration scalings, and Figure 1e,f that on the
observation error variances for the zonal wind component u (Figure 1a,c,e) and the merid-
ional wind component v (Figure 1b,d,f). Figures 2 and 3 are similar to Figure 1, but for
error non-orthogonality in OSCAT and in the ECMWF forecast, τ2 and τ3, respectively. The
figures show results for the observation error variances of the calibrated data.

In all figures, the calibration biases are only weakly affected by error non-orthogonality.
Note that the calibration bias of the buoys equals 0 as they were selected as calibration
reference. The effect on the bias depends on the dynamic range of t and hence differs for u
and v.

More effect of error non-orthogonality can be seen in the calibration scalings, as
expected. For error non-orthogonality in the buoys (Figure 1), the scaling of both scat-
terometer and ECMWF increases with increasing τ1, while for error non-orthogonality
in the scatterometer (Figure 2) or in the ECMWF forecasts (Figure 3), the calibration scal-
ing of the system having error non-orthogonality decreases with τ, the other systems
being unaffected.

This can be summarized as that error non-orthogonality only reduces the calibration
scaling of the system having it. If that system happens to be the calibration reference, as in
Figure 1, it will lift the other calibration scalings.
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Figure 1. Effect of the error non-orthogonality 𝜏ଵ in the buoys (system 1) for the calibration bias in 𝑢 (a), the calibration bias in 𝑣 (b), the calibration scaling in 𝑢 (c), the calibration scaling in 𝑣 (d), the 
observation error variance in 𝑢 (e), and the observation error variance in 𝑣 (f). 

Figure 1. Effect of the error non-orthogonality τ1 in the buoys (system 1) for the calibration bias in
u (a), the calibration bias in v (b), the calibration scaling in u (c), the calibration scaling in v (d), the
observation error variance in u (e), and the observation error variance in v (f).
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Figure 2. As Figure 1, but for error non-orthogonality τ_2 in OSCAT (system 2). Figure 2. As Figure 1, but for error non-orthogonality τ2 in OSCAT (system 2).
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Figure 3. As Figure 1, but for error non-orthogonality 𝜏ଷ in the ECMWF forecasts (system 3). 

The most surprising in Figures 1–3 is that the observation error variances are only 
very weakly affected by error non-orthogonality. Apparently, the effects of 𝜏 in Equations 
(9) and (10) largely cancel, and this can be understood by making a first-order Taylor 
expansion of the observation error variances 𝜎ଶ in 𝜏, 
Figure 3. As Figure 1, but for error non-orthogonality τ3 in the ECMWF forecasts (system 3).

The most surprising in Figures 1–3 is that the observation error variances are only very
weakly affected by error non-orthogonality. Apparently, the effects of τj in Equations (9) and (10)
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largely cancel, and this can be understood by making a first-order Taylor expansion of the
observation error variances σ2

i in τj,

σ2
i
(
τj
)
= σ2

i (0) + τj
dσ2

i
dτj

∣∣∣∣∣
τj=0

+ O(τ2
j ) (14)

For example, let j = 1. From Equation (14) one readily finds that

σ2
1 (τ1) ≈ σ2

1 (0) + τ1

(
C12 + C13

C23
− 2
)

(15)

Now the off-diagonal covariances are all equal to each other when the triple collocation
algorithm has converged, because then the calibration scalings ai are all equal to 1. Therefore
σ2

1 is independent of τ1 to first order, and only dependencies of second and higher order
remain. Similarly,

σ2
2 (τ1) ≈ σ2

2 (0) + τ1
1

C23

(
C12 + C13 − 2

C13C22

C23

)
(16)

and the linear dependency of σ2
2 on τ1 vanishes because of the equality of the off-diagonal

covariances. Finally,

σ2
3 (τ1) ≈ σ2

3 (0) + τ1
1

C23

(
C12 + C13 − 2

C12C33

C23

)
(17)

because σ2
3 follows from σ2

2 by replacing C22 with C33 and interchanging C12 and C13.
The linear dependencies of σ2

1 , σ2
2 , and σ2

3 on τ2 and τ3 can be shown to vanish in the
same manner.

