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Abstract: The detection and counting of fruit tree canopies are important for orchard management,
yield estimation, and phenotypic analysis. Previous research has shown that most fruit tree canopy
detection methods are based on the use of traditional computer vision algorithms or machine learning
methods to extract shallow features such as color and contour, with good results. However, due
to the lack of robustness of these features, most methods are hardly adequate for the recognition
and counting of fruit tree canopies in natural scenes. Other studies have shown that deep learning
methods can be used to perform canopy detection. However, the adhesion and occlusion of fruit
tree canopies, as well as background noise, limit the accuracy of detection. Therefore, to improve
the accuracy of fruit tree canopy recognition and counting in real-world scenarios, an improved
YOLOv4 (you only look once v4) is proposed, using a dataset produced from fruit tree canopy
UAV imagery, combined with the Mobilenetv3 network, which can lighten the model and increase
the detection speed, combined with the CBAM (convolutional block attention module), which can
increase the feature extraction capability of the network, and combined with ASFF (adaptively spatial
feature fusion), which enhances the multi-scale feature fusion capability of the network. In addition,
the K-means algorithm and linear scale scaling are used to optimize the generation of pre-selected
boxes, and the learning strategy of cosine annealing is combined to train the model, thus accelerating
the training speed of the model and improving the detection accuracy. The results show that the
improved YOLOv4 model can effectively overcome the noise in an orchard environment and achieve
fast and accurate recognition and counting of fruit tree crowns while lightweight the model. The
mAP reached 98.21%, FPS reached 96.25 and F1-score reached 93.60% for canopy detection, with a
significant reduction in model size; the average overall accuracy (AOA) reached 96.73% for counting.
In conclusion, the YOLOv4-Mobilenetv3-CBAM-ASFF-P model meets the practical requirements of
orchard fruit tree canopy detection and counting in this study, providing optional technical support
for the digitalization, refinement, and smart development of smart orchards.

Keywords: tree detection; YOLOv4; attention mechanism; lightweight; feature fusion

1. Introduction

Fruit is an essential food in people’s lives, and the fine planting of orchards is essential
to fruit yield and quality. The detection and counting of fruit trees is a necessary part of the
excellent planting of orchards, which is related to the planning of planting density and the
detection of fruit trees growing in the orchards, and is an essential part of the intelligent
orchard. At present, in the orchards in the study area, the detection and counting of fruit
trees mainly relies on manual observation. However, as orchards are widely distributed,
vast, and possess complex and diverse terrain, manual labor is inefficient and costly in
terms of work and time. It can be seen that it is difficult to meet the needs of real-time
operation, speed, and simplicity using the current methods of fruit tree detection and
counting. Therefore, the study of lightweight, real-time and rapid detection and counting
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methods for fruit trees in natural environments is of great importance for the refinement of
orchard planting and the construction of intelligent orchards.

In recent years, the rapid development of small UAVs has provided new ideas [1]
for the performance of crop surveys and new opportunities [2] for the use of imagery
to assess agricultural park experiments due to advantages such as simple operation, the
saving of human and material resources, rapid acquisition and high resolution, along with
advantages [3] such as small platform, low cost, high imaging resolution, ease of operation,
flexibility and wide range of applications compared to traditional satellite images. At
low flight altitudes, the images are not affected by cloud cover, and the resolution of
images obtained with HD cameras can reach the centimeter level [4], thus leading them to
be increasingly used in fields such as agricultural monitoring and precision agriculture,
making up for the lack of manual ways to obtain images of orchards [5].

Fruit tree canopy recognition and counting methods can be divided into two main
types: one based on traditional computer vision algorithms and the other based on the
currently hot deep learning method. Currently, with the rapid development of machine
vision technology, LIDAR [6], thermal mapping [7], and high-resolution RGB images have
achieved good detection results in crop detection. Among them, image processing and
feature extraction are gradually becoming key techniques for tree canopy recognition; some
scholars have successfully detected targets using target segmentation counting in traditional
algorithms, such as morphology [8], notch matching [9], and watershed algorithms [10] or
off-the-shelf software for direct detection, etc. However, the recognition and counting of
fruit tree canopies in natural environments still presents significant challenges; in addition,
problems such as adhesion and occlusion between fruit trees and the color of the canopy
compared to weeds in the background severely limit the accuracy of fruit tree canopy
recognition and counting. Cao et al. [11] used UAV images to produce DEM, DSM, and
DOM to extract row trees based on the neighborhood maximum filtering method, and the
plant count extraction rate reached over 95%. He et al. [12] used the maximum local method
and multi-scale segmentation algorithm to extract the number of plants from coniferous
and broad-leaved forests. The overall accuracy was around 90%. Teng et al. [13] used the
iterative H-minima improved watershed algorithm for broadleaf forest canopy extraction,
and the F-measure of this algorithm for extracting the canopy of broadleaf forest with a
more regular shape was 92.71%. However, canopy detection by the algorithm mentioned
in the above study is affected by the contour shape, texture features, and color features
of the target. For example, the morphology-based segmentation method requires a high
degree of morphological specificity of the detection target, and the tree crowns in this
study have very different morphologies, along with problems such as mutual adhesion
and occlusion; in addition, the concave point matching algorithm requires a smoother edge
of the detection object, but the edges of most tree crowns are not smooth, and even if a
series of binarized images of the tree crowns are targeted for when using the watershed
algorithm, it is difficult to calculate the local extremes of the image due to the presence of a
lot of texture in the canopy itself, resulting in frequent under- or over-segmentation; when
using color features in different color spaces for recognition [14], it is not easy to distinguish
between the canopy and the weeds in the background, and the canopy color also changes
with the growth of the fruit trees. In summary, it is difficult to apply traditional computer
vision algorithms in these scenarios, and therefore the detection and counting of fruit tree
canopies in natural environments still faces great challenges.

