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Abstract: Underwater image restoration is of significant importance in unveiling the underwater
world. Numerous techniques and algorithms have been developed in recent decades. However, due
to fundamental difficulties associated with imaging/sensing, lighting, and refractive geometric dis-
tortions in capturing clear underwater images, no comprehensive evaluations have been conducted
with regard to underwater image restoration. To address this gap, we constructed a large-scale real
underwater image dataset, dubbed Heron Island Coral Reef Dataset (‘HICRD’), for the purpose
of benchmarking existing methods and supporting the development of new deep-learning based
methods. We employed an accurate water parameter (diffuse attenuation coefficient) to generate
the reference images. There are 2000 reference restored images and 6003 original underwater im-
ages in the unpaired training set. Furthermore, we present a novel method for underwater image
restoration based on an unsupervised image-to-image translation framework. Our proposed method
leveraged contrastive learning and generative adversarial networks to maximize the mutual in-
formation between raw and restored images. Extensive experiments with comparisons to recent
approaches further demonstrate the superiority of our proposed method. Our code and dataset are
both publicly available.

Keywords: underwater image restoration; underwater image enhancement; underwater image
dataset; image restoration

1. Introduction

For marine science and oceanic engineering, significant applications such as the surveil-
lance of coral reefs, underwater robotics, and submarine cable inspection require clear
underwater images. For high-level computer vision tasks [1], clear underwater images are
also required. Furthermore, clear images help the development of undersea remote sensing
techniques [2–4]. Raw images with low visual quality do not meet these expectations, where
the clarity of raw images is degraded by both absorption and scattering [5–7]. The clarity of
underwater images thus plays an essential role in scientific missions. Therefore, fast, accu-
rate, and effective techniques producing clear underwater images need to be developed to
improve the visibility, contrast, and color properties of underwater images for satisfactory
visual quality and practical usage. The main techniques to infer clear images are known as
underwater image enhancement and restoration. Underwater image enhancement aims
to produce visually pleasing results, focusing on enhancing contrast and brightness. In
comparison, underwater image restoration is based on the image formulation model [5–7],
and aims to rectify the distorted colors to present the true colors of the underwater scene.
In this paper, we mainly focus on the objective of underwater image restoration.
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In the underwater scene, visual quality is greatly affected by light refraction, absorp-
tion, and scattering. For instance, underwater images usually have a green-bluish tone
since red light with longer wavelengths attenuates faster. Underwater image restoration
is a highly ill-posed problem, which requires several parameters (e.g., global background
light and medium transmission map) that are mostly unavailable in practice.

These parameters can be roughly estimated by employing priors and supplementary
information; we refer to these approaches as the conventional methods. Most conventional
underwater restoration methods employ priors to estimate the unknown parameters in
the imaging model. The Dark Channel Prior (DCP) [8] is a simple yet effective prior for
image dehazing. With the same imaging model, some variants based on the DCP have been
developed for underwater imaging [5,9,10]. Carlevaris et al. [5] exploited the differences
between attenuation among three color channels as a prior to predict the transmission
map of the underwater scene. Drews et al. [9] ignored the red channel and proposed the
Underwater Dark Channel Prior (UDCP). The UDCP applies DCP to the blue and green
channels only to predict the transmission map. The Red channel prior [10] makes use
of the red channel, i.e., the color associated with the longest wavelengths, to restore the
underwater image.

Chiang et al. [11] employed measured attenuation coefficients of open ocean waters
and assumed that the transmission map of the red channel is the recovered transmission
by which the underwater image can be restored. In contrast to [9], which focused on
the green and blue channels, Lu et al. [12] ignored the green channel and restored the
underwater image by leveraging the transmission map estimated from the blue and red
channels only. Peng et al. [13] proposed a method based on image blurriness and light
absorption (IBLA), which uses a depth estimation approach to restore underwater images.
Relying on the Jerlov water types [14], Berman et al. [15] took spectral profiles of water
types into account to simplify underwater image restoration as image dehazing. However,
due to the diversity of water types and lighting conditions, conventional underwater image
restoration methods can fail to rectify the color of underwater images.

Supplementary information including polarization filters, stereo imaging, and the range
map of the scene also helps underwater image restoration. Polarimetric imaging [16–18]
relies on the polarization camera to capture the polarization information, thus removing
the backscattering light effect. Stereo imaging naturally provides the range information to
simplify the estimation of parameters [15].

Another approach to underwater image restoration employs learning-based methods.
Recent advances in deep learning have demonstrated dramatic success in different fields.
In the line of learning-based underwater image restoration, Cao et al. [19] recovered the
scene radiance based on estimated background light and the scene depth using two neural
networks. Barbosa et al. [20] employed the DehazeNet [21] to predict the transmission map,
thus predicting the scene radiance. The underwater residual convolutional neural network
(URCNN) [22] is a residual convolutional neural network. It learns the transmission map
to restore the image. After restoration, it also enhances the restored image. The underwater
convolutional neural network (UWCNN) [23] is a supervised model including three densely
connected building blocks [24] trained on its synthetic underwater image datasets.

Although learning-based methods have demonstrated their effectiveness in modeling
the underwater image restoration process, they require a large-scale dataset for training,
which is often difficult to obtain. Thus, most learning-based models, regardless of en-
hancement or restoration, either use a limited number of real underwater images [15,25,26],
synthesized underwater images [19,20,22,23,27–29], or natural in-air images [29,30] as either
the source domain or target domain of the training set. Four commonly used underwater
image restoration datasets are as follows:

• SQUID (http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking
/index.html, accessed on 25 July 2022) [15]: The Stereo Quantitative Underwater Im-
age Dataset includes 57 stereo pairs from four different sites, two in the Red Sea and

http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html
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the other two in the Mediterranean Sea. Every image contains multiple color charts
and its range map without providing the reference images.

• TURBID (http://amandaduarte.com.br/turbid/, accessed on 25 July 2022) [26]: TUR-
BID consists of five different subsets of degraded images with its respective ground-
truth reference image. Three subsets are publicly available: they are degraded by milk,
deepblue, and chlorophyll. Each subset contains 20, 20, and 42 images, respectively.

• UWCNN Synthetic Dataset (https://li-chongyi.github.io/proj_underwater_image_s
ynthesis.html, accessed on 25 July 2022) [23]: UWCNN synthetic dataset contains ten
subsets, each subset representing one water type with 5000 training images and 2495
validation images. The dataset is synthesized from the NYU-v2 RGB-D dataset [31].
The first 1000 clean images are used to generate the training set and the remaining
449 clean images are used to generate the validation set. Each clean image is used to
generate five images based on different levels of atmospheric light and water depth.

