
Citation: Chang, Z.; Liu, S.; Wu, Y.;

Shi, K. The Regional Disparity of

Urban Spatial Expansion Is Greater

than That of Urban Socioeconomic

Expansion in China: A New

Perspective from Nighttime Light

Remotely Sensed Data and Urban

Land Datasets. Remote Sens. 2022, 14,

4348. https://doi.org/10.3390/

rs14174348

Academic Editor: Danlin Yu

Received: 24 June 2022

Accepted: 31 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

The Regional Disparity of Urban Spatial Expansion Is Greater
than That of Urban Socioeconomic Expansion in China: A New
Perspective from Nighttime Light Remotely Sensed Data and
Urban Land Datasets
Zhijian Chang 1,2,3, Shirao Liu 2,3, Yizhen Wu 2,3 and Kaifang Shi 1,2,3,*

1 School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
2 Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station,

School of Geographical Sciences, Southwest University, Chongqing 400715, China
3 Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical

Sciences, Southwest University, Chongqing 400715, China
* Correspondence: shikf1986@126.com or skffyy@swu.edu.cn; Tel./Fax: +86-1368389180

Abstract: The regional disparity of urban expansion varies significantly in China’s different regions,
hindering sustainable socioeconomic development. However, most studies to date have focused on a
single aspect of urban expansion, e.g., urban spatial expansion (USS) disparity. This study attempts
to define urban expansion from USS and urban socioeconomic expansion (USE) based on nighttime
light remotely sensed (NTL) data and urban land datasets. Then, taking China’s 241 prefecture-
level cities within different provinces as experimental subjects, the Dagum Gini (DG) coefficient
and stochastic convergence test are employed to assess the disparity of urban expansion from two
different dimensions. The results show that, on the national scale, the regional disparity of USS is
always greater than that of USE and has a converging trend. Additionally, regional disparity is the
main factor causing the difference between USS and USE, with average contribution rates of 55% and
45%, respectively. The average difference between USS and USE in the eastern region (ER) is greater
than 10%, while it is the lowest in the northeastern region (NER) and shows a significant expansion
trend in performance convergence with a regression coefficient of 0.0022, followed by the central
(CR), eastern, and western (WR) regions. Through the panel unit root test, we found that urban
expansion in China in terms of USS and USE has internal random convergence in certain regions
under the premise of global random divergence, and there may be differentiation and formation of
one or more convergence clubs in the future. Using this novel perspective to define urban expansion,
this study quantifies the contributions of USS and USE to regional disparity and provides a scientific
basis for governments to implement appropriate approaches to sustainable urban development in
different regions.

Keywords: nighttime light data; urban expansion; regional disparity; Gini coefficient; stochastic convergence

1. Introduction

As the world’s largest developing country by economic volume, China has experi-
enced unprecedented rapid urbanization in the past three decades [1]. From 1978 to 2020,
China’s gross domestic product (GDP) grew from USD 1149.5 billion to USD 11.06 trillion,
an increase of 96.3 times. In 2015, the urban land area was 52,102 km2, an increase of
44,664 km2 during 1981–2015, with an average annual growth of 5.89% [2]. However, rapid
socioeconomic growth causes imbalances in regional development and inconsistencies in
urban expansion [3], which impose pressures on housing, traffic congestion, social stability,
and people’s well-being, which is inconsistent with the 11th report of the United Nations
SDGs (Sustainable Development Goals) proposed by the 2016 item (building inclusive,
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safe, resilient and sustainable cities and human settlements) [4]. Therefore, it is particularly
important to evaluate China’s urban expansion and analyze its regional disparity.

It has been acknowledged that urban expansion is the process of the rural population
moving to cities [5]. This is a course of polydimensional changes which is reflected in
urban spatial expansion, economic growth patterns, social organizational structure, and
resident lifestyle [6], indicating that urban expansion can be described in two aspects [7]:
changes in the external urban spatial structure or level, e.g., urban spatial expansion (USS),
and internal socioeconomic characteristics or vertical changes, e.g., urban socioeconomic
expansion (USE). USS usually manifests in decentralized urban forms, including jump-type
expansion, fill-type expansion, and marginal expansion [8], while USE usually manifests in
decentralized intensive urban expansion, including population growth, cultural prosperity,
building increase, economic growth, and other indicators (Figure 1) [9]. Therefore, it is
necessary to analyze and quantify urban expansion attributed to both urban physical and
social attributes.
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How to analyze and quantify regional disparities in China’s USS and USE is very
important. Previous studies have discussed China’s urban expansion from various perspec-
tives; however, these analyses have shown that there are several problems still deserving
of discussion. First, current studies are mostly based on single-dimension analysis, and
there are few studies that compare USS and USE. Traditional statistical data (e.g., GDP,
urbanization rate, and proportion of urban population) have been widely adopted to
evaluate USE, which creates problems due to a lack of spatial information and statistical
deviation, inability to evaluate data within the administrative unit, and problems with low
accuracy and credibility of results, making it difficult to evaluate urban expansion mecha-
nisms [10,11]. Although previous studies have tried to use medium and high resolution
remotely sensed data (e.g., Landsat images) to compensate for the lack of spatial informa-
tion in traditional statistical data [12], traditional remote sensing data cannot accurately
reflect socioeconomic conditions [13]. Second, most existing studies do not consider the
impact of regional disparities on urban expansion in different regions, instead focusing on
urban expansion in specific regions, such as expansion from cities in specific regions. In
other cases, each province or region conducts research as a whole while ignoring the impact
of regional disparities on each type of urban expansion. Thus, we remain unsure what kind
of differences in urban expansion exist at different scales. Third, previous studies have
lacked discussion about the differences between USS and USE.

Many studies have shown that the installation of the Defense Aviation Meteorological
Satellite Program (DMSP) on the OLS (the Operational Linescan System) sensor in outer
space has produced observed global nighttime light (NTL) data that are regarded as an
effective alternative means of measuring regional economic development [14,15], identi-
fying poverty [14], and monitoring urban expansion [16]. DMSP-OLS data can integrate
large-scale urban expansion information in a timely and accurate manner by integrating
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other spatial data [17], making up for the lack of spatial or socioeconomic information in
traditional statistical data and allowing this method to provide an effective and accurate
method for quantifying USS and USE from a multiscale perspective [18,19].