In recent years, deep learning has been widely used in the field of pattern recognition,
and it has achieved a high level of success in many areas such as computer vision, image
analysis, and multimedia applications [15]. Unlike traditional algorithms, deep learning
learns features automatically rather than manually finding the suitable algorithm based
on the parts. Target detection algorithms based on convolutional neural networks can
be classified into two categories: the first is two-step target detection, where candidate
regions are first generated through the network and then put into a convolutional ma-
chine model for classification. For example, in 2014, Ross B. Girshick proposed Regional
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Convolutional Neural Networks (RCNN), and later Fast R-CNN [16], Faster R-CNN [17],
R-FCN [18], Mask R-CNN [19], etc. The second is single-step target detection; in 2016,
Redmon J et al. proposed the YOLO network; in addition to the low accuracy of target
detection in YOLO [20,21] network, researchers have successively proposed SSD, YOLOv2,
YOLOv3 [22], YOLOv4 [23,24], YOLOv5, etc. Huang et al. [25] used orthophotos ob-
tained from UAVs to identify tree crowns by improving the Faster R-CNN target detection
method, using ResNet101 to replace the VGG16 base network, and by improving the fea-
ture pyramid, the accuracy of tree crown extraction reached 92.92%. Jing et al. [26] used
a faster regional convolutional neural network Faster R-CNN model for ground apple
tree detection and counting, and compared with the traditional Hough transform and
watershed algorithm, the Faster R-CNN model achieved an average accuracy of 95.53%.
Chen et al. [27] used the improved YOLOv3 model for spruce counting based on UAV
images, and achieved fast and accurate counting of spruce numbers by adding a dense
connection module and an over the module to the trunk extraction network Darknet-53.
Zheng et al. [28] proposed an improved YOLOv4-tiny-based single-wood detection method,
which finally achieved a performance optimization of nearly 46.1% compared to traditional
methods such as the local maximum method and the watershed algorithm; it also outper-
formed novel methods such as the Chan-Vese model and the template matching method
by nearly 26.4% compared to them. The above study shows that deep learning is highly
robust for tree canopy detection.

YOLO algorithm is a high-precision target detection method, and with the develop-
ment of the YOLO algorithm, YOLOv4 has received increasing attention. However, the
core of the detection based on the CNN method is based on the region proposal method,
that is, first select the sliding window or extract the proposal to train the network, and
then classify it in the proposed region [29]. Furthermore, YOLOv4 is currently mostly
used in laboratory environments, and the limitation of this method is that the background
region is often mis-detected or missed. Wu et al. [30] successfully detected apple blossoms
using YOLOv4, but we have found that YOLOv4 is not able to achieve proper bounding
box localization, and it is difficult to distinguish overlapping detection objects. The emer-
gence of attention mechanisms makes it possible to effectively address these problems by
processing information by focusing only on regions of information that are beneficial to
the task implementation and filtering out secondary information to improve the model,
which has been employed in image classification [31], image segmentation [32] and image
detection [33]. In deep learning, the commonly used attention mechanisms are the channel
attention mechanism, the spatial attention mechanism, and the dual attention mechanism
for both space and channel; of these, SENet (Sequeeze and Excitation Net) [34] is a typical
channel attention mechanism, STNet (Spatial Transformer Network) [35] is a typical spatial
attention mechanism, and CBAM (Convolutional Block Attention Module) [36] is a typical
dual attention mechanism. At the same time, YOLOv4 itself has a large number of parame-
ters, leading its detection model to be large in size and slow in speed, making it difficult to
use on a large scale. The emergence of the Mobilenet [37] series of lightweight networks
can effectively solve this problem, as the Mobilenet series of algorithms turn traditional
convolution into deeply separable The Mobilenet algorithm transforms the traditional
convolution into a depth-separable convolution, which greatly reduces the computation
time and the number of parameters without compromising accuracy. Since YOLOv4 uses
the PANet [38] structure, which is insufficient for multi-scale feature fusion, we need to
enhance the feature fusion capability of the network to improve the perceptual capability
of the model and improve the detection accuracy of the model. Therefore, there are still
issues worth exploring for YOLOv4-based fruit tree canopy detection.

This study takes fruit trees in a natural environment acquired through UAV remote
sensing as the research object, proposes an improved YOLOv4 method for fruit tree canopy
detection, uses the lightweight network Mobilenetv3, and introduces the attention mech-
anism and adaptive feature fusion ASFF, thus optimizing the generation of preselected
boxes, making the model not only lightweight, but also improving the canopy detection
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accuracy for digitalization, satisfying the detection and counting of fruit trees in the orchard
for the refinement and intellectual development of smart orchards. This study looks at
the feasibility of using deep learning methods for fruit tree detection and counting in
natural environmental conditions and verifies that the proposed model can quickly and
accurately identify fruit trees against complex backgrounds. The objectives of this study are
to: (1) Lighten the model by using a lightweight network to replace the backbone network
of YOLOv4; (2) Improve the robustness of the model by using a two-channel attention
mechanism to eliminate background noise; (3) Enhance the feature fusion and feature
extraction capabilities of the model using an adaptive feature fusion module to improve
the recognition accuracy of the model; (4) Achieve accurate fruit tree counting by marking
the recognized images with colored boxes.