• Sea-thru dataset (http://csms.haifa.ac.il/profiles/tTreibitz/datasets/sea_thru/index.h
tml, accessed on 25 July 2022) [32]: This dataset contains five subsets, representing
five diving locations. It contains 1157 images in total; every image is with its range
map. Color charts are available within the partial dataset. No reference images
are provided.

The above datasets are limited in capturing the natural variability in a wide range
of water types. The synthetic training data also limit the generalization of models [33].
For unsupervised methods, natural in-air images are also a good source to learn from [30];
however, unsupervised methods usually lack strong constraints and thus networks may
inadvertently learn the structure and geometry information of in-air images and thus tend
to perform geometric changes instead of color correction.

Furthermore, only partial datasets provide reference restored images. Lacking a
large-scale, publicly available real-world underwater image restoration dataset with sci-
entifically restored images limits the development of learning-based underwater image
restoration methods.

To overcome the previously discussed challenges, we constructed a large-scale real-
world underwater image dataset, the Heron Island Coral Reef Dataset (HICRD). The
HICRD contains 9676 raw underwater images in total and 2000 scientifically restored
reference images. It contains two subsets, the unpaired HICRD and the paired HICRD. It
also contains the measured diffuse attenuation coefficient and the camera sensor response.

To fully use the proposed HICRD, we designed a learning-based underwater image
restoration model trained on the HICRD. We formulate the restoration problem as an image-
to-image translation problem and propose a novel Contrastive underwater Restoration
approach (CWR). CWR combines both contrastive learning [34,35] and generative adver-
sarial networks [36]. Given an underwater image as input, CWR directly outputs a restored
image, showing the real color of underwater objects as if the image was taken in-air without
any structure or content loss. The flowchart of this paper is presented in Figure 1.

The main contribution of our work is summarized as follows:

• We constructed a large-scale, high-resolution underwater image dataset with real un-
derwater images and restored images. The Heron Island Coral Reef Dataset (HICRD)
provides a platform to evaluate the performance of various underwater image restora-
tion models on real underwater images with various water types. It also enables the
training of both supervised and unsupervised underwater image restoration models.

• We proposed an unsupervised learning-based model, i.e., CWR, which leverages
contrastive learning to maximize the mutual information between the corresponding
patches of the raw image and the restored image to capture the content and color
feature correspondences between the two image domains.

http://amandaduarte.com.br/turbid/
https://li-chongyi.github.io/proj_underwater_image_synthesis.html
https://li-chongyi.github.io/proj_underwater_image_synthesis.html
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/sea_thru/index.html
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/sea_thru/index.html
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Figure 1. The flowchart of this paper, where rectangles denote operations, rhombus denote images,
circles denote datasets, and trapezoids denote models. We show (A) Dataset construction (Section 2.1):
We construct a large-scale dataset, referred to as Heron Island Coral Reef Dataset (HICRD). We
collect raw data from different sites and split the raw images into low-quality and good-quality
images. We restore the good-quality images with the measured water parameters. The paired
HICRD contains the good-quality images, and the corresponding reference restored images, while
the unpaired HICRD contains low-quality images and the reference restored images. (B) Train the
models (Sections 2.2 and 3): We mainly train the unsupervised models using the unpaired HICRD.
The paired HICRD can support the training of supervised models. (C) Test the models (Section 3):
We test the trained models using the same test set and measure the predicted restored images with
reference restored images.

Some results of this paper were originally published in its conference version [37].
However, this longer article includes the details of the HICRD and CWR to provide a
deeper understanding, e.g., data collection (Section 2.1.1), water parameter measurement
(Section 2.1.2), and implementation details of CWR (Section 2.3). We also added more
related work in the introduction (Section 1). A more comprehensive experiment is available
in the result section (Section 3), including more baselines (Section 3.1), more evaluation re-
sults (Section 3.4), transfer learning results (Section 3.5), and an ablation study (Section 3.6).
A discussion section (Section 4) is added to provide a comprehensive analysis and future
research directions.

2. Materials and Methods
2.1. A Real-World Dataset

To address a previously discussed issue and gap, we collected a new dataset, measured
the water parameters, and created reference restored images. In this section, we elaborate on
the constructed dataset in detail, including data collection, water parameter measurement,
imaging model, and reference image generation. The flowchart of this section is shown in
Figure 1A.

2.1.1. Data Collection

Images and other forms of optical data of HICRD were collected from several sample
locations around Heron Reef, located in the Southern Great Barrier Reef, Australia, from 11
to 16 June 2018. These sample locations, corresponding to Reef Check Australia permanent
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transect sites [38], were selected to represent a variety of coral reef environments with a
range of coral densities, water depths, and water conditions. Figure 2 shows the location of
sample stations on Heron Reef and nearby Wistari Reef.

Figure 2. Location of field sites during the 2018 field campaign around Heron and Wistari Reefs.
Location map is modified from [39]. Background image: Sentinel-2 true color image, acquired on
14 May 2021.

The image acquisition of HICRD was conducted using CSIRO’s Underwater Spectral
Instrument Platform (CORYCAEUS). RGB images in HICRD were captured by the on-board
MQ022CG-CM color camera. It is a small form factor USB 3.0 camera made by Ximea
GmbH, Münster, Germany. The camera carries a 2/3′′ 10-bit CMOSIS CMV 2000 sensor.
The optics is an Edmund Optics 12mm focal length F1.8 lens. This lens has a field of view of
41.1◦ when used with the Ximea camera. During image capturing procedures, the camera
aperture was fixed, and its exposure time was adjusted by a human operator on board the
boat viewing the live video streamed back from the cameras while divers were swimming
underwater. The image capturing frequency was 3–5 frame/s.

Our data acquisition task was accomplished by a team of divers and boat members.
The divers carried out underwater data collection using CORYCAEUS. Boat staff made
surface measurements, provided safety monitoring, and maintained boat control. The
detailed procedure is as follows: upon arrival at a coral reef sample site, first the boat
crew verify the GPS location and collect water samples, surface reflectance, water column
spectral absorbance, and backscattering measurements. One then turns on CORYCAEUS
and carries it to the divers. Diver one first measures underwater reflectance. Diver two
then manipulates CORYCAEUS to swim in a fixed direction keeping a constant distance
of 2 m above the reef. Diver one safeguards diver 2 during the whole measuring transect.
Meanwhile, one of the boat members monitors the live video from CORYCAEUS transferred
by a tethering cable. The boat crew follow the divers in the boat motoring at a low speed,
and maintain a safe distance of (10–30 m) from the divers. At the end of each transect, the
boat crew signal the divers to the surface. Both divers and CORYCAEUS are retrieved from
the water. Final readings of the GPS position and other measurements are recorded.