This study uses these novel perspectives (i.e., USS and USE) to evaluate the regional
disparity of urban expansion in China, in an attempt to answer the following questions:
(1) What is the regional disparity in China’s urban expansion? and (2) What is the difference
between USS and USE? In order to solve the above issues, China’s 241 prefecture-level
cities within the different provinces were selected as empirical cases, and empirical research
was conducted within different regions. First, the objective facts of urban expansion were
represented by DMSP-OLS data and urban land datasets. Then, we employed the Dagum
Gini (DG) coefficient to measure the regional disparity for USS and USE in China. Finally,
the convergence test was adopted to evaluate the stability of the time-series data and the
panel unit root test was chosen to check the internal convergence of USS and USE. This
study provides a way to understand regional disparities in urban expansion, and can
provide a reference for the construction of sustainable cities in China.

2. Study Area and Data Sources
2.1. Study Area

The 241 prefecture-level cities in China were selected as case studies (Figure 2). China’s
GDP and population have experienced amazingly rapid growth following reform and
opening up, which has led to rapid urban expansion. China’s urban expansion shows
serious regional disparity, which is manifested as regional disparities in urban spatial and
socioeconomic growth. With the premise of ensuring data integrity, the 241 cities selected in
this study were evenly distributed in the 31 provinces of China; specifically, 84 cities were in
the eastern region (ER), 31 cities were in the northeastern region (NER), and 63 cities were
in the central region (CR) and western region (WR). As there are economically developed
cities and relatively poor cities in each region, we believe that these cities can be used to
adequately analyze the regional dimensions of cities from the provincial level and region,
as well as the differences between USS and USE within different regions.
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2.2. Data Sources and Data Processing

Two kinds of data were used to evaluate the regional disparity of urban expansion
in China, including the urban land datasets, DMSP-OLS nighttime stable light (NSL)
data, and collected urban land data, along with per capita GDP (PGDP) data from China
Urban Statistical Yearbook (http://www.stats.gov.cn/tjsj/ (accessed on 19 April 2021)) for
regression analysis to verify the accuracy of USS and USE.

Referring to the study by He et al. [20], urban land datasets were extracted by
a hierarchical support vector machine (SVM) using the NTL data (https://ngdc.noaa.
gov/eog/dmsp.html (accessed on 13 April 2021)), land surface temperature (LST)
(http://ladsweb.nascom.nasa.gov (accessed on 13 April 2021)), and normalized difference
vegetation index (NDVI) data (http://edc2.usgs.gov/ (accessed on 13 April 2021) and
http://free.vgt.vito.be/origin (accessed on 13 April 2021)) from 1992 to 2015 (Figure 3) [21].
The data were projected to the equivalent region of the Albers cone and resampled to a
1 km resolution before processing. Fine-scale urban land data generated by Landsat data
(http://www.geodata.cn/Portal/index.jsp (accessed on 14 April 2021)) were used to verify
the accuracy of the extraction results, with the average Kappa value reaching 0.66 [22],
which illustrated that reliable information from the datasets produced by He et al. [20]
could quantify the spatial dynamics of urban land expansion in China.
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The NSL data were collected from the National Geophysical Data Center of the US
National Oceanic and Atmospheric Administration (https://ngdc.noaa.gov/eog/dmsp.
html (accessed on 12 April 2021)). The NSL data exclude erratic lights that do not derive
from cities, towns, or other sites of human activity. The digital number (DN) of the data
was six bits (i.e., 0–63), with a spatial resolution of thirty arc-seconds (approximately 1-km).
However, the NSL data have two flaws: (1) DN oversaturation, and (2) lack of continuity
and comparability. Thus, this study adopted the method developed by Shi et al. [23] to
process the NSL data; the corrected NSL data from 1993–2013 are shown in Figure 4.
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3. Methods
3.1. Defining Urban Expansion

The urban land datasets and NSL data were used to quantify USS and USE, respec-
tively, in order to reflect the extent of urban expansion and intensive urban development.
Following to Chen et al. [24], two comprehensive indexes, U1 and U2, were used to repre-
sent USS and USE, respectively, for evaluation in this study. The formulas are as follows:

U1 =
S
A

(1)

U2 =
l

∑
i=s
×DNi

ni
N × l

(2)

where U1 represents the USS, S is the built-up area of a specific city in urban land datasets,
and A is the city’s administrative area. U2 represents the USE, DNi is the i-th gray value
of the NSL data, ni is the number of pixels of the i-th gray value in the NSL data, l is the
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highest DN value in the study area, s is the lowest DN value in the study area, and N is the
total number of bright pixels in the NSL data (l ≥ DN ≥ s).

3.2. Calculating Dagum Gini Coefficient

The DG coefficient can decompose the total regional development gap into the gaps
formed by different sources in order to analyze the impact of different subsamples on
overall regional differences. We selected the DG coefficient to measure the interval gap and
analyze the disparity in urban expansion of the four plates and at the provincial level in
three parts: regional differences, regional differences, and the super-variable density. The
development differences between them and their respective contributions to the overall
regional differences were compared from the two aspects of USS and USE. Moreover, the
DG coefficient and its method of subgroup decomposition effectively solve the problem of
cross-overlap among subsamples [25]. The Gini coefficient is defined as follows:

G =
k

∑
j=1

k

∑
h=1

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣

2n2y
(3)

where G is the overall Gini coefficient, y is the average value of urban expansion (USS or
USE), n is the number of provinces, k is the number of regional divisions, yji (y hr

)
is the

urban expansion value of any province in j (h) regions, nj (nh) is the number of provinces
in j (h) regions, j h is the number of regional divisions, and j h is the number of provinces in
the region.

