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Abstract: Grain yield (GY) prediction for wheat based on canopy spectral reflectance can improve
selection efficiency in breeding programs. Time-series spectral information from different growth
stages such as flowering to maturity is considered to have high accuracy in predicting GY and com-
bining this information from multiple growth stages could effectively improve prediction accuracy.
For this, 207 wheat cultivars and breeding lines were grown in full and limited irrigation treatments,
and their canopy spectral reflectance was measured at the flowering, early, middle, and late grain fill
stages. The potential of temporal spectral information at multiple growth stages for GY prediction
was evaluated by a new method based on stacking the multiple growth stages data. Twenty VIs
derived from spectral reflectance were used as the input feature of a support vector regression (SVR)
to predict GY at each growth stage. The predicted GY values at multiple growth stages were trained
by multiple linear regression (MLR) to establish a second-level prediction model. Results suggested
that the prediction accuracy (R2) of VIs data from single growth stages ranged from 0.60 to 0.66
and 0.35 to 0.42 in the full and limited irrigation treatments, respectively. The prediction accuracy
was increased by an average of 0.06, 0.07, and 0.07 after stacking the VIs of two, three, and four
growth stages, respectively, under full irrigation. Similarly, under limited irrigation, the prediction
accuracy was increased by 0.03, 0.04, and 0.04 by stacking the VIs of two, three, and four growth
stages, respectively. Stacking of VIs of multiple important growth stages can increase the accuracy
of GY prediction and application of a stable stacking model could increase the usefulness of data
obtained from different phenotyping platforms.

Keywords: bread wheat; phenotyping; vegetation indices; machine learning; stacking

1. Introduction

Wheat production is restricted by the occurrence of climate extremes such as heat
and drought, bringing food security challenges for the increasing global population [1].
Drought and heat stress were estimated to reduce worldwide yield by 9 to 10% annually [2],
requiring breeders to develop varieties with yield stability under different abiotic stress
conditions. Plant breeding programs regularly conduct field evaluations to select candi-
date genotypes for breeding programs [3], and selection accuracy for high grain-yielding
genotypes will enable breeders to expedite the above process. However, conventional meth-
ods of measuring secondary traits are complex, with a bottleneck of precise phenotyping
because of labor intensiveness and time consumption [4]. Rapid and early evaluation of
large experimental plots based on secondary traits through remote sensing is now a routine
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activity in many plant breeding programs [5]. Proximal sensing has attracted particular
attention for predicating traits related to GY over the years. It offers rapid and nondestruc-
tive collection of time-series data at low cost for a number of traits from breeding trials
grown in different environments [6].

Proximal remote sensing deals with spectral reflectance of light from the crop canopy
and provides information about biophysical, bio-chemical, absorbance, and transmission
of electromagnetic energy of plant tissues [7,8]. Based on different wavelengths of spectral
reflectance, some vegetation indices (VIs) have been derived from various mathemati-
cal combinations, which can significantly reduce the noise interference caused by soil
background, atmospheric conditions, and variation in sunlight intensity during spectral
measurements for precise estimation of plant properties [9]. VIs are frequently used as
a proxy for plant physiological traits such as chlorophyll content, biomass, and leaf area
index (LAI) [10–12]. Moreover, VIs have also been validated to provide accurate wheat
yield prediction results [3,13–15]. Some studies demonstrated that VIs from the flowering
or grain fill stages provide higher prediction accuracy than other growth stages when
estimating wheat yield [13,15]. However, the optimal time point for prediction of GY
can vary with genotype and environmental conditions. Thus, the approach of combining
multiple VIs was proposed to improve the accuracy of GY prediction. For example, the
accumulated VIs ∑PRVI (Nir, Red) and ∑(RNir/(RRed + RGreen)) derived from satellite
data from jointing to grain fill stages predicted GY with high accuracy compared to VIs at
individual growth stages [16]. Combining VIs extracted from UAV multispectral images
for two random growth stages of rice by multiple linear regression has achieved higher
yield prediction accuracy than that of an individual growth stage [17]. However, relatively
few studies have investigated the use of multi-temporal VIs derived from hyperspectral
data for the prediction of GY. The hyperspectral data contain nearly continuous reflectance
information from various parts of the canopy with a wide range of wavelengths that can be
noisy and cause big-data problems [3,10]. For this, advanced algorithms are required to
extract valuable information that can be interpreted into useful plant traits by establish-
ing an empirical model [10]. Different machine learning algorithms with improved and
high prediction accuracy have been applied to build predictive models for plant proper-
ties [10,18–21]. A common machine learning algorithm, namely support vector regression
(SVR), was widely used for the estimation of physiological parameters in crop species in
several studies [22–24]. With this, above-ground biomass was estimated using hyperspec-
tral traits as input variables by building the SVM model, and the best hyperparameter
combinations were obtained through the gray wolf optimization algorithm [25]. Various
studies predicted leaf area index, green leaf area, and green leaf chlorophyll contents with
high accuracy in rice, and protein content, moisture, starch and ash in wheat using the SVM
regression model [26,27]. These results indicated that SVM could be used in prediction
various plant traits. In addition to individual machine learning algorithms to construct crop
parameter evaluation models, ensemble methods are gaining more and more attention in
the precision agriculture community. The stacking ensemble method was first proposed by
Wolpertin [28]. It is an ensemble method that integrates multiple base learners to improve
prediction performance. It has been used in different remote-sensing-based applications
such as map composites [29], forest cover monitoring [30], and alfalfa yield prediction [31].
Stacking tends to employ heterogeneous learners and utilize differences between them to
enhance the final accuracy [31]. Analogously, there is also heterogeneity in canopy spectral
information at different crop growth stages, such that integration of hyperspectral data
from multiple growth stages through stacking may provide better results for pre-harvest
GY prediction in a high throughput manner. Therefore, the objectives of the present study
were to (1) compare the prediction accuracy of four individual growth stages using the SVR
model for 20 VIs as input features, (2) integrate the predictive ability of multiple growth
stages using stacking methods, and (3) identify the best combination of time points for
prediction accuracy.
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2. Materials and Methods
2.1. Experimental Population and Field Trials