2.1.2. Water Parameter Estimation

To understand the effects of bio-optical constituents on the behavior of light through
the water column, data were collected to characterize the inherent and apparent optical
properties (IOPs and AOPs).
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At each dive site, IOPs were collected as vertical profiles of the absorption a(λ), and
attenuation spectral coefficients c(λ) were measured using a 10 cm path length WET Labs
(http://seabird.com, accessed on 25 July 2022) spectral absorption–attenuation meter.
Backscattering coefficients bb(λ) were measured using a WET Labs BB-9 spectral backscat-
tering meter, while temperature, salinity, and density were collected using a WET Labs
water quality monitor (WQM). Profiles were measured with all instruments connected
to a WET Labs DH-4 data logger, allowing consistent time stamping. The backscattering
measurements were corrected for salinity and light loss due to absorption over the path
length using the absorption and scattering values from the ac-s [40].

Surface water samples were collected for a laboratory analysis of the absorbing com-
ponents (particulate and dissolved). Samples for particulate absorption (phytoplankton
and non-algal) were prepared by filtration through a 25 mm Whatman GF/F glass-fiber
filter and stored flat in liquid nitrogen for transport. Particle absorption coefficients were
measured over the 250–800 nm spectral range with a Cintra 4040 UV/VIS dual-beam spec-
trophotometer (http://gbcsci.com, accessed on 25 July 2022) equipped with an integrating
sphere [41]. Samples for a measurement of chromophoric dissolved organic matter (CDOM)
absorption were prepared by vacuum filtration through a 0.22 µm Millipore filter and pre-
served with sodium azide for sample transport [42]. The absorbance of each filtrate was
measured from 250 to 800 nm in a 10 cm pathlength quartz cell using a Cintra 4040 UV/VIS
spectrophotometer [41]. Total absorption is considered as the sum of the particulate and
dissolved components plus that of pure water.

Radiometric profiles (AOPs) were measured at each station using three TriOS Ramses
radiometers (http://trios.de, accessed on 25 July 2022). One irradiance radiometer was
mounted on the boat to measure the total downwelling irradiance, and two sensors were
mounted on an underwater frame to measure the water radiance and irradiance, respec-
tively. The diffuse attenuation coefficient (Kd) was determined from measurements of the
rate of change (slope) of the logarithm of the irradiance (E)depth profile [43] and can be
written as:

Kd =
1

z− z0
ln[

E(z)
E(z0)

] (1)

where z0 is the uppermost depth of measurement. Depth averaged Kd over the depth
interval from the surface to depth z is expressed as [44]:

Kd(0→ z) =

∫ z
0 Kd(z)dz

z
(2)

2.1.3. Detailed Information of HICRD

The Heron Island Coral Reef Dataset (HICRD) contains raw underwater images
from eight sites with detailed metadata for each site, including water parameters (diffuse
attenuation), maximum dive depth, and the camera model. Six sites have wavelength-
dependent attenuation within the water column. According to the depth information of raw
images and the distance between objects and the camera, images with roughly the same
depth, constant distance, and good visual quality are labeled as good quality. Images with
sharp depth changes, distance changes, or poor visual quality are labeled as low-quality.
We apply our imaging model described in Section 2.1.4 to good quality images, producing
corresponding reference restored images, and manually remove some restored images with
non-satisfactory quality.

The HICRD contains 6003 low-quality images, 3673 good-quality images, and 2000 ref-
erence restored images. We used low-quality images and restored images as the unpaired
training set. In contrast, the paired training set contains 1700 good-quality images and corre-
sponding restored images. The test set contains 300 good-quality images as well as 300 cor-
responding restored images as reference images. All images are in 1842 × 980 resolution.
Figure 3 shows the total diffuse attenuation for different water types. Figure 4 shows a
randomly selected image examples from the HICRD and the split of the HICRD. Table 1

http://seabird.com
http://gbcsci.com
http://trios.de
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presents the detailed information of the HICRD. Based on the Underwater Image Qual-
ity Measure (UIQM) [45], Natural Image Quality Evaluator (NIQE) [46], and dubbed
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [47], Table 2 presents a
comparison between low-quality images and good-quality images.

Figure 3. The medium transmission tc(x) for six different sites/water types. HICRD contains various
water types, where type1, type2, type 4, type 7, and type 8 are different. The medium transmission is
formulated in Equation (5).
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Figure 4. Example images and split of HICRD dataset. Unpaired HICRD contains low-quality
images and restored images as the training set while paired HICRD uses the good-quality images
and corresponding reference restored images.

Table 1. Detailed information of the HICRD dataset. The unpaired training set contains all low-quality
images and all reference restored images while the paired training set contains 1700 good-quality
images and the corresponding reference restored images. The test set contains 300 good-quality
images from site 5, as well as 300 corresponding reference restored images. The water parameter for
Site 3 and Site 6 are not available.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Low-quality images 47 53 458 1923 1726 117 961 718
Good-quality images 43 71 151 1042 1344 52 677 293

Reference images 25 16 N.A. 160 1241 N.A. 457 101
Water type 01 02 N.A. 04 05 N.A. 07 08

Diver 1 max depth 6.8 5.7 7.3 8.7 7.2 6.6 10.7 9.4
Diver 2 max depth 6.4 6.3 7.6 8.8 7.4 6.5 10.4 9.3

Table 2. A comparison between low-quality data and good-quality data in terms of three non-
reference metrics.