2. Materials and Methods
2.1. Data Collection
2.1.1. Overview of the Study Region

The study area (121.52′5”E, 29.18′51”N) is located in the “Red Beauty” orchard in
Xiangshan County, Ningbo City, Zhejiang Province, China. This area has a subtropical
maritime monsoon climate with abundant light, an average annual temperature of 16–17 ◦C,
and abundant rainfall (average annual precipitation over 1400 mm). However, typhoons
are frequent and often accompanied by violent storms, and the orchard needs intelligent
management. The orchard is uneven and has a complex tree species composition; it is also
a large orchard, and the growth of the trees varies greatly and is irregularly distributed.
The fruit trees are located against a complex background, with canopies that are connected
and shaded, and are not easily distinguishable from each other due to their similar color.
It would be costly and time-consuming to rely on traditional fruit farmers for manual
measurement and management.

2.1.2. Data Acquisition

The image data were collected when the fruit trees were ripe (10 November 2021).
The drone platform is the DJI Royal MAVIC2 Pro (Da Jiang Innovations, Inc., Shenzhen,
Guangdong, China), which weighs 907 g, including an overall flight battery weight of 240 g,
measures 198 mm (L) × 83 mm (W) × 83 mm (H), and has an endurance of 20 min. It is
equipped with a one-inch CMOS RGB camera sensor to acquire image data, a single-lens
visible sensor with 20 million effective pixels and a single image resolution of 4000 × 3000,
and is combined with ground software DJI Pilot for route planning. To prevent distortion
caused by weather conditions, images were acquired between 11:00 and 14:00 during
which time the sun was shining and stable, and the wind was light. The camera was
positioned perpendicular to the ground to capture a frontal view of the experimental
plot, ensuring a 75% overlap between the frontal and lateral views to achieve good image
stitching performance. The images were stitched together using DJI Terra software (Da
Jiang Innovations, Inc., Shenzhen, Guangdong, China) to obtain an ortho-image of the test
site. After performing cropping and other methods, the experimental area was obtained as
shown in Figure 1.

2.1.3. Dataset Production

In this study, sample images of fruit trees with different sizes, growth conditions, and
shading levels were screened, and 600 images with a resolution of 512 × 512, 600 images
with 768× 768, 90 images with 1024× 1024, and 90 images with 2048× 2048 were obtained
following screening. To improve the generalization ability and robustness of the network
model, this study used data enhancement to increase the number of samples to prevent
the network from overfitting due to the lack of training samples. Data enhancement was
carried out using image flip, image brightness adjustment, and noise addition to obtain
an enhanced data set of 3000 samples, which was then divided into a training set of
2430, a validation set of 270, and a test set of 300. The targets were then annotated using
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LabelImg (App version: 1.8.5) (https://github.com/heartexlabs/labelImg, accessed on
16 August 2022) to form an XML file in PASCAL VOC format.
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2.2. Methods
2.2.1. Test Environment and Parameter Settings

The fruit tree detection models were all trained in the TensorFlow framework. The
hardware environment was an AMD (Advanced Micro Devices, Santa Clara, CA, USA)
Ryzen 5 3600X 6-Core Processor with 32 GB of running memory and an NVIDIA GeForce
RTX2070S graphics card. The software environment was Windows 10 with network instal-
lations of Python 3.7, Cuda 10.0, and Cudnn 7.4. The image input size was 416 × 416 px.
A freeze training strategy was used for training. First, the backbone network parameters
were frozen for 75 training steps, with eight images per batch and the learning rate set to
0.001, and then unfrozen for 75 training steps, with four images per batch and the learning
rate set to 0.0001, for a total of 150 iteration steps. The IoU threshold sets to 0.5. Choosing
a suitable learning rate accelerates the convergence of the model. This prevents it from
oscillating around the minimum value. This study uses the cosine annealing strategy and
the hot restart method provided by the TensorFlow framework to enable the training to go
beyond the local optimum and approach the global optimum.

2.2.2. Overview of the YOLOv4 Model

YOLOv4 uses new techniques based on YOLOv3 to improve object detection accuracy
and speed, allowing it to achieve high-accuracy detection in real time. However, like fruit
trees, the object of this study is not only a tiny target, but also exists against a variety of
complex backgrounds; the canopy and the background of weeds, cooking smoke, flowers,
etc., obscure each other. As the network layers deepen in the forward propagation process,
the features of small targets partially disturbed by obscuring and similarly shaped and
colored weed backgrounds are further weakened; thus, the detailed features of these small
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targets gradually disappear in the subsequent network propagation process, causing false
detections or missed detections. Therefore, to better put the model into practice in the
future, it is essential to address the interference susceptibility of small target detection
against complex backgrounds.

To solve the above problems, this study adopts the lightweight network Mobilenetv3
to replace YOLOv4′s original backbone feature extraction network, the CSPDarknet53
network; meanwhile, the traditional convolution is replaced by a deep separable volume
machine. In addition, the attention mechanism is introduced into the neck network PANet,
which applies the attention mechanism to the feature layer output from the backbone
network, and also applies the attention mechanism to the upsampling module of the neck
network. After the PANet module, the ASFF module is added to enhance the ability of neck
network feature fusion. The improved YOLOv4 network structure is shown in Figure 2.
It is mainly composed of the MobilenetV3 backbone feature extraction network, a feature
fusion module, and a prediction module.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 19 
 

 

Choosing a suitable learning rate accelerates the convergence of the model. This prevents 
it from oscillating around the minimum value. This study uses the cosine annealing strat-
egy and the hot restart method provided by the TensorFlow framework to enable the 
training to go beyond the local optimum and approach the global optimum. 

2.2.2. Overview of the YOLOv4 Model 
YOLOv4 uses new techniques based on YOLOv3 to improve object detection accu-

racy and speed, allowing it to achieve high-accuracy detection in real time. However, like 
fruit trees, the object of this study is not only a tiny target, but also exists against a variety 
of complex backgrounds; the canopy and the background of weeds, cooking smoke, flow-
ers, etc., obscure each other. As the network layers deepen in the forward propagation 
process, the features of small targets partially disturbed by obscuring and similarly 
shaped and colored weed backgrounds are further weakened; thus, the detailed features 
of these small targets gradually disappear in the subsequent network propagation pro-
cess, causing false detections or missed detections. Therefore, to better put the model into 
practice in the future, it is essential to address the interference susceptibility of small target 
detection against complex backgrounds. 