Field trials were carried out at the Chinese Academy of Agricultural Sciences (CAAS)
experimental station at Xinxiang in Henan province (35◦18′N, 113◦52′E), during the
2018–2019 and 2019–2020 cropping seasons. The panel of 207 wheat varieties and breeding
lines were planted under two water treatments, full and limited irrigation, in randomized
complete blocks with two replications. Seeds was planted in a plot of 4.2 m2 (3 × 1.4 m)
with six rows spaced 0.2 m apart. Both the full and limited irrigation treatments were
irrigated equally with 250 mm of water at the tillering (GS25) stages, while irrigation was
applied to the full irrigation treatment at the early jointing (GS35), heading (GS55), and
early grain fill (GS70) stages with 250 mm of water. Some natural precipitation was also
received in both seasons on average at 5.73 mm. Fertilizer and management for both treat-
ments were optimized according to the local soil conditions in a similar manner. Harvesting
was done using a combine harvester.

2.2. Measurement of Canopy Spectral Reflectance

Canopy spectral reflectance measurements were performed using an ASD FieldSpec
spectroradiometer (FieldSpec 3, Analytical Spectral Devices ASD, Boulder, CO, USA),
which was equipped with a probe containing a 25◦ field of view. The FieldSpec collects
data in the 350–2500 nm spectral range. It had a sampling interval of 1.4 nm between
350 and 1000 nm and of 2 nm between 1000 and 2500 nm, with a resampled spectral
resolution of 1 nm. Spectral resolution was 3 nm at 700 nm and 10 nm at 1400 nm. Spectral
measurements were carried out at optimum light conditions between 11:00 am and 1:00 pm
to avoid confounding effects from variation in solar radiation levels. A BaSO4 calibration
panel was used for spectroradiometer optimization and white referencing before crop
reflectance measurement. Optimization and white referencing were repeated every 10 plots.
The probe was placed vertically 1 m over the canopy during measurements performed
at four different locations per plot and averaged to represent the canopy reflectance of
that plot. View Spec software (ASD Inc., Boulder, CO, USA) was used to eliminate noise
from spectral curves, calculate the average of numerous spectral curves, and generate a
reflectance file. To overcome the noise probability during the spectrum collecting process,
the adaptive degree polynomial filter (ADPF) was used. ADPF adds a statistical heuristic to
the Savitzky−Golay method to improve signal fidelity while reducing statistical noise. In
both 2018–2019 and 2019–2020, the spectral measurements were conducted at the flowering
(GS65), early grain fill (EGF, GS73), mid grain fill (MGF, GS85), and late grain fill (LGF,
GS90) stages in both irrigation treatments. To avoid the effect of phenological differences
between genotypes, spectral data for genotype was collected according to its growth stages.

2.3. Vegetation Indices

Vegetation indices (VIs) are usually used to predict crop yield. In this study, 20 VIs
(Table 1) consisting of multiple spectral regions were used as input features of SVR for
yield prediction. To remove the design effect, the best linear unbiased estimates (BLUEs)
of genotypes for GY and for each of the 20 VIs were calculated in each of the four
growth stages.