The Gini coefficient can be divided into three parts: the contribution Gw of regional
difference, the contribution Gnb of regional gaps, and the contribution Gt of super variable
density. The relationship between them satisfies G = Gw+Gnb+Gt. Formulas (4) and (5)
represent the Gini coefficient Gjj of region j and contribution Gw of intraregional difference,
respectively, while Formulas (6) and (7) represent the contribution of Gini coefficient Gjh
between regions j and h and the contribution of the over-variable net worth gap Gnb
between regions, respectively. Finally, Formula (8) represents the contribution of over-
variable density Gt.

Gjj =

1
2Y j

∑
nj
i=1 ∑

nj
r=1

∣∣yji − yjr
∣∣

n2
j

(4)

Gw =
k

∑
j=1

Gjj pjsj (5)

Gjh =
∑

nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

njnh
(
Yj + Yh

) (6)

Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh
(

pjsh+phsj
)

Djh (7)

Gt =
k

∑
j=2

j−1

∑
h=1

Gjh(p jsh+phsj)(1 − Djh) (8)

where pj = njY, sj =
njYj

nY
, j = 1, 2, . . . , k; Djh is the relative influence of urban expansion

between cities j and h, and its definition is shown in Formula (9); djh is the difference in
urban expansion between cities, and its definition is shown in Formula (10), which can be
understood as the mathematical expectation of the sum of all yji − yhr > 0 sample values
in regions j and h; and pjh is defined as the first-order moment of super transformation,
which represents all yhr in cities j and h. The sample value of yhr − yji > 0 summed to the
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mathematical expectation. Fj (F h
)

is the cumulative density distribution function of the
j (h) city.

Djh =
djh − pjh

djh+pjh
(9)

djh =
∫ ∞

0
dFj(y)

∫ y

0
(y− x)dFh(x) (10)

pjh =
∫ ∞

0
dFh(y)

∫ y

0
(y− x)dFj(x) (11)

3.3. Stochastic Convergence Test

As an important method of convergence testing, the stochastic convergence method
can test whether one variable has a continuous impact on another variable, which is
information that can be used to avoid the possible state between convergence and non-
convergence in the short term. The unit root test proposed by Carlino et al. [26] and
Evans et al. [27] has been widely used in various studies. According to the results of the
test, if there is a unit root, then the urban expansion is divergent between regions; otherwise,
if there is no unit root, then the urban expansion is convergent between regions.

Following to the study of Carlino et al. [26], we assumed that the USS and USE of
each city can be attributed to their respective compensation difference equilibrium level,
which does not change with time in the long term. Then, the USE and USS of a city at time
t can be written as the sum of USEe (USSe) and ut, as shown in Formula (12), where the
former represents the average that does not change with time and the latter represents the
deviation of the data value from the equilibrium level.

USEt(USS t) = USEe(USS e) + ut (12)

ut = v0+βt+vt (13)

For the existence of transport condition convergence, it is assumed that neither USEe

or USSe is 0. When the convergence hypothesis in Baumol’s research is dynamized, ut can
be decomposed into a deterministic linear trend and a stochastic process. In Formula (13),
v0 represents the initial deviation of the data value from the equilibrium level and βt repre-
sents the deterministic convergence rate. By substituting Formula (13) into Formula (12),
we obtain

USEt(USS t) = α + βt+vt (14)

Evans and Karras’ approach is essentially the same as that of Carlino et al. [26,27]. First,
if the common trend αt and a finite number of parameters µ1, µ2, · · · , µn make Formula (15)
valid, then the urban expansion of these N units converges. Among them, n = 1, 2, . . . ,
N; ynt is the USE and USS of the n units in period t; and αt is the common trend of urban
expansion of all units.

lim
i→∞

Et(yn,t+i − αt+i) = µn (15)

lim
i→∞

Et
(
yt+i − αt+i

)
=

1
N

N

∑
n=1

µn (16)

lim
i→∞

Et

(
yn,t+i − yt+i

)
= µn (17)

Because αt is not observable, Formula (14) cannot be used, and αt must be elimi-
nated. The method is thus to average Formula (14) and obtain Formula (15), of which
yt = ∑N

n=1 ynt/N. As we measure the common trend, αt, the right side of Formula (15) is
equal to 0, and we can subtract Formula (15) from Formula (14) to obtain Formula (17).
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According to Formula (16), for each economic unit n = 1, 2, . . . , N, if and only if ynt − yt is
a stationary sequence, there is a convergence trend for the N units:

∆(ynt − yt) = δn+ρn
(
yn, t−1 − yt−1

)
+

p

∑
i=1

ϕni∆
(
yn,t−i − yt−i

)
+unt (18)

Under this definition, whether convergence occurs can be determined by whether
the autoregressive parameter ρn in Formula (17) is zero. In Formula (18), if the units are
convergent, then ρn is negative; however, if the units are divergent, then ρn is equal to zero.
In addition, δn and ϕni are parameters that make up all the roots of ∑i ϕniLi outside the unit
circle, L is a lag operator, and assuming that N tends to infinity, all u values in Formula (13)
are unrelated. Therefore, testing random convergence becomes testing whether ynt − yt is
stable. If ynt − yt is a stable sequence, the external shock effect is temporary and gradually
dissipates over time, eventually making the economic development of the nth unit tend
to a common trend. In contrast, if ynt − yt is a nonstationary sequence, the external shock
effect persists and eventually causes urban expansion deviate from the common trend.

4. Results and Discussion
4.1. Accuracy Evaluation of Urban Expansion

To verify the accuracy of USS and USE, urban land data and per capita GDP (PGDP)
data were collected from the China City Statistical Yearbook [28] and linear regression
analysis was performed with urban land datasets and NSL data, respectively. The results
are shown in Figure 5. On the national scale, the correlation coefficient (R2) value reached
0.978. At the regional scale, the R2 values of the NER, ER, CR, and WR were 0.923, 0.968,
0.951, and 0.977, respectively. These results correspond to the accuracy evaluation results
of He et al. [20,23] and Shi et al. [20,23], indicating that the urban land data extracted by
the SVM model can be used to adequately show the USS in China.
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testing whether ynt − yt is stable. If ynt − yt is a stable sequence, the external shock effect 
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development of the nth unit tend to a common trend. In contrast, if ynt − yt  is a 
nonstationary sequence, the external shock effect persists and eventually causes urban 
expansion deviate from the common trend. 