Number of Images UIQM ↑ NIQE ↓ BRISQUE ↓
Low quality 6003 2.80 4.07 33.56
Good quality 3673 3.11 3.93 32.58

2.1.4. Underwater Imaging Model and Reference Image Generation

Unlike the dehazing model [8], absorption plays a critical role in an underwater
scenario. Each channel’s absorption coefficient is wavelength dependent, being the highest
for red and the lowest for blue. A simplified underwater imaging model [48] can be
formulated as:

Ic(x) = Jc(x)tc(x) + Ac(1− tc(x)), c ∈ {r, g, b}, (3)

where I(x) is the observed intensity, J(x) is the scene radiance, and A is the global atmo-
spheric light. tc(x) = e−βcd(x) is the medium transmission describing A(x) the portion of
light that is not scattered, βc is the light attenuation coefficient and d(x) is the distance
between the camera and object. Channels are in RGB space. We assume the measured
diffuse attenuation coefficient Kc

d to be identical to the attenuation coefficient βc.
Transmittance is highly related to βc, which is the light attenuation coefficient of each

channel, and it is wavelength-dependent. Unlike in previous work [11,13], instead of
assigning a fixed wavelength for each channel containing bias (e.g., 600 nm, 525 nm, and
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475 nm for red, green, and blue), we employed the camera sensor response to conduct a
more accurate estimation. Figure 5 shows the camera sensor response of camera sensor
type CMV2000-QE used in collecting the dataset.

Figure 5. Camera sensor response for camera sensor-type CMV2000-QE which is used to collect real
underwater images.

The new total attenuation coefficient is estimated by:

pc =
∫ b

a
βλSc(λ)dλ, (4)

where pc is the total attenuation coefficient, βλ is the attenuation coefficient of each wave-
length, and Sc(λ) is the camera sensor response of each wavelength. Following the human
visible spectrum, we set a = 400 nm and b = 750 nm to calculate the medium transmission
for each channel. We modified the medium transmission tc(x) in Equation (3) leading to a
more accurate estimation:

tc(x) = e−pcd(x). (5)

It is challenging to measure the scene’s actual distance from an individual image
without a depth map. Instead of using a flawed estimation approach, we assumed the
distance between the scene and the camera to be small (1–5 m) and manually assigned a
distance for each good-quality image. The assigned distance is verified via the following
process: for each water type (diving location), we checked the difference inside the image
triplets (last image, current image, and next image) to ensure that the assigned distance is
reasonable and consistent between images that are close to each other. If the difference is
more than 1 m, this triplet will be further checked to avoid labeling noise.

The global atmospheric light, Ac, is usually assumed to be the pixel’s intensity with
the highest brightness value in each channel. However, this assumption often fails due to
the presence of artificial lighting and self-luminous aquatic creatures. Since we have access
to the diving depth, we can define Ac as follows:

Ac = e−pcz, (6)

where pc is the total attenuation coefficient and z is the diving depth.
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With the medium transmission and global atmospheric light, we can recover the scene
radiance. The final scene radiance J(x) is estimated as:

Jc(x) =
Ic(x)− Ac

max(tc(x), t0)
+ Ac. (7)

Typically, we choose t0 = 0.1 as a lower bound. In practice, due to the complexity with
image formulation, our imaging model based on the simplified underwater imaging model
may encounter information loss, i.e., the pixel intensity values of Jc(x) are larger than
255 or less than 0. This problem is avoided by only mapping a selected range (13–255) of
pixel intensity values from I to J. However, outliers may still occur; we re-scale the whole
pixel intensity values to enhance contrast and keep information lossless after restoration.

2.2. Proposed Method

Given two domains X ⊂ RH×W×3 and Y ⊂ RH×W×3 and a dataset of unpaired
instances X containing raw underwater images x and Y containing restored images y. We
denote it X = {x ∈ X} and Y = {y ∈ Y}. We aim to learn a mapping G : X → Y to enable
underwater image restoration.

Contrastive Underwater Restoration (CWR) has a generator G as well as a discrimina-
tor D. G enables the mapping from domain X to domain Y and D ensures that the translated
images belong to the correct image domain. The first half of the generator is defined as an
encoder, while the second half is a decoder and denoted Genc and Gdec, respectively.

For the mapping, we extracted the features of images from several layers of the encoder
and send them to a two-layer MLP projection head. Such a projection head learns to project
the extracted features from the encoder to a stack of features. CWR combines three losses,
including Adversarial loss, PatchNCE loss, and Identity loss. Figure 6 shows the overall
architecture and losses of CWR. The details of our objective are described below.

2.2.1. Adversarial Loss

Generative adversarial network (GAN) [36] incorporates a generator and a discrim-
inator, where the generator aims to generate realistic samples while the discriminator
is designed to classify real samples from generated fake samples. Such an adversarial
training mechanism forces generated samples to match the distribution of real samples.
In our case, adversarial loss helps the generator translate raw underwater images into
visually similar images into images from the target domain, that is, the domain of restored
underwater images. For the mapping G : X → Y with discriminator D, the GAN loss [36]
is calculated by:

LGAN(G, D, X, Y) = Ey∼Y[log D(y)]

+Ex∼X [log(1− D(G(x))] ,
(8)

where G tries to generate images G(x) that look similar to images from domain Y, while D
aims to distinguish between translated samples G(x) and real samples y.

2.2.2. PatchNCE Loss

Our goal is to maximize the mutual information between corresponding patches of
the input and the output. For instance, for a patch showing a coral reef of the generated
restored image, we should be able to associate it more strongly to the same coral reef patch
of the raw input underwater image other than the rest of the patches of the image.
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Figure 6. The overall architecture and losses of CWR. CWR targets learning a mapping G : X → Y,
i.e., raw underwater image→ restored image. We use a ResNet-based generator with nine residual
blocks and defined the first half of the generator G to be encoder. We use encoder Genc and projection
head H to extract the patch-based, multi-layer features from the raw image and its translated version
(generated restored image), embedding one image to a stack of features. Each layer represents a
different resolution of the patches. Here, we depict one layer only for simplification. In the stack
of features, given the red “query” from the generated restored image, we set up an (N + 1)-way
classification problem and computed the probability that a red “positive” is selected over N blue
“negatives”. Such a process shows the computation of the PatchNCE loss. We send both the generated
restored image and the accurate restored image to the PatchGAN discriminator for computing
adversarial loss. For each image, the discriminator outputs a result metric showing the discrimination
result in the patch level. Note that the patches here are different from that computing the PatchNCE
loss. We omit the identity loss here.

Following the setting of CUT [49], we used a noisy contrastive estimation framework to
maximize the mutual information between inputs and outputs. The idea behind contrastive
learning is to correlate two signals, i.e., the “query” and its “positive” example, in contrast
to other examples in the dataset (referred to as “negatives”).