To solve the above problems, this study adopts the lightweight network Mobilenetv3 
to replace YOLOv4′s original backbone feature extraction network, the CSPDarknet53 net-
work; meanwhile, the traditional convolution is replaced by a deep separable volume ma-
chine. In addition, the attention mechanism is introduced into the neck network PANet, 
which applies the attention mechanism to the feature layer output from the backbone net-
work, and also applies the attention mechanism to the upsampling module of the neck 
network. After the PANet module, the ASFF module is added to enhance the ability of 
neck network feature fusion. The improved YOLOv4 network structure is shown in Fig-
ure 2. It is mainly composed of the MobilenetV3 backbone feature extraction network, a 
feature fusion module, and a prediction module. 

 
Figure 2. Overview of the YOLOv4 Model. Figure 2. Overview of the YOLOv4 Model.

The specific structure of the CBA and DCBA modules describes in Figure 2. An image
with a size of 416 × 416 × 3 is input into the detection model, which eventually yields a
prediction network of 13 × 13, 26 × 26, and 52 × 52. The prediction module of the model
makes a judgment and then obtains a prediction frame by adjusting the a priori frame.

2.2.3. Lightweight Backbone Network

When choosing a network structure for deep learning, there are many aspects to
consider, such as accuracy, real-time operation, speed of operation, etc. It should also take
into consideration its specific application scenarios or goals, such as, in the case of target
detection scenarios based on UAV remote sensing, ensuring a lightweight model for being
embedded in portable devices. In the traditional YOLOv4 backbone feature extraction
network, point-to-point convolution is performed between the image and the filter, leading
to high computational effort; therefore, we introduce depth-separable convolution to
overcome this problem. The standard convolution operation is a convolution operation
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using multiple convolution kernels on numerous input channels, with the parameter
computation C shown in Equation (1), where DK is the size of the convolution kernel,
M is the number of input channels, N is the number of convolution kernels, and DF
is the size of the input image. Deeply separable convolution decomposes a complete
convolutional block into two blocks, first using a convolutional kernel on M input channels
and then adjusting the number of output channels by pointwise convolution, i.e., using N
1 × 1 convolution kernels, with the parameter computation C′, as shown in Equation (2).
As shown in Equation (3), the number of parameters and operations in the network is
significantly reduced, and the processing efficiency increases with minimal impact on the
model accuracy. In this study, MobileNetv3, with its lightweight architecture, is used to
replace the original CSPDarknet53 network. Howard et al. [39] build on the previous
MobilenetV1 and MobileNetV2 and use NetAdapt’s network architecture search method
to optimize Mobilenet. In addition, MobilenetV3 uses the h-swish activation function to
reduce the number of training parameters and the number of operations, as shown in
Equation (4), thus reducing the number of memory accesses, reducing the complexity of
the model, and improving performance.

C = DK ×M×N×DF (1)

C′ = DK ×M×DF + M×N×DF (2)

C′

C
=

1
N

+
1

DK
< 1 (3)

h− swish(x) = x× σ(x) (4)

σ(x) =
ReLU6(x + 3)

6
(5)

σ(x) denotes a segmented linear simulation function, as shown in Equation (5).
Figure 3 shows that MobilenetV3 contains a core module called BNeck, an inverse

residual structure block, a depth-separable convolution block, a SE attention module, and
two activation functions, ReLU and h-swish. The inverse residual structure block connects
input and output features on the same channel via an inverted residual join, first using
1 × 1 convolution for up-dimensioning and then the following operation with residual
edges. In addition, it contains a SENet attention module that adjusts the weights of each
channel so that training focuses more on the relevant features of each channel, boosting
useful features and suppressing features of limited usefulness.
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As the use of deep separable convolution increases the number of layers in the network,
if the network model is too deep, the gradient dispersion is likely to cause the model
to fail to converge, so the residual structure introduces to improve this problem. The
residual structure features an additional shortcut connection to achieve data superposition
between inputs and outputs without increasing the number of parameters and complexity
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of the model, yet avoiding the occurrence of gradient vanishing, thus improving the
expressiveness of the model again while using a depth-separable volume machine. In
summary, the use of Mobilenetv3 to replace the CSPDarkNet53 backbone network and the
introduction of a depth-separable convolution block simplifies the network structure and
reduces computational memory consumption, resulting in a significant improvement in the
training efficiency and detection speed of the algorithm model. It meets the requirements
of smart orchards for fruit tree detection and counting methods to be lightweight and fast.

2.2.4. Channel Attention Module and Spatial Attention Module

The YOLOv4 algorithm treats the target detection process as a regression problem,
which does not distinguish well between the foreground and background areas of the
input image, leading to missed or false detections. In order to identify the target fruit
trees, because of the small number of pixels and the complex background, some of the
information about the fruit trees is obscured by other vegetation or canopy. Therefore,
this study enhances the feature representation of the target by introducing an attention
mechanism. In order not to increase the depth of the network, this study only replaces the
residual connections in the enhanced feature extraction network by filtering the passing
features with different weights so that the network values the channels with high weights
and the information retained during residual fusion is more conducive to training loss
reduction. For the target detection task, if the same amount of attention is paid to each
feature map at the beginning of training, this can increase the time required for the network
to converge. Different attention mechanism modules can all improve the accuracy of
target detection. The best-performing approach is the one in which the channel attention
mechanism in CBAM is directly connected to the spatial attention mechanism. The CBAM
module adds a global maximum pooling operation to the channel attention module, thus
compensating for some of the information lost due to global average pooling.