4. Results and Discussion 
4.1. Accuracy Evaluation of Urban Expansion 

To verify the accuracy of USS and USE, urban land data and per capita GDP (PGDP) 
data were collected from the China City Statistical Yearbook [28] and linear regression 
analysis was performed with urban land datasets and NSL data, respectively. The results 
are shown in Figure 5. On the national scale, the correlation coefficient (R2) value reached 
0.978. At the regional scale, the R2 values of the NER, ER, CR, and WR were 0.923, 0.968, 
0.951, and 0.977, respectively. These results correspond to the accuracy evaluation results 
of He et al. [20,23] and Shi et al. [20,23], indicating that the urban land data extracted by 
the SVM model can be used to adequately show the USS in China. 
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Figure 5. Regression analysis between Urban land data and Statistical urban area. All cities (a),
NER (b), ER (c), CR (d), and WR (e).

In terms of the accuracy of the USE from the NSL data (Figure 6), the R2 value of
PGDP reached 0.906 within all cities. On the regional scale, the R2 value in the NE was
0.911, the R2 value in the ER was 0.883, in the CR it was 0.917, and in the WR it was 0.916,
all of which are at relatively high levels and can effectively replace traditional statistical
data such as PGDP. The results indicate that the NSL data have a simple processing method,
can accurately reflect the urban economic activity [29], and represent a simple, rapid, and
effective data source for the evaluation of USE. In summary, the regression analysis shows
that urban expansion constructed by urban land data and NSL data have good accuracy and
can be good substitutes for traditional data for the analysis of regional urban expansion.
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4.2. Regional Disparity in Urban Expansion in China

As shown in Figure 7, the overall regional disparity has gradually decreased in both
the level of USS and the level of USE, indicating that China has continued to develop its
economy over the long period since 1978 and the gap in urban development has continued
to narrow. However, there are significant spatial non-equilibrium features. Table 1 shows
that the DG coefficient of USS in 2015 was 0.670, while the corresponding DG coefficient
of USE in Table 2 was 0.550. Economically, there are large differences between different
cities. However, based on the rate of decline in regional differences, the DG coefficient of
USS has declined by an average of 0.523% per year. Among them, the decline rate was
faster than the average from 1995 to 1996, 2001 to 2003, and 2010 to 2012. This difference is
due to factors such as the 1995 strict control of the scale of fixed-asset development, the
control of land leases, the large area of land requisitioned between 2002 and 2003 [30],
and the “Eleventh Five-Year Plan” mid-west development policy, which caused these
trends. By standardizing the use of urban land and improving the land contract system,
the marketization and commercialization of real estate was accelerated in large, medium,
and small cities, which supported urban construction in less developed areas in the central
and western regions and improved the efficiency and benefit of urban land use. The urban
land area has accelerated, and the gap has decreased [31]. According to Table 2, the level
of USE shows that the DG coefficient decreased from 0.677 in 1993 to 0.550 in 2015, an
average annual decrease of 0.577%, which was greater than the average annual decline
of USS (0.523%). This result indicates that, at the national scale, the difference in USE is
smaller than that of USS and the development convergence of USE is higher than that of
USS. This result is not inconsistent with the conclusion that the USS rate of Chinese cities
in a previous study was much higher than the USE rate. The uneven development rate
has led to differences in the development of different urban land areas and the level of
economic expansion. The mobility of labor factors in economic activities as well as the
government’s active regional coordinated development policy indicate that the differences
in USE will continue to decrease [32]. In addition, the evolution of USE during the study
period had a certain degree of volatility. For example, the DG coefficient fell to 0.624 in
2000, increased to 0.625 in 2001, and declined to 0.618 in 2002. In 2003, the value increased
to 0.621, after which the regional differences showed an overall downward trend related to
the international background at the time. For example, China’s accession to the WTO in
2001 enabled several cities to expand their overseas markets [33], and the development of
SARS in 2003 affected normal production in most cities [34].
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Table 1. DG coefficient and its decomposition of the USS.

Year
Overall

Regional
Disparity

Intra-Regional Between Regions Contribution Rate (%)

ER NER CR WR NER-ER CR-ER CR-NER WR-ER WR-NER WR-CR Gw Gnb Gt

1993 0.785 0.772 0.617 0.61 0.747 0.823 0.794 0.623 0.86 0.696 0.698 30.486 51.845 17.669
1995 0.783 0.763 0.613 0.591 0.734 0.829 0.797 0.613 0.857 0.686 0.680 30.468 54.098 15.434
1996 0.773 0.75 0.548 0.582 0.725 0.806 0.793 0.573 0.854 0.657 0.671 30.312 55.061 14.627
1998 0.764 0.744 0.538 0.568 0.713 0.799 0.781 0.560 0.852 0.646 0.662 30.278 55.713 14.009
1999 0.758 0.734 0.540 0.557 0.702 0.797 0.776 0.556 0.846 0.638 0.650 30.158 56.307 13.535
2000 0.754 0.730 0.542 0.553 0.694 0.793 0.773 0.554 0.843 0.634 0.643 30.096 56.309 13.595
2001 0.753 0.726 0.546 0.551 0.693 0.797 0.777 0.555 0.837 0.634 0.638 30.031 56.094 13.876
2002 0.742 0.707 0.551 0.543 0.690 0.798 0.765 0.558 0.827 0.635 0.633 29.730 55.961 14.310
2003 0.734 0.691 0.551 0.54 0.688 0.805 0.754 0.565 0.821 0.634 0.631 29.458 56.422 14.121
2004 0.730 0.684 0.551 0.538 0.688 0.808 0.750 0.566 0.816 0.636 0.629 29.335 56.416 14.249
2005 0.727 0.678 0.554 0.538 0.685 0.807 0.744 0.569 0.812 0.636 0.627 29.252 56.406 14.341
2006 0.723 0.675 0.556 0.539 0.680 0.808 0.739 0.575 0.809 0.634 0.625 29.200 56.233 14.568
2007 0.721 0.671 0.556 0.543 0.677 0.809 0.736 0.579 0.807 0.633 0.626 29.134 56.229 14.637
2008 0.719 0.669 0.558 0.545 0.675 0.807 0.733 0.582 0.805 0.634 0.626 29.103 56.081 14.816
2009 0.712 0.660 0.560 0.544 0.670 0.798 0.727 0.579 0.799 0.630 0.623 28.982 55.873 15.145
2010 0.708 0.654 0.567 0.544 0.665 0.794 0.725 0.581 0.793 0.630 0.619 28.890 55.654 15.456
2012 0.681 0.629 0.572 0.520 0.634 0.781 0.698 0.575 0.759 0.620 0.588 28.630 54.740 16.630
2015 0.670 0.619 0.565 0.512 0.623 0.776 0.686 0.573 0.746 0.612 0.579 28.543 54.365 17.092