Broad sense heritability was estimated to check the repeatability of all VIs across the
growth stages and treatments (Table A1). Broad sense heritabilities (H2) were estimated by:

H2 = σ2
G/
(

σ2
G + σ2

GE/e + σ2
ε /(er)

)
(1)

where σ2
G and σ2

ε represent the genotype and error variances, respectively, σ2
GE is

genotype × environment interaction variance, e and r were the numbers of environments
and replicates, respectively.
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Table 1. Vegetation indices used in this study.

Vegetation Index Name Formula Reference

CAI Cellulose absorption index 0.5 · (R2000 + R2200)− R2100 [32]

CARI Chlorophyll absorption
ratio index

R700 · abs(a · 670 + R670 + b)/R670 ·
(
a2 + 1

)0.5

a = (R700 − R550)/150
b = R550 − (a · 550)

[33]

CI Curvature index R675 · R690/R2
683 [34]

DWSI5 Disease-water stress indices (R800 + R550)/(R1660 + R680) [35]
Datt5 Datt R672/R570 [36]

GNDVI Green normalized Difference
vegetation index (R800 − R550)/(R800 + R550) [37]

MPRI Modified photochemical
reflectance index (R515 − R530)/(R515 + R530) [38]

MSAVI Modified soil adjusted
vegetation index 0.5 ·

(
2 · R800 + 1−

(
(2 · R800 + 1)2 − 8 · (R800 − R670)

)0.5
)

[39]

MSI Moisture stress index R1600/R817 [40]
MTCI Meris terrestrial chlorophyll index (R742 − R702)/(R742 + R702) [41]

NDLI Normalized difference
lignin index (log(1/R1754)− log(1/R1680))/(log(1/R1754) + log(1/R1680)) [42]

NDMI Normalized Difference
Moisture Index (R820 − R1600)/(R820 + R1600) [43]

NDVI Normalized difference
vegetation index (R750 − R705)/(R750 + R705) [44]

NDWI Normalized difference
water index (R872 − R1245)/(R872 + R1245) [45]

OSAVI Optimized soil-adjusted
vegetation index (1 + 0.16) · (R800 − R670)/(R800 + R670 + 0.16) [46]

PRI Photochemical reflectance index (R531 − R570)/(R531 + R570) [47]
PWI Plant water index R900/R970 [48]
SRPI Simple ratio pigment index R430/R680 [49]

SWIR LI Short wave infrared litter index 3.87 · (R2210 − R2090)− 27.51 · (R2280 − R2090)− 0.2 [50]
VREI4 Vogelmann red edge index 4 (R734 − R747)/(R715 + R720) [51]

Note: R denotes reflectance.

2.4. Support Vector Regression

Support vector machine (SVM) is a supervised machine learning algorithm widely
used in data analysis and pattern recognition (Figure 1) [52]. It is used to find the best
separating hyperplane on the feature space to maximize the interval between the positive
and negative samples on the training set [53]. The learning strategies of SVM are based on
the principle of structural risk minimization by minimizing empirical risk and confidence
range. The introduction of the loss function allows SVM to be extended to solve the
problem of regression [54], i.e., support vector regression (SVR). The SVR uses either linear
or nonlinear kernel functions depending on whether the data relationship is linear or
nonlinear. SVR can be defined as follows:

f (x) = ∑n
i=1(âi − ai)k(xi, x) + b (2)

where a is the additional hyperplane alongside the regression line and b represents the
bias. k(xi, x) represents the kernel function. Radial basis function (RBF) was selected as
kernel function in this study because of its superiority to process the nonlinear data with
less hyperparameters and smaller generalization errors than other functions [55].

2.5. Stacking Method

In this study, we tested a new idea of stacking the predictive ability using data from
multiple growth stages instead of individual growth stages to increase the accuracy for
GY prediction. The stacking growth stages method is similar to the stacking regression.
The whole process is divided into two levels. SVR and multiple linear regression (MLR)
integrates the predictability of VIs from multiple growth stages. In the stacking process, all
datasets are initially randomly divided into training datasets and test datasets (3:1), and
fivefold cross-validation (CV) on the training set is performed by SVR. The five models
trained during the CV process also separately predict the GY on the test sets to produce
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different predictions for the five groups before averaging them. After implementing the
above process for multiple growth stages, the out-of-sample predictions matrix generated
from the training data and predictions matrix generated from the test data would be as
the new training dataset and new test dataset for second-level regression model (MLR),
respectively. Analogously, fivefold CV was performed in the second level regression to
obtain final predictions. SVR and MLR models were constructed using the function “svm”
in R-package “e1071” and function “lm”, respectively.
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Figure 1. Workflow of stacking growth stages method for predicting grain yield. The cross-validation
that appears in this figure is outer cross-validation. Abbreviations: CV, cross-validation; F, flowering;
EGF, early grain fill; MGF, mid grain fill; LGF, late grain fill; SVR, support vector regression; MLR,
multiple linear regression.