CBAM is a dual-dimensional attention mechanism based on the channel and spatial
attention mechanisms to extract features. Figure 4 shows the network structure, consisting
of CAM (Channel Attention Module) and SAM (Spatial Attention Module). CAM first
compresses the input feature map of H×W×C into a one-dimensional vector of 1 × 1 × C,
bypassing the input image F through a set of maximum pooling and average pooling layers;
the pooled one-dimensional vector is passed into the Muti-Layer Perception (MLP), which
consists of two fully connected layers and an activation function. After the first fully
connected layer, the channel dimension downscales from C-dimension to C/r-dimension,
and after the second fully connected layer, it is upscaled to C-dimension again. The summed
elements are then passed through the Sigmoid operation to generate a one-dimensional
vector Mc of 1 × 1 × C to obtain the output feature map F’, as shown in Equation (6). Then,
Mc is multiplied with the input feature map of H×W × C as the input of the SAM module,
and two sets of maximum pooling layers obtain two feature maps of H ×W × 1 layers
and average pooling layers, followed by splicing, dimensionality reduction operation,
and Sigmoid operation to get the spatial attention feature map of H ×W × 1. Finally, the
attentional feature map with a size of H ×W × C is obtained by multiplying it with the
input feature map of the SAM module F′′ , as shown in Equation (7).

The channel attention mechanism enhances the feature representation of obscured
targets, while the spatial attention mechanism highlights regions of the feature map relevant
to the current task.

F′ = Mc(F)⊗ F (6)

F′′ = Ms
(

F′
)
⊗ F′ (7)

The attention mechanism is a plug-and-play module, so it could theoretically be placed
behind any feature layers, either in the backbone or the enhanced feature extraction network.
However, as this study is based on migration learning, placing the attention mechanism
module in the backbone network would result in the pre-training weights of the network
not being available, so this study applies the attention mechanism module to the enhanced
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feature extraction network. The CBAM module is inserted onto the two adequate feature
layers extracted from the backbone network in this study. At the same time, it is added to
the results after the upsampling module in the enhanced feature extraction network.
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2.2.5. Adding Feature Fusion Effects—Adaptive Spatial Feature Fusion

The original YOLOv4 enhanced feature extraction network is the PANet feature fusion
network; when processing the FPN output feature map, the bottom-up result is used to
fuse the higher-level information with the lower-level information, and YOLOv4 adds a
bottom-up enhancement structure to the FPN, thus forming a two-way fusion of multi-scale
feature maps. However, for the fruit tree canopy target in a complex context, the PANet
feature fusion approach is still limited to the summation of feature maps at the same size.
Still, it cannot fully use the features at different scales. Therefore, to solve this problem and
make good use of the detailed information of the lower layer information and the semantic
information of the higher layer information, this study introduces ASFF on PANet. The
ASFF [40] structure learns each weighting coefficient for the three feature outputs of PANet
by adaptive learning. Each layer’s feature map is multiplied by the corresponding weight
and then fused simultaneously.

Figure 5 shows the network structure diagram based on adaptive spatial feature
fusion (ASFF). The input feature maps in the figure are the three feature maps output
from the PANet network, which are Level1, Level2, and Level3. Then, the feature fusion
operations of ASFF-1, ASFF-2, and ASFF-3 are performed on these three-layer feature
maps, respectively, and finally, the fused feature maps are predicted. When using the ASFF
module for feature fusion, each layer’s size and number of channels are adjusted to be
the same. The corresponding weight coefficients are calculated for adjusting feature maps.
Then, each layer is multiplied by the corresponding weight coefficients of that layer and
summed so that adaptive learning between features can be achieved. Taking ASFF-3 as an
example, the feature fusion process can be represented as follows:

y3 = α3 × X1→3 + β3 × X2→3 + γ3 × X3→3 (8)

where y3 is feature map 3, X1→3, X2→3, X3→3 are the feature maps output when each layer
feature map is adjusted to match the size and number of channels of the layer three feature
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map, respectively; α3, β3, γ3 are the weight coefficients learned when the three feature
maps X1→3, X2→3, X3→3 are feature fused at the third layer, respectively. For α3, β3, γ3, the
weight values are firstly obtained by 1 × 1 convolution of the three feature maps X1→3,
X2→3, X3→3, and then performing channel cascading, and finally using SoftMax to obtain
the weight values in the range [0,1] and satisfy α3 + β3 + γ3 = 1.
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As can be seen from the formula, in the ASFF module, each layer of the feature map is
summed when it is fused, so the feature map size and the number of channels need to be
adjusted in advance for each layer to be fused. Of course, as the required size and number
of channels vary from layer to layer, the adjustment method is also different. As shown
above, for ASFF-1, the feature map of each layer needs to be downsampled when it adjusts
to the first level. For ASFF-3, the feature map of each layer needs to be upsampled when it
adapts to the third level.

The ASFF module implements a fusion of the weight coefficients of each layer with the
features multiplied and then added together, enabling the filtering of features from other
layers to retain valid information for that layer, enabling the enhanced feature extraction
network structure to extract features more hierarchically. In the fruit tree dataset in this
study, there are differences in image sizes, where some of the targets occupy fewer pixels.
Since the image size has to be resized to a uniform size when being re-inputted into
YOLOv4, this causes the targets in the images to become smaller. Therefore, we need
detailed features in the lower-level features to enhance the feature information of the small
targets, and this is well met by introducing the ASFF structure.