Note: ER is eastern region, NER is northeastern region, CR is central region, WR is western region, Gw is the
regional difference in the contribution, Gnb is the regional difference contribution, Gt is the ultra-variable density
contribution, USS is the urban spatial expansion.

Table 2. DG coefficient and its decomposition of the USE.

Year
Overall

Regional
Disparity

Intra-Regional Between Regions Contribution Rate (%)

ER NER CR WR NER-ER CR-ER CR-NER WR-ER WR-NER WR-CR Gw Gnb Gt

1993 0.677 0.679 0.609 0.555 0.645 0.682 0.701 0.607 0.733 0.646 0.609 28.806 38.895 32.299
1995 0.664 0.656 0.599 0.538 0.605 0.680 0.697 0.589 0.721 0.618 0.580 28.769 42.785 28.446
1996 0.651 0.648 0.532 0.524 0.593 0.644 0.696 0.555 0.718 0.590 0.566 28.687 44.600 26.713
1998 0.638 0.636 0.519 0.491 0.588 0.634 0.678 0.529 0.711 0.578 0.551 28.610 45.012 26.378
1999 0.627 0.620 0.517 0.479 0.575 0.630 0.672 0.522 0.698 0.565 0.537 28.484 45.558 25.958
2000 0.624 0.618 0.527 0.476 0.561 0.627 0.673 0.531 0.691 0.565 0.528 28.406 45.537 26.056
2001 0.625 0.617 0.529 0.476 0.553 0.632 0.680 0.533 0.686 0.558 0.523 28.405 46.498 25.098
2002 0.618 0.605 0.529 0.465 0.550 0.638 0.672 0.519 0.680 0.550 0.516 28.337 46.515 25.149
2003 0.621 0.602 0.536 0.463 0.542 0.657 0.674 0.515 0.685 0.546 0.509 28.300 47.366 24.334
2004 0.619 0.596 0.534 0.465 0.542 0.662 0.675 0.512 0.681 0.542 0.511 28.241 47.559 24.200



Remote Sens. 2022, 14, 4348 11 of 20

Table 2. Cont.

Year
Overall

Regional
Disparity

Intra-Regional Between Regions Contribution Rate (%)

ER NER CR WR NER-ER CR-ER CR-NER WR-ER WR-NER WR-CR Gw Gnb Gt

2005 0.617 0.592 0.538 0.466 0.542 0.662 0.672 0.514 0.677 0.544 0.511 28.202 47.328 24.470
2006 0.612 0.587 0.537 0.463 0.542 0.663 0.666 0.511 0.668 0.543 0.510 28.190 46.556 25.255
2007 0.608 0.582 0.536 0.466 0.538 0.661 0.662 0.512 0.662 0.541 0.509 28.140 46.030 25.830
2008 0.606 0.580 0.534 0.469 0.537 0.659 0.659 0.512 0.658 0.539 0.510 28.145 45.535 26.320
2009 0.598 0.571 0.530 0.466 0.534 0.644 0.655 0.510 0.646 0.536 0.508 28.037 45.303 26.660
2010 0.592 0.566 0.529 0.463 0.529 0.641 0.651 0.507 0.634 0.533 0.505 28.018 45.220 26.762
2012 0.567 0.539 0.516 0.439 0.509 0.626 0.626 0.489 0.604 0.519 0.487 27.781 45.386 26.834
2015 0.550 0.528 0.503 0.429 0.492 0.618 0.601 0.477 0.583 0.506 0.470 27.852 43.802 28.347

Note: ER is eastern region, NER is northeastern region, CR is central region, WR is western region, Gw is the
regional difference in the contribution, Gnb is the regional difference contribution, Gt is the ultra-variable density
contribution, USE is the urban socioeconomic expansion.

