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Abstract: Assuming uncertain multipath return, this paper considers the robust joint transmit
waveform and the receiving filter bank design of a multiple-input–multiple-output (MIMO) radar for
multipath exploitation. The actual multipath return is considered to belong to an uncertain set, and we
focus on the worst-case optimization of the signal-to-interference-plus-noise ratio (SINR) in the output
of the filter bank. The design is cast as a non-convex max–min problem, which is very hard to solve.
To tackle it, an equivalent reformulation is utilized and a cyclic optimization paradigm is devised. At
each iteration, the filter’s optimization problem is equal to a set of separate solvable problems, the
closed-form solution to which can be given directly. Moreover, we have shown that the max–min
problem for the waveform optimization belongs to the area of generalized fractional programming,
and it can be globally solved by resorting to Dinkelbach’s algorithm. Through simulations, the
superiority of the proposed algorithm is demonstrated via a number of examples.

Keywords: robust waveform design; multipath return; MIMO; max–min; worst-case SINR

1. Introduction
1.1. Background

Recent advances in radar waveform design have shown that, by transmitting flexible
waveforms according to an operation scenario, a radar system can achieve significantly en-
hanced target detection abilities, improved resolution, and increased parameter estimation
accuracy [1–7]. As a result, jointly designing the transmit waveform and receive filter of a
radar system leveraging on the apriori knowledge about the operating environment has
received considerable attention in the research field.

1.2. Related Work

Among the various types of new radar systems, the multiple-input–multiple-output
(MIMO) radar has attracted significant interest from researchers in the field of wave-
form design. Compared with traditional phased-array radars that transmit single wave-
forms, MIMO radar is able to transmit totally different waveforms from its multiple
channels [8–13]. In this context, its great potential in achieving better target detection,
identification, and tracking performance via the design of suitable waveforms has been
further explored. In the last decade, a number of studies on MIMO radar waveform opti-
mization have been carried out with different objectives and constraints [14–20]. In [14],
the MIMO radar waveform design problem under a constant modulus and similarity
constraints was investigated, and two constrained sequential optimization algorithms
were developed. In [15], the design of the transmitted waveforms and receiving filters
was extended to an airborne MIMO radar for space-time processing. Unlike most studies,
which constrained the waveform to have a constant modulus [14,16], in [17], the peak-
to-average-power ratio (PAPR) constraint and similarity constraint were simultaneously
imposed on the transmitted waveforms. While the aforementioned works optimized the
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waveforms and filters from the perspective of the signal-to-interference-plus-noise ratio
(SINR), an information-theoretic approach was applied in [18], where information-theoretic
criteria were employed as design metrics. Considering possible steering matrix mismatches,
the worst-case SINR optimization was studied in [19] with the constant modulus constraint
imposed on the waveform, where both the continuous and discrete probing waveform
phase cases were considered. While most works have focused on the waveform design that
maximizes the SINR for a single target, the waveform design for a multiple-target scenario
was considered in [20].

In a practical radar operation, when there is a rough or glistening surface existing in a
scene, the signal backscattered from the target will be received at the radar array through
different propagation paths aside from the direct path [21,22]. In this case, the returns
contain not only the line-of-sight (LOS) return, but also a multipath component [23,24].
Though there have been some studies devoted to the suppression of the multipath return,
research has shown that the target detection performance can be further improved via
proper multipath exploitation.

In this context, the radar waveform design technique offers a great potential advantage
for the enhancement of the target detection performance for multipath exploitation. There
have been some studies that have used the radar waveform design technique to improve
the target detection performance in the presence of multipath effect. In [25], the constant-
modulus orthogonal frequency division multiplexing (OFDM) waveform was applied
in order to improve the moving-target detection performance to overcome the PAPR
problem. In [26], based on the mutual information criterion, weighted OFDM waveforms
were transmitted by an MIMO array to track the target for the exploitation of multipath
reflections. In a nutshell, the radar for multipath exploitation in the existing researches
is assumed to transmit fixed waveform which lacks the ability to adjust the waveform
at different environment. The main exploration direction is to optimize the receive end
for enhanced performance and the transmit waveform design in fast time domain for
multipath exploitation, especially with MIMO radar, still remains an open issue in the
current literature.

1.3. Motivation and Contributions of This Paper

In our previous work [27], an MIMO jointly transmitted waveform and receiving
filter design for multipath exploitation was investigated. Therein, the propagation path
of the multipath return that was treated was known in advance, and the transmitted
waveform and receiving filter could be optimized by leveraging the semi-definite relaxation,
followed by a randomization procedure. Nevertheless, it is worth pointing out that the
algorithm proposed in [27] is relatively limited in terms of its capability in more practical
cases when the knowledge of the environment is incomplete or imprecise, i.e., the exact
a priori knowledge on the multipath configuration (reflective coefficient of the surface,
arrival direction, fast time delay) is unavailable. In this sense, signal model mismatches
may happen, and the performance of the waveform designed in [27] is not guaranteed.
Therefore, the design of a waveform that works against potential model mismatches to
ensure robust performance is of great significance, and this remains an open issue.

