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Abstract: Accurate reference data to validate burned area (BA) products are crucial to obtaining
reliable accuracy metrics for such products. However, the accuracy of reference data can be affected
by numerous factors; hence, we can expect some degree of deviation with respect to real ground
conditions. Since reference data are usually produced by semi-automatic methods, where human-
based image interpretation is an important part of the process, in this study, we analyze the impact of
the interpreter on the accuracy of the reference data. Here, we compare the accuracy metrics of the
FireCCI51 BA product obtained from reference datasets that were produced by different analysts over
60 sites located in tropical regions of South America. Additionally, fire severity, tree cover percentage,
and canopy height were selected as explanatory sources of discrepancies between interpreters’
reference BA classifications. We found significant differences between the FireCCI51 accuracy metrics
obtained with the different reference datasets. The highest accuracies (highest Dice coefficient)
were obtained with the reference dataset produced by the most experienced interpreter. The results
indicated that fire severity is the main source of discrepancy between interpreters. Disagreement
between interpreters was more likely to occur in areas with low fire severity. We conclude that
the training and experience of the interpreter play a crucial role in guaranteeing the quality of the
reference data.

Keywords: validation; accuracy; FireCCI51; burned area; reference data

1. Introduction

Burned area (BA) products are an essential source of information to understand the
role of fire in ecosystems [1], the links between fire and climate change [2,3], and its
impacts on biodiversity [4,5] and on health and human properties [6,7]. Remote sensing
has provided an accessible, cost-effective, and systematic way to obtain images of the
entire Earth’s surface, from which it is possible to generate cartographic products of
numerous biophysical phenomena of the Earth system, among which we find global and
regional BA products. However, these satellite-derived products, commonly produced
from automatic classification algorithms, are subject to errors and uncertainties that should
be quantified if they are to be reliably used. This accuracy assessment process implies
comparing BA detections with reference data that are assumed to be the best representation
available of ground conditions. For this reason, reference data are commonly derived
from reliable sources, which are commonly higher-resolution images than those used
to generate the product evaluated. This process usually uses supervised classification
procedures, followed by visual inspection by expert analysts [8]. Although very-high-
resolution commercial satellite images are now widely available, they are not systematically
acquired and may be expensive to analyze, and therefore medium-resolution imagery (i.e.,

Remote Sens. 2022, 14, 4354. https:/ /doi.org/10.3390/1s14174354

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14174354
https://doi.org/10.3390/rs14174354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3101-0394
https://orcid.org/0000-0001-8320-5041
https://orcid.org/0000-0001-5618-4759
https://orcid.org/0000-0002-9975-849X
https://doi.org/10.3390/rs14174354
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14174354?type=check_update&version=1

Remote Sens. 2022, 14, 4354

2 0f 10

10-30 m) is most commonly used to produce reference data for the validation of global to
regional BA products.

Despite the efforts dedicated to generating highly accurate reference data for validation
activities, obtaining perfect, error-free reference data is, in practical terms, unrealistic. In
this sense, numerous factors can affect the accuracy of reference burned area data [9].
The most significant are: (i) image quality: image artifacts or anomalies such as banding,
dropped scan lines, or detector failures, as well as cloud and cloud shadow contamination,
topographic shadows, or snow and ice that may compromise the image suitability for a
specific application; (ii) landscape composition: land cover classes with a spectral response
similar to burned areas (e.g., harvested fields, water surfaces, cloud shadows or dark
soils) are known as sources of error affecting burned area mapping [10-13]; (iii) fire size
and severity: small fire patches are more difficult to detect [14] and low-severity burned
areas may have poor separability from unburned areas [12]; (iv) image availability: since
burned reference data are commonly derived from multitemporal image comparison (e.g.,
two Landsat scenes) [15,16], the lower the availability of reliable images for a particular
site, the greater the temporal separation between images, and the greater this temporal
separation, the greater the probability that the burned signal will weaken or disappear
due to vegetation recovery [17], thus affecting the ability to properly detect and map the
reference burned areas [8,15,18-21].