4.3. Decomposition of Regional Disparity in Urban Expansion

Using the subgroup decomposition method of the DG coefficient, the overall regional
gap can be decomposed into three parts: the intraregional gap (Gw), the interregional gap
(Gnb), and the hypervariable density contribution (Gt); thus, the contributions of different
subsamples to the overall regional gap can be analyzed. Therefore, this study used the
DG coefficient to decompose by subgroup based on the spatial scale of the four major
regions in order to reveal the source of the overall regional urban expansion disparity
in China. The results of the decomposition at the level of USS and USE are shown in
Tables 1 and 2, respectively, and Figure 8 visually depicts the overall regional disparity
and the evolutionary trends of its components. From the measurement results, it can be
seen that the intraregional gap, interregional gap, and hypervariable density contributions
are roughly decreasing, and most of China’s overall regional gap can be explained by the
overall differences in USS and USE between different regions [35]. While the regional
differences and the overlapping of different regions have an impact on the overall gap, no
regional differences have a large impact, especially in terms of the economic aspect, which
shows that the impact of regional overlapping on economic development is greater than
the impact of urban land areas. That is, the influence of regional factor flow is greater than
the scale of development of urban differentiation. This pattern is reflected in research by
Liang et al. [36]. Labor, capital, and technological factors are concentrated in certain cities in
the ER, where the economy has developed rapidly. At the same time, this process promotes
USS, and the situation limits the areas where these factors are exported, such as the NER
and CR; as a result, the cities in these regions cannot be effectively developed as there
is no economically developed metropolis, resulting in the Gini coefficients being among
the lowest within or between these regions. The WR is a sparsely populated area. Due
to a large number of residents and large amount of industry and commerce in the cities,
most cities have poor natural conditions, inconvenient transportation, and overpopulation
problems. These conditions lead to differences in economic development [37]. In the
economically developed ER, the phenomenon of the largest regional differences shows
that the eastern cities have had the greatest differences, that is, there is a concentrated
development of major cities, which promotes the development of the local economy in
the short term. However, it hinders the economic development of neighboring areas, and
thus there is a large difference between USS and USE. With the introduction of various
policies implemented by the Chinese government for coordinated development [38] this
phenomenon is being broken, as reflected in the continuous decline of regional differences
in the study area.
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In terms of intraregional differences (Figure 9), the evolutionary trend of the urban
expansion Gini coefficient in the NER was not stable, showing a “U”-shaped change.
The value of the Gini coefficient decreased significantly compared to that in 1995. This
phenomenon occurred because the NER is a high-latitude region. Although there may
be irradiance errors during NTL data collection and processing, this does not affect our
research on its trends. In general, the regional urban expansion disparity in the four regions
is decreasing. Among the regions, the unbalanced phenomenon of USS in the ER is more
significant than that in the other three regions. The Gini coefficient of USS and USE is the
highest, followed by that in the WR; furthermore, the NER is more balanced, and the CR
is the most balanced. Moreover, only the gap between the USS and the level of USE in
the ER is decreasing, and the regression coefficient is −0.0009, which shows that with the
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deepening of the reform and opening up policies, the coordinated development of cities
in the ER has achieved remarkable results. The trend of the coordinated development of
USE and USS is obvious, while the other three regions show that the difference in USE is
smaller than that in USS. The difference regression coefficient is 0.0005 in the WR, 0.0012 in
the CR, and 0.0022 in the NER; the difference in the NER is most significant. This result
shows that in terms of the sustainable development of cities there are obvious differences
in development in the NER, which is consistent with the shrinkage of cities in the NER in
recent years. However, the Chinese government has promoted the development of certain
cities in its strategy of revitalizing the NER, which has led to an increase in USS [38], while
the difference in USE has changed from large to small. Due to the massive loss of labor
factors in the central and western cities, capital and technological factors have been lost to
the eastern cities, resulting in slow development between 2000 and 2010. In contrast, due
to policy support in CR, although the level of USS is slow, the level of USE has achieved
results and the socioeconomic gap within the region has gradually decreased.
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In terms of interregional differences (Figure 10), the regional USS and USE disparities
are both decreasing, and the differences are the largest in the ER, WR, NER, and CR, in
order, which is reflected in the study of the Gini coefficient of the USS between regions.
During the study period, all values were above 0.686 and the Gini coefficients between
the socioeconomic regions were above 0.583, indicating that the weight of USE remains
concentrated in the eastern coastal area. Furthermore, economic development has led to
urban construction, separating the east from the remaining three regions [39]. In contrast,
the disparities between NER–ER, CR–NER, and WR–NER are almost unchanged at the
USS level, and there are large differences in USE between the latter two. The k values of the
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regression analysis are 0.0039 and 0.0023, respectively, indicating that during the period
under investigation the disparity in urban expansion continued to exist for the remaining
three regions, and that the relative decline of urban expansion has not been effectively
contained. However, due to the redevelopment of heavy industry, the regional economic
plan has stimulated the socioeconomic level, which has caught up with the development
of other regions, continuously narrowing the gap. The trend of reduced Gini coefficients
in the CR and ER shows that the CR is being driven by the influence of the ER, and the
phenomenon of the USS and USE converging appears in the ER. However, due to the labor
factors mentioned above, the flow has caused the trend in USS to move faster than USE, and
there has been a situation where the difference between USS and USE has narrowed [40].
The same situation occurs in the regional differences between the CR and ER. The narrowing
of the gap between the WR and CR has benefited from the early implementation of the
western development plan, which has narrowed the gap between the WR and CR. Of
course, at present, the Chinese government has launched a strategic policy of national
land spatial planning and regional coordinated development [39], and the differences in
horizontal and vertical development of the four major regions will gradually narrow.

Remote Sens. 2022, 14, 4348 16 of 22 
 

 

 
Figure 10. Differences between USS and USE between regions: (a) NER-ER, (b) CR-ER, (c) CR-NER, 
(d) WR-ER, (e) WR-NER, (f) WR-CR. Note: USS is urban spatial expansion, and USE is urban 
socioeconomic expansion. 

From the perspective of contribution (Figure 11), the differences between different 
regions in China are the main source of the imbalance between USS and USE, which has 
the greatest impact on the level of USS, with its relative contribution more than half. The 
expansion level reaches a contribution of 38–49%, which is consistent with the results 
above. Specifically, at the USS level, the contribution of the intraregional gap decreased 
from 30.486% in 1993 to 28.543% at the end of 2015, which was higher than the USE level 
of 28.806% at the beginning of the period and 27.852% at the end of the period. These 
degrees are relatively balanced, indicating that the urban development in each region has 
differences in USS and USE and the different levels are similar. The differences among 
regions all show an inverted “U” trend, and their contribution is the largest in the vicinity 
of 2003. The contributions of their USS regions were 56.422% in 2003 and 47.559% in 2004. 
Combined with the above analysis, we can see that in the 1990s several developed cities, 
especially the eastern coastal areas and western industrial cities, had particularly rapid 
development after reform, opening up, and market economy reform; after entering the 
21st century, China’s USS and USE have shown a trend of coordinated development, 
causing the gap to move toward convergence [40]. While the difference between USS and 
USE has reached approximately 10%, it shows a shrinking trend, which further shows that 
the flow of regional factors is very significant in China. Many regional laborers live in a 
certain area due to the restriction of household registration, and the phenomenon of 
production work in other regions is still widespread. Of note is the degree of contribution 

Figure 10. Differences between USS and USE between regions: (a) NER-ER, (b) CR-ER, (c) CR-
NER, (d) WR-ER, (e) WR-NER, (f) WR-CR. Note: USS is urban spatial expansion, and USE is urban
socioeconomic expansion.