To avoid the influence of chance factors, the division of the original data into training
and test datasets was repeated 40 times randomly. Each fivefold CV generated five models,
resulting in 200 models in the first- and second-level model training stages after 40 random
divisions, so that the prediction accuracy was assessed by the mean value of coefficient
of determination (R2) and the root mean square error (RMSE) of the 200 tests, and the
equations of the evaluation indices are shown in the following equations:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (4)
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where n represents the number of samples, yi and ŷi represent the actual and the predicted
grain yields of sample i, respectively, y represents the mean of the actual grain yield. Models
with higher R2 and lower values of RMSE suggest better prediction.

When the stacking method involved two growth stages, joint time-points I-II, I-III,
I-IV, II-III, II-IV, and III-IV indicated that stacking spectral traits from flowering and early
grain fill, flowering and mid grain fill, flowering and late grain fill, early and mid grain
fill, early and late grain fill, and mid and late grain fill, respectively. When the stacking
method involved three growth stages, joint time-points I-II-III, I-II-IV, II-III-IV, and I-III-IV
indicated that stacking spectral traits from flowering, early and mid grain fill; flowering,
early and late grain fill; early, mid and late grain fill; and flowering, mid and late grain
fill, respectively.

2.6. Hyperparameter Tuning Based on Grid Search and Cross-Validation

At the first level of the stacking growth stages method, the training data and outer CV
were used to form an outer sample matrix and to verify the prediction accuracy in the test
data. Moreover, the inner CV [56] was used for fine tuning the hyperparameters of SVR by
the grid search method [57]. In the outer CV, the original training dataset was randomly
and evenly divided into five subsets, and each time one of them was used for validation,
and the remaining four subsets for training. Each training set of the outer CV was split,
with 10% of the data in the inner validation set and the remaining 90% in the inner training
set. The inner CV was implemented with the following values for parameters cost (0.520,
0.525, 0.530, 0.535, 0.540, 0.545, 0.550, 0.555, 0.560, and 0.565) and gamma (0.675, 0.680, 0.685,
0.690, 0.695, 0.700, and 0.705). The hyperparameters combination with the highest average
prediction accuracy was treated as the best and transferred to the outer CV to train the
model using the outer training set.

3. Results
3.1. Phenotypic Variation

The descriptive statistics and distribution of measured grain yield (GY) are shown in
Figure 2. GY was normally distributed across the irrigation treatments in both growing
seasons. Limited irrigation reduced the GY by 17.5% and 9.3% compared with full irrigation
in growing seasons 2018–2019 and 2019–2020, respectively. Figure 2 shows that some plots
in the limited irrigation treatments have higher yield than in the full irrigation treatments.
This is because some varieties in this experiment came from foreign countries and are
not suitable for local land conditions. The yield of these varieties under full irrigation
treatments are also much lower than the yields of local varieties under limited irrigation
treatments. The coefficients of variation (CV) of GY under full and limited irrigation
treatments were similar in both growing seasons, whereas the BLUE values of GY in the
full irrigation treatment had a higher CV compared to the limited irrigation treatment.
Whereas, heritability results for all vegetation indices (VIs) were estimated high (up to 0.86)
at most of the growth stages under both irrigation treatments (Table A1).

3.2. Model Performance of Individual Growth Stages

All 20 VIs were used as input features in SVR to predict GY for four individual growth
stages under both irrigation treatments (Figure 3). In the full irrigation treatment, the
cross-validation of the model testing phase showed slight variations in predictions at
different growth stages, with mean R2 = 0.60 (mean RMSE = 0.73 t ha−1) at flowering, mean
R2 = 0.62 (mean RMSE = 0.71 t ha−1) at EGF, mean R2 = 0.66 (mean RMSE = 0.69 t ha−1)
at MGF, and mean R2 = 0.63 (mean RMSE = 0.71 t ha−1) at LGF. The SVR model results
in the limited irrigation treatment showed lower mean R2 compared to the full irrigation
treatment across growth stages. The higher GY prediction accuracy was observed at MGF
with mean R2 = 0.42 (mean RMSE = 0.59 t ha−1) compared to EGF (mean R2 = 0.40; mean
RMSE = 0.60 t ha−1), flowering (mean R2 = 0.39; mean RMSE = 0.61 t ha−1), and LGF
(mean R2 = 0.35; mean RMSE = 0.64 t ha−1) stages. The regression between the predicted
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GY from the various stages were analyzed (Figure 4). There was a significant positive
correlation between the predicted values for each growth stage. Under both irrigation
treatments, there was high correlation (r = 0.632–0.846) between yield predictions for the
first three growth stages. Yield predictions at the LGF were less correlated (r = 0.482–0.808)
with those at other growth stages.
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3.3. Model Performance of the Stacking Method