There is, however, one critical factor affecting the accuracy of the reference data that
is often neglected and that is related to the subjectivity of the image interpreter. Virtually
all BA validation studies explicitly mention that the reference data were generated and
visually inspected by one or more expert or trained image analysts [16,18,20,22-25], which
is considered a guarantee of data quality. However, the generation of reference data is a
complex task that requires a high degree of expertise. The analyst in charge of generating
the reference data must be able to assess whether an image is reliable and to identify;,
with the minimum possible margin of error, the burned and unburned areas that will
be selected to train a supervised classification algorithm, a task which can be especially
challenging depending on the conditions of the study or validation area. Ultimately, since
a full independent accuracy assessment of the reference BA data is generally not feasible
due to the lack of a more accurate data source or project resource limitations, the analyst
should be able to judge whether the reference data have the consistency and quality to be
used in a validation exercise.

The issue of the reference BA data accuracy was previously addressed by Roy et al. [16],
who recognized that image interpretation should be conducted by expert analysts, and
provided a very valuable recommendation to maximize the accuracy of the reference data,
which was to use multitemporal image comparison to map the reference BA, instead of
using single images. This recommendation was further developed to provide a standard
protocol to derive reference BA data, which was adopted by the Committee on Earth
Observation Satellites (CEOS) [15]. More recently, the implementation of reference BA
production tools in cloud-based platforms such as Google Earth Engine (GEE) [26] facili-
tated the process and the workload involved in reference data generation, providing a tool
that can be used as a standard procedure by the scientific community. However, while we
can expect that the standardization of protocols and the development of reference data
generation tools will benefit the quality of the reference data, it cannot be ignored that
human-based interpretation is a fundamental part of reference data production and it is
necessarily dependent on the expertise of the interpreters.

This study aims to draw attention to the image interpreter’s key role in the validation
process. Here, we compare the accuracy metrics of the FireCCI51 BA product [23], gen-
erated from MODIS images at 250 m spatial resolution, using reference datasets derived
from Sentinel-2 images that were produced independently by different interpreters within
60 sites located in the Amazon Socio-Environmental Information Network (RAISG) area
(https:/ /www.amazoniasocioambiental.org/en/, accessed on 30 July 2022). In addition,
several variables were statistically analyzed to identify the sources of discrepancies between
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interpreters when defining reference BA, including the difference Normalized Burned Area
index (dNBR) as a function of the fire severity, the vegetation continuous field (VCF) from
the MOD44B Version 6 VCF product [27], and the canopy height from the Global Forest
Canopy Height (GFCH) dataset [28].

2. Materials and Methods
2.1. Study Area

The area selected for this study corresponds to the area delimited by the RAISG project,
which includes the Amazon basin, most of the Bolivian territory except the Andean region,
and part of the Brazilian Cerrado, which is a highly fire-prone area. The total area of RAISG
covers a vast extension of 8,274,432 km? and includes three major biomes according to the
2017 map of the Terrestrial Ecoregions of the World [29]: temperate savanna (118,909 km?),
tropical savanna (1,322,824 km?), and tropical forest (6,951,490 km?) (Figure 1).

biome
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Tropical Savanna
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Figure 1. Amazon Socio-Environmental Information Network (RAISG) area. The figure shows the
100 reference sites (black + red) sampled to validate a Sentinel-2 burned area product produced
within the RAISG project. Cloud-free reference data (red sites) were selected for the present study.

2.2. Reference Burned Area Data Production

Under the RAISG project, a Sentinel-2-based BA product, named AQS2GEE, was
developed for the entire region for the year 2019. Reference burned areas, based on the
same sensor, were produced to validate such a product. To select the reference sites, a grid
of 10 km x 10 km cells was created to divide the entire RAISG region into non-overlapping
areas. The resulting grid contained a total of 69,729 cells, of which all those that met the
following criteria were excluded: (i) cells that did not intersect any active fire according to
the VIIRS (S5-NPP) I Band 375 m Active Fire Product NRT (VNP14IMGTDL_NRT) (https://
earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp14imgt, accessed
on 30 July 2022) for the 2019 year; (ii) cells that did not intersect any burned area according
to the FireCCI51 BA product (https://catalogue.ceda.ac.uk/uuid /58f00d8814064b79a0c4
9662ad3af537, accessed on 30 July 2022) during 2019; (iii) cells that intersected two or more
biomes according to the Ecoregions 2017 map product [29] (https:/ /ecoregions.appspot.
com/, accessed on 30 July 2022); (iv) cells that intersect two or more Sentinel-2 tiles, and
(v) cells without availability of images with cloud cover less than 20% (i.e., the maximum
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cloud cover allowed) and a maximum time gap between them of 35 days. Of the total
number of cells that did not meet the above criteria, 5% of cells for each biome were
randomly selected, providing a total of 100 reference sites (Figure 1). We should note that
since the primary goal of the present study was to show how the subjectivity of analysts
can influence reference data accuracy and therefore affect accuracy assessment metrics, we
explain here how sites were selected, but whether the criteria adopted for the sampling
design were appropriate or not was irrelevant in our study.