From the perspective of contribution (Figure 11), the differences between different
regions in China are the main source of the imbalance between USS and USE, which has
the greatest impact on the level of USS, with its relative contribution more than half. The
expansion level reaches a contribution of 38–49%, which is consistent with the results
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above. Specifically, at the USS level, the contribution of the intraregional gap decreased
from 30.486% in 1993 to 28.543% at the end of 2015, which was higher than the USE level
of 28.806% at the beginning of the period and 27.852% at the end of the period. These
degrees are relatively balanced, indicating that the urban development in each region has
differences in USS and USE and the different levels are similar. The differences among
regions all show an inverted “U” trend, and their contribution is the largest in the vicinity
of 2003. The contributions of their USS regions were 56.422% in 2003 and 47.559% in
2004. Combined with the above analysis, we can see that in the 1990s several developed
cities, especially the eastern coastal areas and western industrial cities, had particularly
rapid development after reform, opening up, and market economy reform; after entering
the 21st century, China’s USS and USE have shown a trend of coordinated development,
causing the gap to move toward convergence [40]. While the difference between USS and
USE has reached approximately 10%, it shows a shrinking trend, which further shows
that the flow of regional factors is very significant in China. Many regional laborers live
in a certain area due to the restriction of household registration, and the phenomenon of
production work in other regions is still widespread. Of note is the degree of contribution of
hypervariable density. The degree of contribution to USE exceeds the degree of contribution
to spatial expansion. Contrary to the difference between regions, the degree of contribution
is “U”-shaped. This trend may be due to the large-scale concentration of China’s economy
in certain cities, such as the Beijing–Tianjin region [12], the Yangtze River Delta region [41],
and the Pearl River Delta region. These places bring together a large population and
capital, making city construction faster than in other regions. The difference between
USS and USE is reflected in this circumstance. Although the current trend of the two has
been shrinking and the regression slope of the difference is −0.1278, they both showed an
upward trend after 2004. According to this trend, even if the development of Chinese cities
in the general environment shows convergence, the external economic phenomenon of the
city will continue to appear [35].
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4.4. Stochastic Convergence Test of Urban Expansion

To further explore the convergence of the USS and USE levels, the panel unit root test
method was used to conduct empirical tests on the convergence of the two dimensions of
China’s urban expansion, following the full subset analysis path to examine the existing
spatial expansion and the convergence club of economic development. Panel unit root test
methods such as the IPS test for the null hypothesis, in which all sequences have unit roots,
and the stationary Hadri test for all sequences were used. Compared with the univariate
unit root test, the interpretation of the panel unit root test results was ambiguous. All series
are stationary and do not mean that the IPS test rejects the null hypothesis; additionally,
the presence of unit roots in all series did not support the Hadri test. The test rejects the
original hypothesis, which is bound to affect the reliability of the results when using only a
single indicator as the test standard. Here, according to confirmative analysis (CA) from the
studies of Liu [40] and Choi [42], the comparison of different types of panel unit root test
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results was used to obtain a more reliable conclusion. Specifically, the following four cases
appear in the confirmatory analysis: first, neither the IPS test nor the Hadri test rejects the
null hypothesis, and the stability of the sequence cannot be judged at this time. Second,
the IPS test does not reject the null hypothesis, and the Hadri test significantly rejects the
null hypothesis. At this time, all sequences have unit roots, and the variables randomly
diverge. Third, the IPS test rejects the null hypothesis, and the Hadri test does not reject
the null hypothesis. At this time, all-time series can be regarded as stationary random
processes, that is, there is random convergence between the variables. Fourth, both the
IPS test and the Hadri test reject the null hypothesis, and the conclusion is not clear at this
time because part of the sequence may randomly converge and part of the sequence may
randomly diverge. The application of CA can make the panel unit root test results more
rigorous and improve the credibility of the results. Therefore, this study combines CA
with the determination of whether there is random convergence in the two dimensions of
China’s urban expansion, i.e., the USS and USE levels.

Starting from the investigation of the existence of a nationwide stochastic convergence
trend, first, the natural logarithm values of the USS dataset and USE dataset of the city
were sampled, then panel unit root tests were conducted at the national scale and in the
four major regions. Table 3 shows that the CA results are the second result in both the USS
level and the USE level in the country and the four major regions. Even at a significance
level of 10%, the IPS test cannot reject the null hypothesis of the existence of unit roots,
and the Hadri test significantly rejects the stationary null hypothesis. The CA results show
that there is random convergence within some regions regardless of USS and USE in the
development of Chinese cities; there is a possibility of differentiation, and one or more
convergence clubs will be formed in the future. Through comparative analysis, we can see
that the USE in the study sample area, specifically the NER and ER, has a trend of more
stable development than the USS.

Table 3. Global convergence test results.

Region
USS USE

IPS Prob Hadri Prob CA Result IPS Prob Hadri Prob CA Result

All cities −0.980 0.164 18.629 0.000 II −0.5930 0.267 10.865 0.000 II
NER −1.331 0.129 3.467 0.001 II −0.122 0.452 3.873 0.000 II
ER 0.046 0.518 7.909 0.000 II 1.338 0.910 7.687 0.000 II
CR −0.559 0.288 3.124 0.001 II −1.223 0.111 2.684 0.004 II
WR −0.663 0.254 6.542 0.000 II −1.282 0.099 6.214 0.000 II

Note: ER is eastern region, NER is northeastern region, CR is central region, WR is western region. USS is urban
spatial expansion; USE is urban socioeconomic expansion.