The distributions of accuracy parameters of the MLR algorithms in predicting GY by
stacking VIs of two growth stages are shown in Figure 5. There were six different combina-
tions when two of the four growth stages were selected. In the full irrigation treatment, joint
time-points II-IV yielded the highest mean R2 of 0.72 (mean RMSE = 0.63 t ha−1), followed
by I-IV with mean R2 = 0.71 (mean RMSE = 0.63 t ha−1). I-III, II-III, and III-IV yielded
similar mean R2 values as 0.69 (mean RMSE = 0.65 t ha−1), 0.70 (mean RMSE = 0.65 t ha−1),
and 0.70 (mean RMSE = 0.64 t ha−1). I-II yielded the lowest prediction accuracy with the
mean R2 of 0.67 (mean RMSE = 0.67 t ha−1). The prediction accuracy of III-IV in limited
irrigation was the highest with mean R2 of 0.46 and mean RMSE of 0.58 t ha−1, followed
by I-III (mean R2 = 0.45, mean RMSE = 0.58 t ha−1). The joint time-points I-II, I-IV, II-III,
and II-IV yielded similar mean R2 (0.42, 0.43, 0.43 and 0.42) with mean RMSE of 0.59 t ha−1,
0.59 t ha−1, 0.59 t ha−1 and 0.60 t ha−1, respectively.

The prediction accuracy was also significantly improved under both irrigation treat-
ments when three growth stages were stacked (Figure 6). In the full irrigation treatment,
the prediction accuracy of I-II-IV, II-III-IV, and I-III-IV are similar with mean R2 of 0.73
(mean RMSE = 0.61 t ha−1), 0.72 (mean RMSE = 0.61 t ha−1), and 0.72 (mean RMSE = 0.62 t ha−1),
respectively. I-II-III yielded the lower prediction accuracy with mean R2 of 0.70 and mean
RMSE of 0.64 t ha−1. For the limited irrigation treatment, similar results were observed
where higher predictive performance was observed by II-III-IV and I-III-IV with a mean
R2 value of 0.46 (mean RMSE = 0.58 t ha−1) and 0.47 (mean RMSE = 0.57 t ha−1). I-II-III and
I-II-IV yielded the same prediction accuracy with mean R2 = 0.44 and mean RMSE = 0.59 t ha−1.
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Figure 5. (a–d) The statistical distributions of model performance for predicting grain yield of six joint
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Figure 7a presents the modeling performance of the MLR algorithm that stacked VIs
of all four growth stages to predict GY in test phases. In the full irrigation treatment, MLR
yielded a mean R2 value of 0.73 with mean RMSE = 0.61 t ha−1. An increase in mean
R2 = 0.07 and a reduction of 0.08 t ha−1 in the mean RMSE was observed compared to
individual stage with the best prediction accuracy. Similar results were observed for
limited irrigation; the mean R2 increased (0.46) and the mean RMSE (0.57 t ha−1) decreased
compared with the MGF (mean R2 = 0.42; mean RMSE = 0.59 t ha−1). Figure 7b shows the
distribution of the regression coefficients of each individual growth stage within the MLR
model to explain the principle of the higher prediction accuracy of the stacking method.
A larger coefficient within the MLR indicated a higher weight in the stacking procedure.
Under full irrigation, mean coefficients (standard deviation) at flowering, EGF, MGF, LGF
were 0.27 (0.12), 0.40 (0.10), 0.05 (0.11), and 0.54 (0.08), respectively, indicating that the
stacking performance depended heavily on LGF. Under the limited irrigation treatment, the
highest coefficient was found in the MGF (0.57 ± 0.18), followed by the LGF (0.46 ± 0.19),
flowering (0.38 ± 0.18), and EGF (−0.06 ± 0.20).



Remote Sens. 2022, 14, 4318 10 of 15Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. (a–d) The statistical distributions of model performance for predicting grain yield that 
stack three growth stages under full and limited irrigation treatments. Abbreviations: I-II-III, stack-
ing traits from flowering, early and mid grain fill; I-II-IV, stacking traits from flowering, early and 
late grain fill; II-III-IV, stacking traits from early, mid and late grain fill; I-III-IV, stacking traits from 
flowering, mid and late grain fill. 