It must be stressed here that the observation error variances σ2
i are for the calibrated

data. To retrieve the observation error variances in the uncalibrated data one must divide
by a2

i . As a result, the observation error variances of the uncalibrated data do depend on
error non-orthogonality in a manner opposite to the calibration scalings.

5. Conclusions

Error non-orthogonality is included in an elegant and concise manner in the covariance
equations for triple collocation. The formalism is applied on a data set consisting of all
collocated wind velocities in 2013 from buoys, OSCAT-25, and ECMWF forecasts. Varying
the error non-orthogonality of each system separately shows only weak dependence for the
calibration biases and, in particular, the observation error variances. The observation error
variances are sensitive to error non-orthogonality only in second and higher order. This
implies that error non-orthogonality cannot be blamed for possible unexpected observation
error variances from triple collocation analyses of ocean surface vector winds. Only the
calibration scalings show a strong dependency on error non-orthogonality. The calibration
scaling of the system with error non-orthogonality τ decreases with increasing τ, except for
the reference system where the calibration scalings of all other systems will increase with
increasing τ. This implies that error non-orthogonality is aliased with calibration error in
scatter plots, at least qualitatively and for relatively large τ, where the calculated regression
line deviates from the diagonal in the cloud of observed points for both cases.

Because of the generality of the covariance equations, as for higher-order collocations
as elaborated in [15] as well, error non-orthogonality can also be studied for quadruple and
higher-order collocations. However, the results are expected not to differ much from the
results presented here.



Remote Sens. 2022, 14, 4268 9 of 9

Author Contributions: Conceptualization and methodology, J.V. and A.S.; software, J.V.; validation,
J.V.; formal analysis, J.V.; investigation, J.V.; resources, A.S.; data curation, A.V.; writing—original draft
preparation, J.V.; writing—review and editing, J.V., A.S., and A.V.; visualization, J.V.; supervision,
A.S.; project administration, A.S. and A.V.; funding acquisition, A.S. and A.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This work has been funded by EUMETSAT within the framework of the Ocean and Sea Ice
Satellite Application Facility (OSI SAF).

Data Availability Statement: The collocation data set can be obtained from the authors upon a
request to scat@knmi.nl. The PenWP source code can be downloaded free of charge at https://nwp-
saf.eumetsat.int/site/software/scatterometer/penwp/ (accessed on 25 August 2022). A simple free
triple collocation code in Python can be found at https://github.com/knmiscat/triple_collocation
(accessed on 25 August 2022).

Acknowledgments: The authors thank Jean Bidlot of ECMWF for his assistance in obtaining the
buoy data and Weicheng Ni of the National University of Defense Technology in China for his interest
in this work and stimulating discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Stoffelen, A. Toward the True Near-surface Wind Speed: Error Modelling and Calibration using Triple Collocation. J. Geophys.

Res. 1998, 103, 7755–7766. [CrossRef]
2. Vogelzang, J.; Stoffelen, A.; Verhoef, A.; Figa-Saldaña, J. On the Quality of High-resolution Scatterometer Winds. J. Geophys. Res.

2011, 116, C10033. [CrossRef]
3. Abdalla, S.; De Chiara, G. Estimating Random Errors of Scatterometer, Altimeter, and Model Wind Speed Data. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2017, 10, 2406–2414. [CrossRef]
4. Danielson, R.E.; Johannessen, J.A.; Quartly, G.D.; Rio, M.-H.; Chapron, B.; Collard, F.; Donlon, C. Exploitation of Error Correlation

in a Large Analysis Validation: GlobCurrent Case Study. Rem. Sens. Env. 2018, 217, 476–490. [CrossRef]
5. Hoareau, N.; Portabella, M.; Lin, W.; Ballabrera-Poy, J.; Turiel, A. Error Characterization of Sea Surface Salinity Products using