This study further used univariate unit root test methods such as ADF and KPSS to
examine the random convergence trends of USS and USE in samples from 31 provinces
to determine whether certain provinces converge with the national mean range. The
results are listed in Table 4. According to the ADF test results, a total of six provincial USS
sequences and five provincial USE sequences rejected the original hypothesis of unit roots,
while the other provinces accepted the original hypothesis. Among them, for USS, Shanxi
rejected the existence of unit roots at the 1% significance level. At the 5% significance level,
there were two provinces, Guangdong and Guangxi, while at the 10% significance level,
there were three provinces, Tianjin, Heilongjiang, and Ningxia. For USE, there were three
provinces at the 5% significance level, Anhui, Hebei, and Qinghai, and two provinces at the
10% significance level, Guizhou and Shaanxi.
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Table 4. Univariate unit root test.

Province
USS USE

ADF KPSS ADF KPSS

Anhui −3.206 0.093 −4.314 ** 0.089
Beijing −1.648 0.194 ** −1.520 0.164 **

Chongqing −3.221 0.080 −2.883 0.076
Fujian −0.686 0.188 ** −1.212 0.188 **

Guangdong −4.134 ** 0.186 ** −2.052 0.184 **
Gansu −1.168 0.138 * −2.812 0.163 **

Guangxi −4.308 ** 0.068 −2.847 0.104
Guizhou −3.023 0.094 −3.570 * 0.072

Hebei −2.897 0.147 ** −3.147 0.091
Henan −0.680 0.175 ** −1.374 0.175 **

Heilongjiang −3.422 * 0.160 ** −2.351 0.159 **
Hainan −2.343 0.132 * −2.097 0.126 *
Hubei −1.525 0.170 ** −3.31 ** 0.144 *
Hunan −1.898 0.119 * −2.291 0.120 *

Jilin −2.124 0.152 ** −2.286 0.160 **
Jiangsu −1.363 0.151 ** −0.607 0.142 *
Jiangxi −1.823 0.113 −1.979 0.108

Liaoning −2.721 0.123 * −2.055 0.161 **
Inner Mongolia −2.176 0.100 −1.944 0.106

Ningxia −3.325 * 0.069 −2.124 0.119 *
Qinghai −2.750 0.178 ** −3.826 ** 0.109
Sichuan −1.492 0.129 * −1.835 0.120 *
Shaanxi −2.068 0.107 −3.269 * 0.090

Shandong −1.453 0.154 ** −1.026 0.161 **
Shanghai −2.305 0.180 ** −1.228 0.177 **

Shanxi −4.761 *** 0.076 −2.234 0.104
Tianjin −3.284 * 0.103 −2.991 0.086

Xinjiang −1.878 0.069 −2.571 0.119 *
Tibet −1.313 0.174 ** −1.697 0.167 **

Yunnan −0.871 0.155 ** −0.706 0.159 **
Zhejiang −1.168 0.176 ** −1.355 0.176 **

Note: *, **, *** indicate significant at the level of 10%, 5%, and 1%, respectively, USS is urban spatial expansion,
USE is urban socioeconomic expansion.

According to the KPSS test results, among all 31 provinces and cities, 20 provinces
rejected the original hypothesis of stationarity of the USS sequence while 20 provinces
rejected the original hypothesis of stationarity of the USE sequence. Among them, 18 cities
rejected both sequences, while Hebei and Qinghai rejected only the original hypothesis that
the USS sequence was stable and Ningxia and Xinjian only rejected the original hypothesis
of USE. Under the premise of global random divergence, there may be random convergence
of economic development in certain regions. Global random divergence does not negate
the possibility of the existence of a subset of convergence.

5. Conclusions

This study has attempted to define urban expansion from the USS and USE, re-
spectively. Through the multiscale analysis of 241 prefecture-level cities within different
provinces and four major regions in China from 1993 to 2015, we analyzed and compared
regional disparities in urban expansion in China. Using the method of factorization of the
DG coefficients by subgroup, the differences between rapid USS and USE as well as between
different regions were analyzed from the overall gap, the contributions of intraregional,
interregional, and hypervariable density, and the relationship between USS and USE at
different scales. Finally, the global club test was used to verify the random convergence
phenomenon of Chinese urban expansion through the panel unit root test. The results
showed that the overall regional urban expansion disparity in China can be explained by
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the overall differences in USS and USE between different regions. The contributions of
the interregional and intraregional differences and the hypervariable density decreased in
sequence. The impact of the first two items on economic development was less than that of
urban land areas, and the hypervariable density was opposite; specifically, the difference
in overall USS in China was greater than the difference in USE. On the regional scale, the
difference was the largest in the WR, followed by the ER and CR, and the difference was
the smallest in the northeast region. Except for the ER, the difference between USS and
USE in the other three regions was expansionary, and the difference between regions was
the main source of unevenness in USS and USE. This difference was the largest in the ER
and WR, then the the NER and CR, followed by the other regions, although the difference
in USS in the NER showed a relatively widening trend. The difference between USS and
USE showed a shrinking trend, that is, USS is converging on a large scale; however, in the
future there will be external non-economic urban phenomena. The results of the global
club test showed that there was random convergence within certain regions regardless
of the USS level and USE level in the development of Chinese cities; there is a possibility
of differentiation, and one or more convergence clubs will be formed in the future. The
trend of stochastic convergence on the provincial scale indicates that under the premise of
global random divergence there may be random convergence of economic development in
certain regions, and global random divergence does not negate the possibility of a subset
of convergence.

It is undeniable that there are several aspects worthy of further exploration following
this study. First, the time coverage of DMSP-OLS data has only been updated to 2013,
limiting its application after 2013. As the successor to DMSP-OLS data, NPP-VIIRS data
has been released since 2012 and is being updated. Thus, the integration of DMSP-OLS
and NPP-VIIRS data to remeasure regional disparities could improve the reliability of
conclusions in future urban planning. Second, as the Dagum Gini coefficient cannot
consider the regional difference from the spacing effect or delve into the mechanism of
urban expansion disparity, it is necessary to further employ the distance function to measure
the overall performance of urban expansion in the future.
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