We map query, positive, and N negatives to K-dimensional vectors and denote them
v, v+ ∈ RK and v− ∈ RN×K, respectively. Note that v−n ∈ RK denotes the n-th negative. We
set up an (N + 1)-way classification problem and computed the probability that a “positive”
is selected over “negatives”. Mathematically, this can be expressed as a cross-entropy loss
which is computed by:

`
(
v, v+, v−

)
= − log(

exp(sim(v, v+)/τ)

exp(sim(v, v+)/τ) + ∑N
n=1 exp

(
sim(v, v−n )/τ

) ), (9)
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where sim(u, v) = u>v/‖u‖‖v‖ denotes the cosine similarity between u and v. τ denotes
a temperature parameter to scale the distance between the query and other examples, and
we use 0.07 as default. We set the numbers of negatives as 255 as the default setting.

We used Genc and a two-layer projection head H to extract features from domain X.
We select L layers from Genc(X) and send them to H, embedding one image into a stack of
features {zl}L =

{
Hl
(

Gl
enc(x)

)}
L
, where Gl

enc represents the output of l-th selected layers.
For the patches, after having a stack of features, each feature actually represents one patch
from the image. We take advantage of that and denote the spatial locations in each selected
layer as s ∈ {1, ..., Sl}, where Sl is the number of spatial locations in each layer. We selected
a query each time, referring to the corresponding feature (“positive”) as zs

l ∈ RCl and all

other features (“negatives”) as zS\s
l ∈ R(Sl−1)×Cl , where Cl is the number of channels in

each layer. We have aimed to match the corresponding patches of input and output images.
The patch-based, multi-layer PatchNCE loss for mapping G : X → Y can be expressed as:

LPatchNCE(G, H, X) = Ex∼X

L

∑
l=1

Sl

∑
s=1

`
(

ẑs
l , zs

l , zS\s
l

)
. (10)

2.2.3. Identity Loss

In order to prevent generators from unnecessary changes and keep the structure
identical after translation, we add an identity loss [50].

LIdentity(G) = Ey∼Y[‖G(y)− y‖1]. (11)

Such an identity loss also encourages the mappings to preserve color composition
between the input and output.

2.2.4. Full Objective

The generated restored image should be realistic (LGAN), and patches in the cor-
responding input raw and generated restored images should share a correspondence
(LPatchNCE). The generated restored image should have an identical structure to the in-
put raw image. In contrast, the colors are the true colors of scenes (LIdentity). The full
objective is:

L(G, D, H) = λGANLGAN(G, D, X)

+ λNCELPatchNCE(G, H, X)

+ λidtLIdentity(G).

(12)

We set λGAN = 1 and λNCE = 1 following previous mutual information maximization
methods [49,51]. We set λidt = 10 to prevent generators from unnecessary structure and
color changes.

2.3. Implementation Details
2.3.1. Architecture of Generator and Layers Used for PatchNCE Loss

Figure 6 represents the architecture of the generator and layers used for computing
PatchNCE loss. Our generator architecture is based on CycleGAN [50] and CUT [49]. We
use a ResNet-based [52] generator with nine residual blocks for training. It contains two
downsampling blocks, nine residual blocks, and two upsampling blocks. Each downsam-
pling and upsampling block follows two-stride convolution/deconvolution, normalization
and an activation function, i.e., ReLU. Each residual block contains convolution, normaliza-
tion, ReLU, convolution, normalization, and a residual connection.

We define the first half of generator G as an encoder represented as Genc. The patch-
based multi-layer PatchNCE loss is computed using features from five layers of the encoder
(the RGB pixels, the first and second downsampling convolution, and the first and the fifth
residual block). The patch sizes extracted from these four layers are 1 × 1, 9 × 9, 15 × 15,
35 × 35, and 99 × 99 resolution, respectively. Following CUT [49], for each layer’s features,
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we sampled 256 random locations and applied a two-layer MLP (projection head HX) to
infer 256-dim final features.

2.3.2. Architecture of Discriminator

We used the same PatchGAN discriminator architecture as CycleGAN [50] and
Pix2Pix [53], which uses local patches of sizes 70 × 70 and assigns a result to every patch.
This is equivalent to manually cropping one image into 70 × 70 overlapping patches, run
a regular discriminator over each patch, and averaging the results. The PatchGAN dis-
criminator is shown in Figure 6. For instance, the discriminator takes an image from either
domain X or domain Y, passes it through five downsampling Convolutional-Normalization-
LeakeyReLU layers, and outputs a result matrix of 62 × 62. Each element corresponds to
the classification result of one patch.

3. Results
3.1. Baselines

We focus on unsupervised underwater image restoration methods, conventional un-
derwater image enhancement methods, and conventional underwater image restoration
methods. Most learning-based underwater image restoration methods do not provide
the source code, and do not support unsupervised training; instead, we train a set of
state-of-the-art image-to-image translation models, using the HICRD dataset to enable
underwater image restoration. We employ unsupervised image-to-image translation mod-
els to fully exploit the HICRD. We compare CWR to several state-of-the-art baselines
from different approaches, including image-to-image translation approaches (CUT [49],
CycleGAN [50] and DCLGAN [51]), conventional underwater image enhancement meth-
ods (Histogram-prior [54], Retinex [55] and Fusion [56]), conventional underwater image
restoration methods (UDCP [9], DCP [8], IBLA [13], and Haze-line [15]), and learning-based
restoration method (UWCNN [23]). We used the pre-trained UWCNN model with water
type-3, which is close to our dataset.

For image-to-image translation approaches, CUT [49] and DCLGAN [51] aim to
maximize the mutual information between corresponding patches of the input and the
output. DCLGAN [51] employs a dual learning setting and assigns different encoders to
different domains, to gain a better performance. We firstly employed CUT and DCLGAN
to enable the underwater image restoration task. CycleGAN [50] is based on the cycle-
consistency assumption, i.e., it learns the reverse mapping from the target domain back
to the source domain and forces the reconstruction image to be identical to the input
image. CycleGAN has been widely used in the field of underwater image restoration and
enhancement. We treat those image-to-image translation approaches trained on the HICRD
as learning-based underwater image restoration methods.

For conventional underwater image enhancement methods, Histogram-prior [54]
is based on a histogram distribution prior; it contains two steps, where the first step is
underwater image dehazing, and the second step is contrast enhancement. Retinex [55]
enhances a single underwater image with a color correction step, a layer decomposition
step, and a color enhancement step. Fusion [56] creates a color-compensated version and a
white-balanced version based on the input underwater image. Using two different versions
of the images derived from the input underwater image as inputs, it employs a multi-scale
fusion step to enable underwater image enhancement.