Figure 7a presents the modeling performance of the MLR algorithm that stacked VIs 
of all four growth stages to predict GY in test phases. In the full irrigation treatment, MLR 
yielded a mean R2 value of 0.73 with mean RMSE = 0.61 t ha−1. An increase in mean R2 = 
0.07 and a reduction of 0.08 t ha−1 in the mean RMSE was observed compared to individual 
stage with the best prediction accuracy. Similar results were observed for limited irriga-
tion; the mean R2 increased (0.46) and the mean RMSE (0.57 t ha−1) decreased compared 
with the MGF (mean R2 = 0.42; mean RMSE = 0.59 t ha−1). Figure 7b shows the distribution 
of the regression coefficients of each individual growth stage within the MLR model to 
explain the principle of the higher prediction accuracy of the stacking method. A larger 
coefficient within the MLR indicated a higher weight in the stacking procedure. Under 
full irrigation, mean coefficients (standard deviation) at flowering, EGF, MGF, LGF were 
0.27 (0.12), 0.40 (0.10), 0.05 (0.11), and 0.54 (0.08), respectively, indicating that the stacking 
performance depended heavily on LGF. Under the limited irrigation treatment, the high-
est coefficient was found in the MGF (0.57 ± 0.18), followed by the LGF (0.46 ± 0.19), flow-
ering (0.38 ± 0.18), and EGF (−0.06 ± 0.20).  

Figure 6. (a–d) The statistical distributions of model performance for predicting grain yield that stack
three growth stages under full and limited irrigation treatments. Abbreviations: I-II-III, stacking traits
from flowering, early and mid grain fill; I-II-IV, stacking traits from flowering, early and late grain fill;
II-III-IV, stacking traits from early, mid and late grain fill; I-III-IV, stacking traits from flowering, mid
and late grain fill.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. (a) Statistical distributions of R2 and RMSE of stacking four growth stages for predicting 
grain yield, and (b) the distribution of regression coefficients within the level-2 model. Abbrevia-
tions: EGF, early grain fill; MGF, mid grain fill; LGF, late grain fill. 

4. Discussion 
Accurate estimations of VIs through proximal remote sensing from the wheat canopy 

to predict within season grain yield could accelerate crop breeding. Hyperspectral tech-
niques with high spectral resolution and strong spectral continuity can collect continuous 
and fine spectral curves of objects at visible and near-infrared wavelengths [58,59]. In this 
study, both irrigation treatments yielded the best prediction accuracy at MGF with high 
heritability (VIs) up to 0.84, which can be an appropriate stage for collecting spectral data. 
Our results were quite similar to several studies which have reported the use of VIs de-
rived from hyperspectral data to predict yield in different crops such as alfalfa [31], wheat 
[60], maize [61], rice [62], and potato [63]. However, these studies only used spectral in-
formation from a single growth period to predict yield. Previous studies have shown that 
the combination of multi-stage vegetation indices can improve crop yield predictions 
[16,17]. In this study, we used the power of multiple VIs to predict GY based on recent 
advances in stacking regression algorithms. Results showed that the prediction accuracy 
of GY can be significantly increased through using data from multiple growth stages in 
the stacking process. In the full irrigation treatment, both the joint time-points I-II-IV and 
II-III-IV (stacking spectral traits from all four stages) showed best prediction accuracy in 
11 joint time-points, and the joint time-point FE was more practical for predicting GY be-
cause it used the first two growth stages that could help breeders in early evaluation of 
yield with higher prediction accuracy for a large number of genotypes. Joint time-points 
I-III-IV provided the best prediction accuracy in the limited irrigation treatment. Although 
the R2 value of the LGF was not the best among the four growth stages in both treatments, 
all joint time-points with the highest prediction accuracy included LGF. In the stacking of 
four growth stages in both treatments, LGF was assigned a high weight within the MLR 
(Figure 7b), which was consistent with the results of regression analysis that the predicted 
yield values at the LGF were less correlated with the first three stages in both irrigation 
treatments (Figure 4). Therefore, VIs of LGF can provide more additional information re-
lated to yield, leading to the fact that adding the hyperspectral traits collected at LGF into 
the stacking process can effectively improve the prediction accuracy.  