Reference BA perimeters were extracted for each reference site from the multitemporal
comparison of Sentinel-2 images. For this purpose, a supervised burned area classification
algorithm (BAMT) implemented in the Google Earth Engine cloud computing platform was
used [26]. The reference files, generated from images corresponding to July and August, i.e.,
the period of highest fire activity [30,31], included burned, unburned, and no-data areas,
the latter corresponding to unobserved areas due to the presence of clouds, cloud shadows,
or water surfaces. To generate the reference data, a group of inexperienced interpreters was
first trained to ensure the quality of the data. Using the mentioned BAMT tools, each site
was independently interpreted by three of the trained interpreters of the RAISG project
validation team (the three interpreters were not always the same for all reference sites). For
clarification, it should be noted that the interpreters used the same classification algorithm
and input images, which ensured that the burned area classification discrepancies were
due to the training areas selected by each interpreter.

Following the approach of Vanderhoof et al. [25], the three reference BA datafiles
produced for each site were then used to create three reference BA data collections. Thus,
for reference data collection 1 (RDc1), all those pixels classified as burned by at least one
interpreter were considered burned (1 agreed); for RDc2, pixels were considered burned
if at least two interpreters agreed that a given pixel was burned (2 agreed), and for RDc3,
pixels were considered burned when the three interpreters agreed that a given pixel was
burned (3 agreed). In all three collections, pixels not considered burned were assigned to
the unburned category, and unobserved pixels by any of the interpreters were kept as such
(Figure 2).

Additionally, and following the same reference BA data production procedures as the
RAISG validation team, an external independent and highly experienced analyst produced,
specifically for this study, a fourth reference dataset (Figure 2). From our experience, we
have observed that inexperienced interpreters usually tend to select for training those
burned areas (pixels) that can be easily identified as burned, which causes the omission
of those areas with a weaker burned signal. Therefore, it is expected that the experienced
analyst will be able to identify a wider range of burned pixels, which would result in higher
accuracy of the reference data.

To ensure that differences between the four reference datasets (i.e., the three RDc’s and
the external reference dataset) were not introduced by the interpretation of cloudy images,
only those reference sites without unobserved pixels were selected; thus, 40 of the initial
100 sites were discarded (Figure 1).
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Figure 2. Illustration of the reference datasets and reference data collection generation process.
Pre- and post-fire images (RGB composition: SWIR-2, NIR, RED) were used to derive the image of
difference, which was classified by each of the four interpreters. Reference datasets obtained for the
three RAISG analysts were used to create the three reference data collections (RDc).

2.3. Accuracy Metrics Comparison

To quantify the impact of using different reference datasets on the accuracy metrics
obtained from the validation of a BA product, the external reference dataset and each of
the three reference collections were compared with the FireCCI51 BA product. To do this,
the BA product was clipped and filtered using the date of burn detection layer (i.e., day of
the year from 1 to 366) to match the spatial extent and period covered by each reference
data file, and then intersected with the reference data in vectorial format to obtain the areas
of agreement and disagreement between them at each of the 60 sites (i.e., the remaining
sites after discarding the 40 cloud-contaminated sites). Error matrices populated with those
areas of agreement and disagreement were then summarized to obtain the commonly used
accuracy metrics in BA product assessment: commission error (Ce), omission error (Oe), and
Dice Coefficient (DC) [32]. The accuracy metrics obtained with each of the three collections
were statistically compared with those obtained with the external reference dataset using
the Student’s t-test.