Other restoration methods are introduced in Section 1.

3.2. Training Details

We train CWR, CUT, CycleGAN, and DCLGAN for 100 epochs with the same learning
rate of 0.0002. The learning rate decays linearly after half the epochs. We load all images in
800 × 800 resolution and randomly crop them into 512 × 512 patches during training. We
load the test images in 1680× 892 resolution for all methods. For CWR, we employ spectral
normalization [57] for the discriminator and instance normalization [58] for the generator.



Remote Sens. 2022, 14, 4297 14 of 22

The batch size is set to one. The ADAM [59] optimizer is employed for optimization, for
which we set β1 = 0.5 and β2 = 0.999. We train our method and other baselines using a Tesla
P100-PCIE-16GB GPU. The GPU driver version is 440.64.00, and the CUDA version is 10.2.

3.3. Evaluation Protocol

To fully measure the performance of different methods, we employed three full-
reference metrics: mean-square error (MSE), peak signal-to-noise ratio (PSNR), and struc-
tural similarity index (SSIM) [60] as well as a non-reference metric designed for underwater
images: underwater image quality measure (UIQM) [45]. UIQM comprises three under-
water image attribute measures: the underwater image colorfulness measure (UICM), the
underwater image sharpness measure (UISM), and the underwater image contrast measure
(UIConM). A higher UIQM score suggests that the result is more consistent with human
visual perception.

We additionally use Fréchet Inception Distance (FID) [61] to measure the quality of the
generated images. FID embeds a set of generated samples into the feature space given by a
particular layer of InceptionNet, treating the embedding layer as a continuous multivariate
Gaussian that estimates the mean and covariance of the generated data and the real data. A
lower FID score suggests that generated images tend to be more realistic.

For all metrics, we used the full test set for evaluation, i.e., 300 underwater raw
images, and 300 corresponding restored images. We also compared the evaluation speed
for all methods.

3.4. Evaluation Results

Table 3 provides a quantitative evaluation, where no method always wins in terms of
all metrics. However, CWR performs better than all the baseline in full-reference metrics.
CWR also shows competitive results in UIQM and FID score. This suggests that CWR
performs accurate restoration, and the outputs of CWR are consistent with human visual
perception. Restoration methods tend to have a lower FID score, while enhancement
methods tend to have a higher UIQM score. Restoration methods provide more similar
outputs to our reference restored images, while the outputs of enhancement methods are
more consistent with human visual perception. This is due to the objectives of restoration
and enhancement being different. Conventional restoration methods run slowly, while
enhancement methods tend to run faster.

Figure 7 presents the randomly selected qualitative results. Learning-based methods
provide better restoration results than conventional restoration methods, where conven-
tional restoration methods fail to perform the correct restoration. Such a phenomenon is
shown in UDCP [9], DCP [8], and Haze-line [15], where they fail to remove the green-bluish
tone in underwater images. CWR performs a better restoration process than other learning-
based methods in keeping with the structure and content of the restored images identical
to raw images with negligible artifacts.

For underwater image enhancement methods, Figure 8 shows the qualitative results
of Examples 2 and 3 with zoomed patches. Conventional enhancement methods keep
the structure unchanged, but sometimes over-enhance the images, adding a bright color
to the objects.

3.5. Generalization Performance on UIEB

To verify the performance of CWR, we further test it on the UIEB [25] dataset, which
is an underwater image enhancement dataset containing 890 raw underwater image and
enhancement image pairs. Following the data split introduced in the UIEB, we randomly
choose 800 images as the training set, and train our CWR with identical settings used in the
HICRD, but for 400 epochs. In test time, we used the remaining 90 images as a test set. Test
images are resized to 512 × 512 resolution. Results are presented in Table 4.
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Figure 7. Qualitative results on the test set of HICRD, where all examples are randomly selected from
the test set. We compare CWR to other underwater image restoration baselines. Conventional restora-
tion methods fail to remove the green tone in underwater images. CWR shows visual satisfactory
results without content and structure loss.
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Table 3. Comparisons to baselines on the HICRD dataset on common evaluation metrics. Category
shows the categories of different methods, where L denotes learning-based, R denotes restoration, C
denotes conventional, and E denotes enhancement. We show five quantitative metrics for all methods
and the evaluation running speed. CWR is in the first place (in red) for MSE, PNSR, and SSIM while
the second place (in blue) for FID. Based on quantitative measurements, CWR produces restored
images with higher quality. Speed refers to the evaluation speed per image in seconds. CWR also
runs faster than all conventional restoration methods, and on par to other learning-based restoration
methods. The speed of CWR with a Tesla P100 GPU is approximately 1.5 s per image while 46 s per
image on an Intel(R) Core(TM) i5-6500 CPU @ 3.20GHZ.

Category Method Year MSE↓ PSNR↑ SSIM↑ UIQM↑ FID↓ Speed↓

CE
Histogram [54] 2016 2408.8 14.44 0.618 5.27 69.15 10

Retinex [55] 2014 1227.2 17.36 0.722 5.43 71.90 5
Fusion [56] 2017 1238.6 17.53 0.783 5.33 58.57 85

CR

UDCP [9] 2013 3159.9 13.31 0.489 4.99 38.03 67
DCP [8] 2010 2548.2 14.27 0.534 4.49 37.52 168

IBLA [13] 2017 803.9 19.42 0.459 3.63 23.06 141
Haze-line [15] 2020 2305.6 14.69 0.427 4.71 53.67 192

LR

CUT [49] 2020 170.3 26.30 0.796 5.26 22.35 46
CycleGAN [50] 2017 448.2 21.81 0.591 5.27 16.74 46
DCLGAN [51] 2021 443.8 21.92 0.735 4.93 24.44 46
UWCNN [23] 2020 775.8 20.20 0.754 4.18 33.43 55
CWR (ours) 2022 127.2 26.88 0.834 5.25 18.20 1.5/46
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Figure 8. Qualitative results on the test set of HICRD for underwater image enhancement methods.
Examples 2 and 3 are identical to Figure 7. Enhancement methods usually produce aesthetically
pleasing results, however, enhancement methods sometimes over-enhance the images, adding bright
color to the stone and coral reef against the true color of the objects. The zoomed section presents the
details of color and structure.
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Table 4. Quantitative results assessment on the UIEB dataset. All tested images are scaled to
512 × 512 resolution. CWR consistently outperforms all baselines, suggesting the superior perfor-
mance and generalization of CWR. red and blue indicates best and second best results.