The grain yield is normally reflected in the three components such as thousand grain 
weight (TGW), spike number (SN), and grain number (GN) per spike [64]. All of these 
components mainly influence by photosynthesis per unit area during the reviving-head-
ing stage, determined by the water, fertilizer across the growth stages [65]. VIs from dif-
ferent growth stages can capture various factors related to GY, and utilizing the spectral 
parameters of multiple growth stages could better predict GY. Our results showed higher 
prediction accuracy than previous studies, which used potential individual growth stages 
to predict crop yield [16,17]. Moreover, the simultaneous use of multiple VIs of various 
growth stages as independent variables will lead to a large increase in the number of input 
features of the machine learning and thus generate a redundant dataset, which is not 

Figure 7. (a) Statistical distributions of R2 and RMSE of stacking four growth stages for predicting
grain yield, and (b) the distribution of regression coefficients within the level-2 model. Abbreviations:
EGF, early grain fill; MGF, mid grain fill; LGF, late grain fill.



Remote Sens. 2022, 14, 4318 11 of 15

4. Discussion

Accurate estimations of VIs through proximal remote sensing from the wheat canopy
to predict within season grain yield could accelerate crop breeding. Hyperspectral tech-
niques with high spectral resolution and strong spectral continuity can collect continuous
and fine spectral curves of objects at visible and near-infrared wavelengths [58,59]. In this
study, both irrigation treatments yielded the best prediction accuracy at MGF with high
heritability (VIs) up to 0.84, which can be an appropriate stage for collecting spectral data.
Our results were quite similar to several studies which have reported the use of VIs derived
from hyperspectral data to predict yield in different crops such as alfalfa [31], wheat [60],
maize [61], rice [62], and potato [63]. However, these studies only used spectral informa-
tion from a single growth period to predict yield. Previous studies have shown that the
combination of multi-stage vegetation indices can improve crop yield predictions [16,17].
In this study, we used the power of multiple VIs to predict GY based on recent advances
in stacking regression algorithms. Results showed that the prediction accuracy of GY can
be significantly increased through using data from multiple growth stages in the stacking
process. In the full irrigation treatment, both the joint time-points I-II-IV and II-III-IV
(stacking spectral traits from all four stages) showed best prediction accuracy in 11 joint
time-points, and the joint time-point FE was more practical for predicting GY because
it used the first two growth stages that could help breeders in early evaluation of yield
with higher prediction accuracy for a large number of genotypes. Joint time-points I-III-IV
provided the best prediction accuracy in the limited irrigation treatment. Although the
R2 value of the LGF was not the best among the four growth stages in both treatments,
all joint time-points with the highest prediction accuracy included LGF. In the stacking of
four growth stages in both treatments, LGF was assigned a high weight within the MLR
(Figure 7b), which was consistent with the results of regression analysis that the predicted
yield values at the LGF were less correlated with the first three stages in both irrigation
treatments (Figure 4). Therefore, VIs of LGF can provide more additional information
related to yield, leading to the fact that adding the hyperspectral traits collected at LGF into
the stacking process can effectively improve the prediction accuracy.

The grain yield is normally reflected in the three components such as thousand grain
weight (TGW), spike number (SN), and grain number (GN) per spike [64]. All of these
components mainly influence by photosynthesis per unit area during the reviving-heading
stage, determined by the water, fertilizer across the growth stages [65]. VIs from differ-
ent growth stages can capture various factors related to GY, and utilizing the spectral
parameters of multiple growth stages could better predict GY. Our results showed higher
prediction accuracy than previous studies, which used potential individual growth stages
to predict crop yield [16,17]. Moreover, the simultaneous use of multiple VIs of various
growth stages as independent variables will lead to a large increase in the number of
input features of the machine learning and thus generate a redundant dataset, which is
not conducive to the construction of the model. In addition, numerous input features can
bring the risk of overfitting. Our results revealed superiority of the stacking method over
individual growth stage-based predictions in capturing variation among genotypes for
yield related traits.

Water deficiency generally influences GY by affecting the rate of senescence [66]. Rapid
senescence is linked to a shorter grain fill period, resulting in lower GY [13]. Therefore, it is
necessary to conduct experiments under various irrigation levels to breed drought-resistant
varieties. In this study, GY predictions were higher in the full irrigation treatment compared
to limited irrigation for a single growth stage, as well as the stacked growth stage method.
The results were consistent with the previous findings that drought influences the quality
of spectral data and impacts the accuracy of trait prediction [3,13]. The canopy area and
coverage of crops were low under water stress, causing canopy spectral reflectance to be
easily disturbed by the soil background, thus affecting the data accuracy. Another reason
for the lower prediction accuracy in the limited irrigation treatment might be a lower range
of variation in GY (coefficient of variation, 9.82%) of BLUE compared to the full irrigation
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treatment (coefficient of variation, 12.62%), hence decreasing the magnitude of the data
variation and reducing the predictive ability of the model [67].