2.4. Analysis of Sources of Discrepancy between Interpreters

To analyze the sources of discrepancy between the reference datasets, we used the
RDc3 and the external reference dataset. Both reference datasets were intersected to
obtain the areas of agreement and areas of disagreement in the form of vector layers. We
selected several variables as explanatory factors for classification discrepancies between
interpreters, including the dNBR, VCE, and GFCH. These variables were extracted for the
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agreement and disagreement layers to test for statistically significant differences. Thus,
the distribution of such variables in agreement versus disagreement layers was tested
for significant differences with the t-test and the effect size was computed with Cohen’s
d, which complements the statistical hypothesis testing by providing a measure of the
magnitude of the difference between groups.

dNBR images were generated in the GEE cloud computing platform. The NBR band
of the pre- and post-images used to extract the fire reference perimeters and their difference
(dNBR = NBRpre — NBRpost) were computed for each reference site. The VCF product
(https:/ /lpdaac.usgs.gov/products/mod44bv006/, accessed on 30 July 2022) is a yearly
global 250 m spatial resolution product that offers information about surface vegetation
cover and provides three layers: percent tree cover, percent non-tree cover, and percent
non-vegetated (bare soil). For this study, only the percent tree cover band was used. The
GFCH (https://glad.umd.edu/dataset/gedi, accessed on 30 July 2022) is a global 30 m
spatial resolution dataset available for the year 2019 that integrates lidar and Landsat
optical time-series data and offers a single band with continuous data of vegetation.

From this analysis, we expect that areas of low burned severity would be more difficult
to identify than high severity burned areas, a fairly common situation at the edges of burned
areas. Similarly, vegetation areas with dense and high tree layers could hide the burned
signal of lower strata, thus making their identification more difficult by the analysts.

3. Results
3.1. Accuracy Metrics Comparison

Figure 3 shows the FireCCI51 BA accuracy metric distribution derived from each
reference data collection and the external reference dataset for the 60 sites, and Table 1
shows the FireCCI51 BA product overall accuracy metrics for the selected sites. It should
be noted that the accuracies reported in this section are intended to allow comparison
between analysts and should not be interpreted as the results of a validation exercise of the
FireCCI51 product for the RAISG region.

Ce Oe DC

. & . 1 .
75- '

25- |
| | |

External RD RDel  RDc2  RDG3  External RD RDo!  RDc2  RDc3  Extemal RD RDel  RDc2  RDc3

Figure 3. Distribution of the FireCCI51 accuracy metrics across the 60 sites obtained with the external
reference dataset and the three reference data collections.

Table 1. FireCCI51 overall accuracy metrics (%) derived from the four reference datasets in the
60 selected sites within the RAISG study area. The level of significance between the accuracy
metrics obtained from each RDc with respect the external RD is labelled by ** (p-value < 0.01) and
4+ (p-value < 0.0001).

RDc1 RDc2 RDc3 External RD
Ce 23 30 ** 39 Har* 20
Oe 23 18 16 20

DC 77 75 71 80
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The highest accuracy (DC = 80) was obtained with the reference data generated by the
external analyst. Accuracy metrics derived with the RDcl were similar to those obtained
with the external dataset; however, accuracy decreased when using RDc2 (DC = 75) and
RDc3 (DC = 71). We observe the highest Ce value for the more conservative reference
dataset (RDc3)—that is, when we consider a pixel burned if it was classified as burned
by the three interpreters. The opposite occurs with Oe, whose values decreased from
the more liberal reference dataset (1 agreed) to the more conservative one (3 agreed). It
should be noted that, for our reference sites, the impact of the reference data accuracy
was greater on Ce than on Oe. In this sense, while the Oe obtained with RDc3 was only
4 percentage points lower than that obtained with the external RD, Ce was 19 percentage
points higher when using RDc3 (Ce = 39) compared to the Ce obtained with the external
reference dataset (Ce = 20). The significance test did not show differences for omission
error values obtained from each of the three collections with respect to those obtained
from the external reference data collection. However, significant differences were found for
commission errors between RDc2 (p-value < 0.01) and RDc3 (p-value < 0.0001) with respect
to the external RD. Regarding the DC, only the RDc3 showed significant differences when
compared to the external RD (Table 1).

3.2. Analysis of the Sources of Discrepancy between Interpreters

The results of the statistical analysis of the three variables (ANBR, VCE, and GFCH)
considered as explanatory factors of the discrepancies between the classifications of the
different interpreters are shown in Table 2. The variable that showed a higher significant
difference between its distribution in agreement versus disagreement layers was the dNBR
(p-value < 0.0001, d = 1.65), followed by GFCH (p-value < 0.0001, 4 = 0.98), while VCF
showed a lower significance (p-value = 0.03) and a weaker magnitude of d (d = 0.44).