2.3. Improved Generation Method of Pre-Selection Boxes

The K-means algorithm is based on iterative thinking to find the cluster centers. The
steps of the algorithm are: select the initial K samples as the initial clustering centers of
the algorithm, calculate the Euclidean distance to the K clustering centers for each sample
in the dataset and assign it to the class corresponding to the clustering center with the
smallest distance; then, for each new class, recalculate its clustering center and repeat the
process until the clustering centers no longer change. It can be found that the selection of
the anchor box is strongly related to the dataset, and the dataset in this study was made by
ourselves, from the acquisition of the original data to the production of the dataset, and is a
single type of dataset. However, if the anchor box generated by the K-means algorithm
alone is relatively concentrated, the single K-means algorithm was shown to be ineffective
for the generation of preselected boxes after experimental validation. It cannot achieve the
advantage of the multi-scale output of the model. Therefore, this study combines the idea
of linear scaling based on the K-means algorithm, and further optimizes the anchor box
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generated by the K-means algorithm based on the mountain, thus stretching the anchor
box and improving the detection accuracy of the model. The optimized anchor boxes are
shown in Table 1.

Table 1. Optimized anchors of the different feature map.

Feature Map 13 × 13 26 × 26 52 × 52

Anchors
(16, 18) (22, 44) (279, 218)
(94, 45) (125, 115) (355, 355)
(70, 69) (156, 162) (684, 654)

3. Results
3.1. Evaluation Indicators

As the final model obtained in this study will be put into practical use in the future,
not only does it need to have satisfactory accuracy, but the real-time nature of the model,
the number of parameters, and the size of the model are also key evaluation metrics. All
algorithms in this study were evaluated on the basis of mean average precision (mAP),
F1-score, frames per second (FPS), and model size. Setting different IOU thresholds will
result in different numbers of detected frames, where high thresholds result in a small
number of detected frames and low thresholds result in a large number of detected frames.
When the detected fruit tree canopy targets are small, detection may be missed if a larger
threshold is set. Therefore, the threshold value set in this study is 0.5. The mAP is the
average of the mean detection accuracy, which is the most important indicator of detection
performance in target detection. The F1-score is the summed average of the model accuracy
and recall, with a maximum of 1 and a minimum of 0. It provides a good assessment of the
performance of the model, and the larger the F1-score, the better the model performance.
The greater the frames per second (FPS), the more images can be detected per second, and
the smoother the display. The model size is an important indicator of how lightweight the
model is.

In addition, in this study, the number of tree crowns interpreted by visual interpreta-
tion was compared with the number of tree crowns extracted by each model and evaluated
for accuracy. The Average Overall Accuracy (AOA) was used, which was calculated
as follows:

AOA =
1
n

n

∑
i=1

(
1− |Ni − N|

N
× 100%

)
(9)

where Ni represents the total number of canopies obtained by identifying the ith sample
map by the specified model; N represents the total number of canopies obtained by visually
interpreting the ith sample map.

3.2. Results of Detecting in Different Models

This study is based on the YOLOv4 algorithm with improvements, which include the
addition of the attention mechanism, the lightweight of the backbone feature extraction
network, the addition of the ASFF module to the feature fusion module, and the improve-
ment of the a priori preselected box, and the results are shown in Table 2. The model in
Table 2 lists YOLOv4 and models based on YOLOv4 with different improvements, such as
YOLOv4-Attention-Mobilenetv3, which is YOLOv4 after replacing the backbone network
with Mobilenetv3 and applying the CBAM attention mechanism; YOLOv4-Attention-
Mobilenetv3-ASFF-P replaces the backbone network with Mobilenetv3, applies the CBAM
attention mechanism, adds the ASFF module and optimizes the YOLOv4 using the pre-
selection box generation method. Then, the mAP, F1-score, FPS, and model size of each
model are listed, respectively.
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Table 2. The results of fruit tree detection based on different models.

Model mAP F1-Score FPS Model Size (MB)

YOLOv4 95.88% 88.08% 36.62 244.0
YOLOv4—SE 96.69% 88.54% 40.00 245.0

YOLOv4—CBAM 96.99% 88.72% 36.28 246.0
YOLOv4-Mobilenetv3 96.73% 88.42% 95.70 44.3

YOLOv4-Attention-Mobilenetv3 97.50% 90.08% 104.91 44.5
YOLOv4-Attention-Mobilenetv3-ASFF 97.68% 90.38% 101.58 50.7

YOLOv4-Attention-Mobilenetv3-ASFF-P 98.21% 93.60% 96.25 50.7

3.2.1. Result of Achieving Light Weight by Using Mobilenetv3

In this study, the original YOLOv4 backbone network CSPDarkent53 network was re-
placed with the lightweight network Mobilenetv3, which is denoted as YOLO-Mobilenetv3.
As can be seen from the above table, when using the YOLO-Mobilenetv3 model for detec-
tion, the mAP improved by 0.85% compared to YOLOv4, and the F1-score improved by
0.34%. Most importantly, the FPS value and the model size of the model changed signifi-
cantly: firstly, the FPS value jumped from 36.62 to 95.70, which is a significant increase of
about 2.6 times; secondly, the model size decreased from 244 MB to 44.3 MB, which is about
0.18 of the original YOLOv4, which satisfies this study’s goal of achieving light weight.

3.2.2. Result of Applying the Attention Mechanism

In this study, the attention mechanism module is inserted onto two adequate feature
layers extracted from the backbone network. Also, in the enhanced feature extraction
network, the attention mechanism module is added to the results after the upsampling
module. The algorithm incorporating the SE attention mechanism (a common channel-
based attention mechanism) in YOLOv4 is denoted as YOLOv4-SE, and the algorithm
incorporating the CBAM attention mechanism is denoted as YOLOv4-CBAM. As can be
seen in Table 2, compared to the traditional YOLOv4, the mAP of the network incorporating
the SE attention mechanism and the CBAM attention mechanism increased by 0.81% and
1.11%, while the F1-score also increased by 0.46% and 0.64%, respectively. Furthermore, it
can be seen that YOLOv4-CBAM performs better than YOLOV4-SE in terms of mAP. Other
evaluation metrics, such as FPS and model size, only changed slightly.