Triple Collocation Analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5160–5168. [CrossRef]
6. Roebeling, R.A.; Wolters, E.L.A.; Meirink, J.F.; Leijnse, H. Triple Collocation of Summer Precipitation Retrievals from SEVIRI over

Europe with Gridded Rain Gauge and Weather Radar Data. J. Hydrometeorol. 2012, 13, 1552–1566. [CrossRef]
7. Wild, A.; Chua, Z.-W.; Kuleshov, Y. Triple Collocation Analysis of Satellite Precipitation Estimates over Australia. Remote Sens.

2022, 14, 2724. [CrossRef]
8. Gruber, A.; Su, C.-H.; Crow, W.T.; Zwieback, S.; Dorigo, W.A.; Wagner, W. Estimating Error Cross-correlations in Soil Moisture

Data Sets using Extended Collocation Analysis. J. Geophys. Res. Atmos. 2016, 121, 1208–1219. [CrossRef]
9. Fan, X.; Lu, Y.; Liu, Y.; Li, T.; Xun, S.; Zhao, X. Validation of Multiple Soil Moisture Products over an Intensive Agricultural Region:

Overall Accuracy and Diverse Responses to Precipitation and Irrigation Events. Remote Sens. 2022, 14, 3339. [CrossRef]
10. Su, K.; Zheng, W.; Yin, W.; Hu, L.; Shen, Y. Improving the Accuracy of Groundwater Storage Estimates Based on Groundwater

Weighted Fusion Model. Remote Sens. 2022, 14, 202. [CrossRef]
11. McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating Errors

and Correlation Coefficients with respect to an Unknown Target. Geophys. Res. Lett. 2014, 41, 6229–6236. [CrossRef]
12. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.;

et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
13. Rivas, M.B.; Stoffelen, A. Characterizing ERA-Interim and ERA5 Surface Wind Biases using ASCAT. Ocean Sci. 2019, 15, 831–852.

[CrossRef]
14. Verhoef, A.; Vogelzang, J.; Stoffelen, A. Scientific Validation Report (SVR) for the Ku-band Wind Data Records. In OSI SAF Report

SAF/OSI/CDOP3/KNMI/TEC/RP/415; EUMETSAT: Darmstadt, Germany, 2022.
15. Vogelzang, J.; Stoffelen, A. Quadruple Collocation Analysis of In-situ, Scatterometer, and NWP Winds. J. Geophys. Res. Ocean.

2021, 126, e2021JC017189. [CrossRef]
16. Vogelzang, J.; King, G.P.; Stoffelen, A. Spatial Variances of Wind Fields and their Relation to Second-order Structure Functions

and Spectra. J. Geophys. Res. Ocean. 2015, 120, 1048–1064. [CrossRef]

https://nwp-saf.eumetsat.int/site/software/scatterometer/penwp/
https://nwp-saf.eumetsat.int/site/software/scatterometer/penwp/
https://github.com/knmiscat/triple_collocation
http://doi.org/10.1029/97JC03180
http://doi.org/10.1029/2010JC006640
http://doi.org/10.1109/JSTARS.2017.2659220
http://doi.org/10.1016/j.rse.2018.07.016
http://doi.org/10.1109/TGRS.2018.2810442
http://doi.org/10.1175/JHM-D-11-089.1
http://doi.org/10.3390/rs14112724
http://doi.org/10.1002/2015JD024027
http://doi.org/10.3390/rs14143339
http://doi.org/10.3390/rs14010202
http://doi.org/10.1002/2014GL061322
http://doi.org/10.1002/qj.3803
http://doi.org/10.5194/os-15-831-2019
http://doi.org/10.1029/2021JC017189
http://doi.org/10.1002/2014JC010239

	Introduction 
	Data 
	Methodology 
	Triple Collocation with Error Non-Orthogonality 
	Representativeness Errors 
	Method of Solution 

	Results and Discussion 
	Conclusions 
	References