Table 2. Mean, p-value of the t-test and Cohen’s d between dNBR, VCF, and GFCH values for
agreement versus disagreement layers obtained from the reference data collection RDc3 and the
external reference dataset.

Agreement vs.

Agree Disagree Disagreement Layers

Mean Mean p-Value Cohen’s d
Severity (INBR) 0.3 0.2 <0.0001 1.65
Vegetation Continuous Field (VCF) 25.4 30.7 <0.05 0.44
Global Forest Canopy High (GFCH) 2.5 51 <0.0001 0.98

4. Discussion

This paper highlights the importance of the interpreter’s expertise in generating BA
reference perimeters for validation. We quantified the impact of using several reference
datasets, independently generated by different analysts, on the accuracy metrics obtained
for a widely used BA product, the FireCCI51. To understand the causes of reference data
variability introduced by the analysts, the dNBR, VCF, and GFCH variables were used
to test for significant differences between their distribution in agreement and disagree-
ment layers.

Our results showed that the accuracy metrics obtained for a specific BA product can be
significantly altered depending on the accuracy of the reference data. Thus, in our study, we
found that Ce ranged from 20% with the external dataset to 39% with the RDc3 collection
and Oe ranged from 16% with the RDc3 to 23% with the RDcl collection. These results also
suggest that the generation of reference data by several interpreters where conservative
criteria are adopted (i.e., interpreters should agree on whether a pixel is burned in order
to consider it as burned) does not necessarily imply a guarantee of reference data quality.
On the contrary, this practice could be favoring an underestimation of the reference BA by
prioritizing those areas that present less uncertainty of being burned. Using such reference
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data would tend to increase commission errors and decrease omission errors of a specific
BA product, as we have observed in our results.

The analysis of the variables that could explain the discrepancies between the classi-
fications of different interpreters revealed that fire severity (ANBR) and the height of the
forest canopy (GFCH) were important drivers of these differences. As expected, those
areas where the burned signal was stronger were more easily identified by the interpreters
and therefore selected to train the BA classification algorithms, while low-severity areas
generated greater uncertainty when deciding whether they were burned or unburned.

Another factor that could affect the accuracy of the reference data that has not been
analyzed in this study is the persistence of the BA signal over time, which depends on
the fire severity, fire size, land cover type, time of burning, and weather conditions. Thus,
areas where the BA signal remains strong for long periods, such as boreal regions, would
be expected to be more easily and more accurately interpreted than areas characterized by
fast vegetation recovery coupled with poor reliable image availability, such as the tropics.
In this regard, differences between interpreters’ reference BA classifications are expected to
vary across regions with different fire regimes.

From our experience, the correct identification of low-severity burned areas and their
inclusion as training areas is crucial and can make the difference between an accurate
or an inappropriate reference dataset for validation. From our point of view, apart from
following the established recommendations and standard protocols, the best guarantee
to reduce errors in the reference data is undoubtedly to invest in interpreter training and
produce the reference data by an experienced interpreter. A good understanding of the
classification algorithm or tool used to generate the reference perimeters is also crucial. For
example, use of the BAMT tool often requires multiple iterations of training, followed by
visual inspection to obtain the most accurate results [26], and manual editing is sometimes
needed to remove commission errors from the reference data. Additionally, the ideal expert
interpreter should also have regional knowledge with field observation experience, which
can be of great help when interpreting satellite imagery.

Although our study suggests that the most liberal criterion (i.e., combining pixels
classified as burned by all the interpreters) is the one that most closely matched the reference
dataset produced by the external and experienced interpreter, when different interpreters
are involved in the validation process, supervision by an expert interpreter would be
always recommended.

Ultimately, a good practice in remote sensing product validation would be to pub-
lish the reference data in easily accessible repositories, which constitutes an exercise in
transparency, thus offering the possibility of verifying the reliability of the reference data.

Author Contributions: Conceptualization, M.F.; methodology, M.E,; formal analysis, M.F.; investiga-
tion, M.E. and A.M.R.-M.; writing—original draft preparation, M.E,; writing—review and editing,
M.E, AMR-M,, L.A. and E.C,; project administration, I.A.; funding acquisition, I.A. and E.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the MCIU/AEI/FEDER, UE, RT12018-097538-B-100, Global
analysis of human factors of fire risk (AnthropoFire Project), and the Climate Change Initiative (CCI)
Fire_cci project (Contract 4000126706/19/1-NB).