The experimental results presented here were based solely on VIs calculated from
a proximal remote sensing instrument, and lead to the inefficiency of collecting canopy
spectral information in large-scale breeding experiments. The integration results presented
in this paper are worthwhile, particularly for high-throughput phenotyping platforms
(HTPP) of GY prediction of various crops. UAV equipped with imaging equipment have
been widely used in the evaluation of crop physiological parameters [3,13,19] and can
rapidly measure the canopy spectra of experiments covering large areas. They can even
provide spectral information for the entire growth period for the stacking process for better
yield prediction. Moreover, improved regression models that were used in this study or in
totally new machine learning algorithms can be employed when establishing GY prediction
models for single growth stages. For instance, deep learning-based regression methods,
such as deep neural networks [67] and deep belief networks [68], could be used as a new
technology in the stacking procedure. In addition, the prediction performance of different
types of regression techniques in each individual growth stage may be varies. Therefore,
the optimum prediction accuracy could be obtained by choosing the most suitable machine
learning method for each growth stage. For a secondary learner, there will inevitably
be overlapping information in the spectral data between adjacent stages during canopy
spectral data collection with high time resolution. It resulted in strong collinearity between
the predicted yields of different stages and could be applied in collinear data analysis-
based approaches such as ridge regression [69] or least absolute shrinkage and selection
operator [21] as a secondary learner to get more reliable integration results.

5. Conclusions

In this study, the stacking of VIs from multiple growth stages was tested to increase the
prediction accuracy for GY. Pre-harvest prediction of yield can help improve the efficiency
of selection for breeding efforts, as well as optimize management practices. In addition,
instead of using vegetation indices of individual growth stages to predict wheat yield,
we proposed a new stacking method for integrating spectral information from multiple
growth stages to increase the yield prediction accuracy. The test results demonstrated
that the stacking method provided more stable information with high prediction accuracy
than individual growth stage results in both irrigation treatments. The stacking methods
could be valuable for HTPP datasets from ground and aerial remote sensing platforms.
We suggest that the use of improved algorithms from machine learning and deep learning
could increase the accuracy of GY prediction models. Ultimately, this should accelerate the
efficiency of plant breeding. This study concluded that there is potential for the method of
stacking multiple growth stages to be further improved. First, more growth stages could be
incorporated into the stacking procedure. For example, heading time is the key stage of SN
formation, and it was not included in this study.
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Appendix A

Table A1. Heritability results for vegetation indices.

Vegetation Index
Full Irrigation Limited Irrigation

Flowering EGF MGF LGF Flowering EGF MGF LGF

CAI 0.54 0.52 0.57 0.53 0.50 0.54 0.58 0.49
CARI 0.73 0.58 0.71 0.70 0.56 0.74 0.56 0.35

CI 0.80 0.66 0.65 0.58 0.66 0.63 0.68 0.37
DWSI5 0.80 0.56 0.79 0.76 0.63 0.69 0.72 0.41
Datt5 0.81 0.83 0.84 0.79 0.75 0.70 0.73 0.64

GNDVI 0.82 0.78 0.77 0.84 0.66 0.75 0.71 0.38
MPRI 0.74 0.67 0.76 0.77 0.69 0.66 0.57 0.38

MSAVI 0.46 0.46 0.51 0.71 0.48 0.53 0.55 0.45
MSI 0.78 0.58 0.68 0.72 0.70 0.69 0.66 0.42

MTCI 0.85 0.82 0.83 0.85 0.73 0.80 0.80 0.36
NDLI 0.40 0.39 0.40 0.58 0.41 0.36 0.42 0.39
NDMI 0.83 0.67 0.78 0.77 0.72 0.76 0.73 0.40
NDVI 0.81 0.75 0.77 0.84 0.66 0.75 0.73 0.46
NDWI 0.83 0.56 0.75 0.73 0.71 0.68 0.71 0.46
OSAVI 0.52 0.45 0.57 0.78 0.40 0.60 0.64 0.46

PRI 0.76 0.75 0.74 0.78 0.63 0.66 0.64 0.65
PWI 0.83 0.70 0.81 0.78 0.73 0.76 0.75 0.59
SRPI 0.77 0.76 0.76 0.79 0.66 0.65 0.75 0.50

SWIR LI 0.58 0.53 0.60 0.62 0.59 0.52 0.61 0.44
VREI4 0.85 0.82 0.84 0.86 0.72 0.78 0.79 0.34

Abbreviations: EGF, early grain fill; LGF, late grain fill; MGF, mid grain fill.
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