3.2.3. Result of Applying the ASFF

After improving YOLOv4 using the CBAM attention mechanism module and the
Mobilenetv3 lightweight network, this study added the ASFF module at the end of PANet
to further enhance the feature fusion between the different layers. As can be seen from
Table 2, the mAP value of the model after the addition of ASFF reached 97.68%, a significant
improvement in detection accuracy, in addition to a small improvement in the F1-score
of the model; the FPS value reached 101.58, and the model size, etc., was also reduced
compared to the original YOLOv4, and compared to the YOLOv4-Attention-Mobilenetv3
model, the model size only increased slightly. It can be found that the model with the
introduction of the ASFF module has improved in terms of mAP and F1-score performance.

3.2.4. Result of Optimizing Preselected Boxes

After optimizing the preselection box using K-means clustering combined with linear
scaling, the model is denoted as YOLOv4-Attention-Mobilenetv3-ASFF-P. As can be seen
from Table 2, after optimizing the preselection box, the mAP of the model reaches 98.21%
and the F1-score value reaches 93.60%, both of which are the best among all models. It can
be found that the model training after optimizing the pre-selected boxes can improve the
detection accuracy and performance of the model.

To verify the detection capability of the YOLOv4 model modified by different strate-
gies, fruit tree canopies were predicted in different scenes, and the results are shown in
Figure 6. Three representative sample plots were selected: module a in Figure 6, from
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left to right, shows scenes with high clarity in natural fields but with interference from
people and other factors; the middle image shows scenes with severe adhesion between
tree crowns, which are difficult to distinguish with the naked eye, and the right image
shows scenes with a high number of tree crowns and average adhesion. The modules b, c,
d, and e in Figure 6 show the results of the different modifications. As can be seen from the
above figure, the detection of each scene becomes progressively better from b to e. In b,
which is the original YOLOv4 detection model, it can be seen that problems such as missed
detections, duplicate markings, and inappropriate box sizes exist and are the most serious.
Finally, it can be seen that the YOLOv4-CBAM-Mobilenetv3-ASFF-P detection model has
no problems with missed or duplicate marks, and the size of the marker box is appropriate.
Combining the results in Table 2, it can clearly be concluded that the detection model with
the optimized pre-selected box generation method has the best detection results.

3.3. Results of Counting in Different Models

To verify the counting ability of the YOLOv4 model modified by different strategies,
10 randomly selected sample images were counted using different models, and the number
of tree crowns in the images was counted, with Yolov4 as model A, YOLOv4-CBAM-
Mobilenetv3 as model B, YOLOv4-CBAM-Mobilenetv3-ASFF as model C, and YOLOv4-
CBAM-Mobilenetv3-ASFF-P as model D. The counting results are shown in Table 3. P1-
P10 in Table 3 are the 10 randomly selected sample images, and manual counting is
the result after visual interpretation. The average overall accuracies of the four models
are 77.06%, 85.01%, 92.61%, and 96.73%, respectively. The average overall accuracy of
model D (YOLOv4-CBAM-Mobilenetv3-ASFF-P) is very impressive, although it has some
deviations from the actual visual interpretation numbers. It can also be seen that the AOA
progressively improves from model A to D. Therefore, the series of strategies we propose
all have an improvement on the counting effectiveness of the model, leading to an increase
in the robustness of the model.

Table 3. The results of fruit tree counts based on different models.

Counts P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 AOA

nums 13 10 21 11 23 20 31 73 71 55 /
Model A 9 8 26 10 14 19 33 53 50 34 77.06%
Model B 11 9 20 10 15 20 27 60 57 41 85.01%
Model C 12 9 21 10 20 20 29 69 63 49 92.61%
Model D 13 10 21 11 21 20 30 78 65 52 96.73%
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4. Discussion

This study builds a highly accurate, fast, and lightweight detection model based on an
improved YOLOv4. In terms of dataset production, images containing different resolutions
and including different complex backgrounds were constructed to improve the robustness
of the model. With respect to model training, we adopted the training mode of cosine
annealing, and employed the generation mode of the pre-selection box before training.
Then, the main feature extraction network and the enhanced feature extraction network of
the YOLOv4 network were improved. Finally, the trained model was tested in different
scenarios, proving that the model is able to meet the requirements proposed in this study.

To embed recognition and counting models into mobile devices, an important goal
of this study is to achieve lightweight models without losing much accuracy. As can be
seen in the experimental results in Table 2, when replacing YOLOv4’s backbone network
CSPDarknet53 with the lightweight network Mobilenetv3, the FPS values of the model
improve significantly, and the model size decreases significantly. We can also see that the
mAP values of the model also improve slightly, compared to the decrease in accuracy that
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occurs when Huang et al. [41] identified trees using the improved method of replacing
YOLOv4’s backbone network with Mobilenetv2 [42]; this is due to the presence of the SE
attention mechanism module in the BNeck module in Mobilenetv3, which helps to improve
the model’s ability to provide detailed information. In addition, the model achieves an FPS
of over 96, which is a significant reduction in detection time compared to Yang et al. [43],
who employed CBAM-YOLOv4 to identify grape leaves (single image detection time was
around 1 s), and well meets the demand for real-time detection in this study. In addition,
the training parameters of the improved model were significantly reduced (from 6.44 × 107

to 1.18 × 107). Since more training parameters require more resources to be allocated to
training, the computation time will be longer, and the configuration of the running envi-
ronment will be more demanding. The size of the model obtained after training was also
significantly reduced from 244 MB to about 50 MB. The improved lightweight model there-
fore not only improves computational efficiency but also optimizes the size of the model
for mobile embedding and gives it the ability to run in low-configuration environments.