Data Availability Statement: The reference datasets used in this study are available upon request.

Acknowledgments: We would like to thank M. Lucrecia Pettinari and the reviewers for their sugges-
tions and comments, which allowed us to improve the original manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 4354 90of 10

References

1.  Bond, WJ.; Woodward, FI.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165,
525-538. [CrossRef] [PubMed]

2. Langmann, B.; Duncan, B.; Textor, C.; Trentmann, J.; van der Werf, G.R. Vegetation fire emissions and their impact on air pollution
and climate. Atmos. Environ. 2009, 43, 107-116. [CrossRef]

3. Dong, X,; Li, E; Lin, Z.; Harrison, S.P; Chen, Y; Kug, ].-S. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 2021,
794, 148718. [CrossRef] [PubMed]

4. Kelly, L.; Brotons, L. Using fire to promote biodiversity. Science 2017, 355, 1264-1265. [CrossRef]

5. Kelly, L.; Giljohann, K.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.; Buckland, S.; Canelles, Q.; Clarke, M.; et al.
Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [CrossRef]

6. Bowman, D.; Williamson, G.; Abatzoglou, J.; Kolden, C.A.; Cochrane, M.; Smith, A.M.S. Human exposure and sensitivity to
globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 58. [CrossRef]

7. Turco, M.; Jerez, S.; Augusto, S.; Tarin-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P,; Trigo, R M. Climate drivers of the 2017
devastating fires in Portugal. Sci. Rep. 2019, 9, 13886. [CrossRef]

8.  Franquesa, M.; Vanderhoof, M.K.; Stavrakoudis, D.; Gitas, I.Z.; Roteta, E.; Padilla, M.; Chuvieco, E. Development of a standard
database of reference sites for validating global burned area products. Earth Syst. Sci. Data 2020, 12, 3229-3246. [CrossRef]

9.  Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020.

10. Bastarrika, A.; Chuvieco, E.; Martin, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm:
Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003-1012. [CrossRef]

11.  Chuvieco, E.; Mouillot, F; van der Werf, G.R.; San Miguel, ]J.; Tanasse, M.; Koutsias, N.; Garcia, M.; Yebra, M.; Padilla, M.; Gitas,
I; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens.
Environ. 2019, 225, 45-64. [CrossRef]

12.  Pereira, ].M.; S4, A.C.; Sousa, A.M,; Silva, ].M.; Santos, T.N.; Carreiras, ]. M. Spectral characterisation and discrimination of burnt
areas. In Remote Sensing of Large Wildfires; Springer: Berlin/Heidelberg, Germany, 1999; pp. 123-138.

13. Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens.
2001, 22, 2641-2647. [CrossRef]

14. Campagnolo, M.L,; Libonati, R.; Rodrigues, J.A.; Pereira, ] M.C. A comprehensive characterization of MODIS daily burned area
mapping accuracy across fire sizes in tropical savannas. Remote Sens. Environ. 2021, 252, 112115. [CrossRef]

15. Boschetti, L.; Roy, D.; Justice, C. International Global Burned Area Satellite Product Validation Protocol Part [—Production and
Standardization of Validation Reference Data (to Be Followed by Part II—Accuracy Reporting); Committee on Earth Observation
Satellites: Silver Spring, MD, USA, 2009.

16. Roy, D.P; Frost, PG.H.; Justice, C.O.; Landmann, T.; Le Roux, J.L.; Gumbo, K.; Makungwa, S.; Dunham, K.; Du Toit, R;;
Mhwandagara, K.; et al. The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol. Int. ].
Remote Sens. 2005, 26, 4265-4292. [CrossRef]

17.  Melchiorre, A.; Boschetti, L. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sens. 2018, 10, 750.
[CrossRef]

18. Boschetti, L.; Roy, D.P; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned
area product. Remote Sens. Environ. 2019, 235, 111490. [CrossRef]

19. Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified
random sampling. Remote Sens. Environ. 2014, 144, 187-196. [CrossRef]

20. Padilla, M.; Stehman, S.; Litago, ].; Chuvieco, E. Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area
Products. Remote Sens. 2014, 6, 2050. [CrossRef]