Method Year MSE↓ PSNR↑ SSIM↑
Histogram [54] 2016 1576.8 16.48 0.598

Retinex [55] 2014 3587.3 14.77 0.549
Fusion [56] 2017 967.2 19.97 0.705
UDCP [9] 2013 6152.1 10.87 0.444
DCP [8] 2010 2770.8 15.20 0.639

IBLA [13] 2017 3587.3 14.77 0.549
CUT [49] 2020 860.3 20.34 0.765

CWR (ours) 2022 660.5 21.07 0.791

We also studied the generalization of HICRD pre-trained CWR on UIEB datasets.
Figure 9 shows the results of CWR on the UIEB dataset, including three cases: CWR directly
evaluated on UIEB, CWR fine-tuned on UIEB for 10 epochs, and CWR trained from scratch
on UIEB for 10 epochs.

Input

Direct

evaluation

Fine-tune

10 epoch

Scratch

10 epoch

Reference

Figure 9. Results of multiple CWRs on UIEB dataset. CWR trained on HICRD scales well to greenish
and green-bluish images. Features learned from HICRD can be transferred to underwater image
enhancement tasks.
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3.6. Ablation Study

We conduct ablation experiments to understand the effectiveness of each component
inside CWR. Table 5 presents the results.

Table 5. Quantitative results for ablations: (I) no adversarial loss; (II) no PatchNCE loss; (III) no
identity loss; (IV) λidt = 1; (V) λidt = 20; and (VI) replace spectral norm with instance norm. The best
and second best results are highlighted in red and blue.

Ablation MSE↓ PSNR↑ SSIM↑ UIQM↑ FID↓
I 717.1 19.75 0.451 3.60 36.77
II 810.5 19.30 0.736 4.06 44.62
III 229.3 24.72 0.739 5.13 22.12
IV 217.4 25.28 0.756 5.40 37.02
V 203.9 25.54 0.779 5.48 36.35
VI 160.1 26.16 0.817 5.16 19.46

CWR 127.2 26.88 0.834 5.25 18.20

4. Discussion

This paper described a large-scale real-world underwater restoration dataset, offering
high-quality training data and proper reference restored images to support the development
of both unsupervised and supervised learning-based models. Using the HICRD dataset,
we evaluated recent methods from different views, including image-to-image translation
approaches, conventional underwater image enhancement methods, conventional under-
water image restoration methods, and learning-based restoration methods. In addition,
a novel unsupervised method leveraging state-of-the-art contrastive learning techniques
was proposed to fully capitalize on the HICRD dataset. In quantitative evaluations, though
CWR performs better overall, there is no one method that always wins in both full-reference
and non-reference metrics, suggesting new learning-based underwater image restoration
methods should be developed.

Although the HICRD is a large-scale dataset, it does not cover all of the common
water types. All images are acquired from Heron Island, where different sites still share
similar environmental and geomorphological conditions. Most images within the HICRD
are related to coral reefs. The HICRD did not capture other objects present underwater,
such as shipwrecks and underwater archaeological sites [62].

We simply assume the attenuation diffuse attenuation Kd and the (horizontal) atten-
uation coefficient β to be identical. Such an assumption is widely used in our commu-
nity [15,23,63]; however, it is an incorrect assumption [6,64]. Kd is an apparent optical
property (AOP); it varies with sun-sensor geometry while β is an inherent optical property
(IOP). This assumption leads to an imprecise restoration process; thus, an imperfect ref-
erence restored image. Moreover, following the commonly used simplified underwater
imaging model consequently leads to errors. The simplified underwater imaging model
ignores the absorption coefficient and ignores the difference between the backward scat-
tering and attenuation, where attenuation is the combination of scattering and absorption.
Recently, a revised underwater imaging model [6] was proposed. However, due to the
complexity of this revised underwater imaging model, only a few works followed this
model. More complexity leads to more parameters to estimate, where estimates inevitably
contain more errors compared to accurate measurements. We do not employ the revised
underwater imaging model as our imaging model to mitigate the errors from the estimation
of parameters. New underwater image restoration datasets should be constructed using
a more precise method, that is, employing the revised underwater imaging with fewer
assumptions to generate more precise reference restored images.

The evaluation metrics for underwater image restoration are limited. Existing non-
reference methods are mainly designed for underwater image enhancement; thus, if no
reference restored images are provided, it would be difficult to evaluate the restoration
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methods. Using underwater image enhancement metrics to evaluate the restoration meth-
ods may lead to failure cases [33]. New evaluation metrics that incorporate underwater
physical model properties should be developed to advance the underwater image restora-
tion research. Furthermore, more specialized high-level task-driven evaluation metrics
should be developed. Liu et al. [65] showed that the image quality assessment and de-
tection accuracy are not strongly correlated. However, one goal of underwater image
enhancement and restoration is to produce clear images to support applications in practice.
Novel task-driven evaluation metrics should be developed, and they should correlate with
the quality of input images.

In this paper, we focus on RGB underwater image restoration. Multi-spectral and
hyper-spectral images can be used for various underwater applications [66–69]. However,
few multi-spectral and hyper-spectral underwater image restoration techniques have been
developed [70]. New work in underwater image restoration can consider building a
benchmark dataset for multi-spectral or hyper-spectral images to further research along
this critical direction.

5. Conclusions

This paper presents a real-world underwater image dataset HICRD that offers large-
scale data consisting of real underwater images and restored images enabling a comprehen-
sive evaluation of existing underwater image enhancement and restoration methods. The
HICRD employs measured water parameters to create the reference restored images. We
believe that the HICRD will enable a significant advancement of the use of learning-based
underwater restoration methods, in both unsupervised and supervised manners. Along
with the HICRD, a novel approach, CWR, employing contrastive learning, is proposed
to exploit the HICRD. CWR performs a realistic underwater image restoration process
in an unsupervised manner. Experimental results show that CWR performs significantly
better than several conventional enhancement and restoration methods while showing
more desirable results than state-of-the-art learning-based restoration methods.
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40. Boss, E.; Twardowski, M.; McKee, D.; Cetinić, I.; Slade, W. Beam Transmission and Attenuation Coefficients: Instruments, Characteriza-
tion, Field Measurements and Data Analysis Protocols, 2nd ed.; IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite
Ocean Colour Sensor Validation; IOCCG: Dartmouth, NS, Canada 2019.