A comparison was made with the traditional YOLOv4 from the perspective of the
attention mechanism module. It can be seen that both the SE attention mechanism and
the CBAM attention mechanism have higher mAP values than the traditional YOLOv4,
with small changes in FPS and model size. It can be concluded that the use of the attention
mechanism can lead to an improvement in the detection accuracy of the network, as
the attention mechanism allows the network to focus on what it needs to focus on more,
improving the model’s ability to perceive information. In addition, the model with YOLOv4-
CBAM performs better, with a 1.11% improvement in mAP value; this is because CBAM
has an additional spatial attention mechanism module compared to SE’s channel-only
attention mechanism, as not all regions in the image are equally important in contributing
to the task, and only the task-related regions are worth caring about. The addition of this
module helps the model to improve its ability to perceive location information and find the
most important parts of the network for processing, thus improving the model’s detection
accuracy and counting ability.

From the experimental results, it can be observed that the mAP value is improved
after the introduction of the ASFF module to the model, which is because of the three
feature layers input to PANet, large targets in the image are detected at the top level
and small targets at the bottom level; however, the layer-to-layer interaction exists only
for upsampling and downsampling operations, and many of the top- and bottom-level
features have not been utilized. Large targets in the image require larger perceptual fields
and high-level semantic features, and small targets require fine-grained features in the
underlying features to be discriminated; the introduction of the ASFF structure greatly
enriches the model by adaptively learning the weight coefficients (the weight coefficients
in ASFF are obtained by convolving the feature maps of each layer, and the corresponding
weights are adaptively adjusted to smaller values for invalid feature maps, thus reducing
the interference of invalid feature maps with target detection) for mapping and fusion
of feature layers at each scale, fusing features from different layers together by learning
the weight coefficients and filtering features from other layers to retain only the useful
information in that layer. The ability to perceive the semantic information at the higher
levels of the citrus canopy and the detailed information at the bottom layer is greatly
enriched. Although the size of the model and the number of parameters became larger
after the introduction of the ASFF structure, even though the model size and the number of
parameters increased slightly, the overall optimization of the model achieved by using this
structure was not affected, as this study focused more on the improvement of mAP, as well
as the counting ability (mainly in AOA). From Tables 2 and 3, it can be seen that with the
addition of the ASFF module, both mAP and AOA were significantly enhanced, further
confirming the great improvement of ASFF for recognition and counting in this study.

As the label files in the dataset of this study were generated by manual annotation,
the size is relatively concentrated, and most of the targets are small. Therefore, this study
uses the K-means algorithm to optimize the generation of pre-selected boxes and uses
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linear scale scaling for pre-selected box stretching on this basis. The experimental results
show that the mAP values of the models trained using the optimized preselected boxes and
the unoptimized preselected boxes are higher, at 98.21% and 97.68%, respectively. This is
because the anchor frames optimized with the K-means algorithm and linear scale scaling
can fit the training target better in multi-scale training and their generalization ability is
better; larger anchor frames produce less loss and thus higher accuracy as they retain
the feature information in the shallow network when transferring the feature information
extracted from the shallow network to the deep network.

In this paper, the size of the model increased slightly after the addition of the CBAM
attention mechanism, but the impact on real-time detection was not significant; to address
this issue, a lighter CBAM model can be built to be embedded in the YOLOv4 network
in the next step of research, which could improve the detection accuracy and lighten the
model at the same time. Secondly, the lightweight network in this paper has only been
implemented on the PC side, and has not yet been validated on the mobile side. In the
future, we could study how to deploy the model to the mobile site or even embed it into
the UAV for real-time detection. If the anchor box can be dynamically scaled in real time
during the training process, the model’s accuracy could be significantly improved, and
accurate matching could be achieved. As the ASFF is inserted directly after the PANet
structure, it does not make good use of the semantic information of the top-level features
and the detailed information of the bottom-level features because of the top-down and
bottom-up structures in the PANet structure itself. Therefore, in the future, changing the
PANet structure could be considered to enable ASFF to make better use of information
from the top and bottom layers.

5. Conclusions

In this study, we combined YOLOv4, a lightweight model, an attention mechanism,
and feature fusion strategies to train, validate and test different models based on a dataset
produced from fruit tree canopy UAV images, and compared the results and performance
of the models with respect to recognition and counting under different strategies. Fi-
nally, a YOLOv4-Mobilenetv3-CBAM-ASFF-P approach was proposed, and a YOLOv4-
Mobilenetv3-CBAM-ASFF-P model for fruit tree canopy recognition and counting was
obtained. The key contribution is the good robustness of the model for both detection and
counting. By introducing Mobilenetv3 as the backbone network, the YOLOv4 model is
made to be more lightweight and computationally efficient; by incorporating the CBAM
attention mechanism, the YOLOv4 model is able to focus more on important canopy fea-
tures in the image and suppress unimportant features; by introducing the ASFF module,
the fusion capability of the model’s multi-scale features is enhanced, and the detection
accuracy is further improved. Finally, the model is trained by optimizing the generation
of pre-selected frames, combined with the learning strategy of cosine annealing, which
speeds up the training speed of the model and improves the detection accuracy. The model
achieved 98.21% mAP, 96.25 FPS, and 93.60% F1-score for canopy detection, a significant
reduction in model size; and 96.73% AOA for canopy counting. This means that the model
can effectively recognize and count fruit tree crowns, meeting the demand for lightweight,
real-time and fast recognition and counting of fruit trees in the construction of smart
orchards, and is portable and easy to apply, providing a solution and reference for the
application of fruit tree crown recognition and counting models in practical scenarios.
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