21. Franquesa, M.; Lizundia-Loiola, ].; Stehman, S.V.; Chuvieco, E. Using long temporal reference units to assess the spatial accuracy
of global satellite-derived burned area products. Remote Sens. Environ. 2022, 269, 112823. [CrossRef]

22. Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.-].; Picotte, J.].; Takacs, J.D.; Falgout, ].T.; Dwyer, ].L. The Landsat Burned
Area algorithm and products for the conterminous United States. Remote Sens. Environ. 2020, 244, 1-24. [CrossRef]

23. Lizundia-Loiola, J.; Otén, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [CrossRef]

24. Tanase, M.A.; Belenguer-Plomer, M.A.; Roteta, E.; Bastarrika, A.; Wheeler, ].; Fernandez-Carrillo, A Tansey, K.; Wiedemann,
W.; Navratil, P.; Lohberger, S.; et al. Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based
Algorithms over Tropical Africa. Remote Sens. 2020, 12, 334. [CrossRef]

25.  Vanderhoof, M.K.; Fairaux, N.; Beal, Y.-].G.; Hawbaker, T.J. Validation of the USGS Landsat Burned Area Essential Climate
Variable (BAECV) across the conterminous United States. Remote Sens. Environ. 2017, 198, 393—406. [CrossRef]

26. Roteta, E.; Bastarrika, A.; Franquesa, M.; Chuvieco, E. Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth
Engine. Remote Sens. 2021, 13, 816. [CrossRef]

27. DiMiceli, C.; Carroll, M.; Sohlberg, R.; Kim, D.; Kelly, M.; Townshend, J. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly

L3 Global 250 m SIN Grid V006; USGS: Reston, VA, USA, 2015. [CrossRef]


http://doi.org/10.1111/j.1469-8137.2004.01252.x
http://www.ncbi.nlm.nih.gov/pubmed/15720663
http://doi.org/10.1016/j.atmosenv.2008.09.047
http://doi.org/10.1016/j.scitotenv.2021.148718
http://www.ncbi.nlm.nih.gov/pubmed/34217088
http://doi.org/10.1126/science.aam7672
http://doi.org/10.1126/science.abb0355
http://doi.org/10.1038/s41559-016-0058
http://doi.org/10.1038/s41598-019-50281-2
http://doi.org/10.5194/essd-12-3229-2020
http://doi.org/10.1016/j.rse.2010.12.005
http://doi.org/10.1016/j.rse.2019.02.013
http://doi.org/10.1080/01431160110053185
http://doi.org/10.1016/j.rse.2020.112115
http://doi.org/10.1080/01431160500113096
http://doi.org/10.3390/rs10050750
http://doi.org/10.1016/j.rse.2019.111490
http://doi.org/10.1016/j.rse.2014.01.008
http://doi.org/10.3390/rs6032050
http://doi.org/10.1016/j.rse.2021.112823
http://doi.org/10.1016/j.rse.2020.111801
http://doi.org/10.1016/j.rse.2019.111493
http://doi.org/10.3390/rs12020334
http://doi.org/10.1016/j.rse.2017.06.025
http://doi.org/10.3390/rs13040816
http://doi.org/10.5067/MODIS/MOD44B.006

Remote Sens. 2022, 14, 4354 10 of 10

28.

29.

30.

31.

32.

Potapov, P; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.;
Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021,
253,112165. [CrossRef]

Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss,
R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534-545. [CrossRef]
Alonso-Canas, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens.
Environ. 2015, 163, 140-152. [CrossRef]

Alves, D.B.; Pérez-Cabello, F. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over
Campos Amazoénicos Savanna Vegetation Enclave (Brazilian Amazon). Sci. Total Environ. 2017, 601-602, 142-158. [CrossRef]
[PubMed]

Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297-302. [CrossRef]


http://doi.org/10.1016/j.rse.2020.112165
http://doi.org/10.1093/biosci/bix014
http://doi.org/10.1016/j.rse.2015.03.011
http://doi.org/10.1016/j.scitotenv.2017.05.194
http://www.ncbi.nlm.nih.gov/pubmed/28550727
http://doi.org/10.2307/1932409

	Introduction 
	Materials and Methods 
	Study Area 
	Reference Burned Area Data Production 
	Accuracy Metrics Comparison 
	Analysis of Sources of Discrepancy between Interpreters 

	Results 
	Accuracy Metrics Comparison 
	Analysis of the Sources of Discrepancy between Interpreters 

	Discussion 
	References