41. Oubelkheir, K.; Ford, P.W.; Clementson, L.A.; Cherukuru, N.; Fry, G.; Steven, A.D.L. Impact of an extreme flood event on optical
and biogeochemical properties in a subtropical coastal periurban embayment (Eastern Australia). J. Geophys. Res. Ocean. 2014,
119, 6024–6045. [CrossRef]

42. Mannino, A.; Novak, M.G.; Nelson, N.B.; Belz, M.; Berthon, J.F.; Blough, N.V.; Boss, E.; Brichaud, A.; Chaves, J.; Del Castillo,
C.; et al. Measurement Protocol of Absorption by Chromophoric Dissolved Organic Matter (CDOM) and Other Dissolved Materials, 1st
ed.; IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; IOCCG: Dartmouth, NS,
Canada 2019.

43. Austin, R.W.; Petzold, T.J. The Determination of the Diffuse Attenuation Coefficient of Sea Water Using the Coastal Zone Color
Scanner. In Oceanography from Space; Gower, J.F.R., Ed.; Springer: Boston, MA, USA, 1981; pp. 239–256. [CrossRef]

44. Simon, A.; Shanmugam, P. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in
turbid coastal waters: Validation with in situ measurements. Opt. Express 2013, 21, 30082–30106. [CrossRef] [PubMed]

45. Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015,
41, 541–551. [CrossRef]

46. Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012,
20, 209–212. [CrossRef]

47. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef]

48. Serikawa, S.; Lu, H. Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 2014, 40, 41–50. [CrossRef]
49. Park, T.; Efros, A.A.; Zhang, R.; Zhu, J.Y. Contrastive learning for unpaired image-to-image translation. In Proceedings of the

European Conference on Computer Vision, Munich, Germany, 8–14 September; pp. 319–345.
50. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
51. Han, J.; Shoeiby, M.; Petersson, L.; Armin, M.A. Dual Contrastive Learning for Unsupervised Image-to-Image Translation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA,
19–25 June 2021.

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognitio (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

53. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

54. Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater image enhancement by dehazing with minimum information
loss and histogram distribution prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [CrossRef]

55. Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.P.; Ding, X. A retinex-based enhancing approach for single underwater image.
In Proceedings of the International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 4572–4576.

56. Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement.
IEEE Trans. Image Process. 2017, 27, 379–393. [CrossRef]

57. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv 2018,
arXiv:1802.05957.

58. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,
arXiv:1607.08022.

59. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

http://dx.doi.org/10.1002/2014JC010205
http://dx.doi.org/10.1007/978-1-4613-3315-9_29
http://dx.doi.org/10.1364/OE.21.030082
http://www.ncbi.nlm.nih.gov/pubmed/24514558
http://dx.doi.org/10.1109/JOE.2015.2469915
http://dx.doi.org/10.1109/LSP.2012.2227726
http://dx.doi.org/10.1109/TIP.2012.2214050
http://dx.doi.org/10.1016/j.compeleceng.2013.10.016
http://dx.doi.org/10.1109/TIP.2016.2612882
http://dx.doi.org/10.1109/TIP.2017.2759252


Remote Sens. 2022, 14, 4297 22 of 22

60. Zhou Wang.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

61. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017.

62. Mangeruga, M.; Bruno, F.; Cozza, M.; Agrafiotis, P.; Skarlatos, D. Guidelines for underwater image enhancement based on
benchmarking of different methods. Remote Sens. 2018, 10, 1652. [CrossRef]

63. Berman, D.; Treibitz, T.; Avidan, S. Diving into haze-lines: Color restoration of underwater images. In Proceedings of the British
Machine Vision Conference (BMVC), London, UK, 4–7 September 2017; Volume 1.

64. Akkaynak, D.; Treibitz, T.; Shlesinger, T.; Loya, Y.; Tamir, R.; Iluz, D. What Is the Space of Attenuation Coefficients in Underwater
Computer Vision? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 4931–4940.

65. Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-world underwater enhancement: Challenges, benchmarks, and solutions under
natural light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [CrossRef]

66. Yi, D.H.; Gong, Z.; Jech, J.M.; Ratilal, P.; Makris, N.C. Instantaneous 3D continental-shelf scale imaging of oceanic fish by
multi-spectral resonance sensing reveals group behavior during spawning migration. Remote Sens. 2018, 10, 108. [CrossRef]

67. Fu, X.; Shang, X.; Sun, X.; Yu, H.; Song, M.; Chang, C.I. Underwater hyperspectral target detection with band selection. Remote
Sens. 2020, 12, 1056. [CrossRef]

68. Mogstad, A.A.; Johnsen, G.; Ludvigsen, M. Shallow-water habitat mapping using underwater hyperspectral imaging from an
unmanned surface vehicle: A pilot study. Remote Sens. 2019, 11, 685. [CrossRef]

69. Dumke, I.; Ludvigsen, M.; Ellefmo, S.L.; Søreide, F.; Johnsen, G.; Murton, B.J. Underwater hyperspectral imaging using a
stationary platform in the Trans-Atlantic Geotraverse hydrothermal field. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2947–2962.
[CrossRef]

70. Guo, Y.; Song, H.; Liu, H.; Wei, H.; Yang, P.; Zhan, S.; Wang, H.; Huang, H.; Liao, N.; Mu, Q.; et al. Model-based restoration of
underwater spectral images captured with narrowband filters. Optics Express 2016, 24, 13101–13120. [CrossRef]

http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.3390/rs10101652
http://dx.doi.org/10.1109/TCSVT.2019.2963772
http://dx.doi.org/10.3390/rs10010108
http://dx.doi.org/10.3390/rs12071056
http://dx.doi.org/10.3390/rs11060685
http://dx.doi.org/10.1109/TGRS.2018.2878923
http://dx.doi.org/10.1364/OE.24.013101

	Introduction
	Materials and Methods
	A Real-World Dataset
	Data Collection
	Water Parameter Estimation
	Detailed Information of HICRD
	Underwater Imaging Model and Reference Image Generation

	Proposed Method
	Adversarial Loss
	PatchNCE Loss
	Identity Loss
	Full Objective

	Implementation Details
	Architecture of Generator and Layers Used for PatchNCE Loss
	Architecture of Discriminator


	Results
	Baselines
	Training Details
	Evaluation Protocol
	Evaluation Results
	Generalization Performance on UIEB
	Ablation Study

	Discussion
	Conclusions
	References