Aiming at filling this gap, in this paper, we consider a robust MIMO waveform
design to account for a more practical situation in which the prior knowledge about the
multipath return is imperfect. Specifically, we assume that there are several possible
expressions for the multipath return, depending on the position and reflective coefficient of
the reflective surface. In this context, we consider the worst-case SINR at the outputs of
the filter banks, with each tuned to a specific multipath return case, as the figure of merit
in order to guarantee a robust target detection ability regardless of the actual multipath
return. It is shown that the resultant robust design is hard to solve, since it belongs to a
class of non-convex max–min optimization problems. We reformulated the design into an
equivalent form that is easier to tackle and showed that the worst-case SINR can, thereby,
be sequentially optimized based on a cyclic optimization procedure. At each iteration,
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when the signal is fixed, each element of the filter bank can be globally optimized, and the
closed-form solution can be given directly; for a given filter bank, the waveform can be
optimized by resorting to the generalized Dinkelbach algorithm [28,29]. At the analysis
stage, the effectiveness of the proposed algorithm and its superiority over the non-robust
design are illustrated through a series of developed case studies.

The remaining content of this paper is organized as follows. In Section 2, the signal
model for the robust MIMO waveform design under unknown multipath return is intro-
duced. In Section 3, the non-convex max–min problem for the joint robust design of the
MIMO waveform and receiving filter bank is formulated, and a sequential optimization-
based algorithm is proposed to obtain the optimized waveform and filters. Section 4
provides several numerical experiments to demonstrate the effectiveness and superiority
of the proposed algorithm. Finally, Section 5 draws the conclusions and outlines some
possible future research tracks.

Notations: Throughout this paper, scalars are denoted by italic letters; vectors and
matrices are denoted by bold italic lowercase and capital letters, respectively. The operator
tr(·) obtains the trace of a square matrix, and the operator vec(·) performs the column-wise
stacking of a matrix. CN stands for the N-dimensional complex space. <(x) and arg(x)
obtain the the real part and phase angle of the argument x, respectively. ⊗ denotes the
Kronecker product, and E(·) represents the expectation operator. The superscripts (·)T and
(·)H denote the transpose and conjugate transpose, respectively. For a matrix A, A � 0
means that A is positive definite and A � 0 means that A is semi-definite.

2. Signal Model

Consider a colocated MIMO radar array consisting of NT transmitters and NR receivers
that is deployed in a scene to detect a target in direction θt. We denote its signal-transmitting
matrix by S = [s1, s2, ..., sNT ]

T ∈ CNT×L, where sn ∈ CL is the waveform transmitted at
the nth channel, with L being the number of samples in fast time domain. As depicted
in Figure 1, suppose that there is a reflective surface causing multipath return in the sce-
nario. As a consequence, when the radar system transmits signals to illuminate the target,
the echoes received by the array include not only the direct return, but also the backscat-
tered target signal reflected from the reflective surface, which is defined as multipath
return. There are also undesired returns from a cluttered area and other signal-independent
disturbances. The echoes received by the radar are down-converted to the baseband, which
can be expressed as

Y = Yd + Ym + Yc + n ∈ CNR×2L, (1)

where Yd, Ym, Yc, and n represent the direct return, multipath return, clutter, and noise,
respectively. It is worth stressing that we focus on the received data, which consist of 2L-
length range cells based on the model derived in [27], since longer propagation distances of
the multipath return will lead to a longer fast time delay compared with the direct return.
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Figure 1. The considered scenario in the presence of multipath return.

2.1. Direct Return Model

The direct return signal from the target can be expressed as

Yd = α0ar(θd)a
T
t (θd)SJ0 ∈ CNR×2L, (2)

where α0 is a complex parameter accounting for the two-way direct propagation and
backscattering effects from the target, and at(θd) ∈ CNT and ar(θd) ∈ CNR represent,
respectively, the transmitting and receiving steering vector in the target direction θd. Jl is
the L× 2L shift matrix, with its (m, n)th element given as

Jl(m, n) =
{

1, if m− n + l = 0
0, if m− n + l 6= 0

. (3)

It is worth pointing out that the notation Jl is applied as a shift matrix for the rest of this
paper. By utilizing the vectorization operator, we can obtain a 2NRL× 1-dimensional direct
return target vector that can be expressed as

yd = vec(Yd) = α0

(
JT

0 ⊗
(

ar(θd)a
T
t (θd)

))
︸ ︷︷ ︸

Hd

s ∈ C2NR L×1

= α0Hds,

(4)

where s = vec(S) ∈ CNT L×1.

2.2. Multipath Return Model

In practice, accurate knowledge about a reflective surface (including its position and
reflective coefficient) is not reasonable, and accordingly, it is more rational to assume that
the actual multipath return has many possible expressions. To be specific, we assume that
we know that the physical set of the reflective surface belongs to an uncertain set consisting
of K possible cases, as shown in Figure 1. Accordingly, there are K possible formulations
for the multipath return from the target in the direction θd. Based on above analysis, we
can get the baseband signal of the kth possible target multipath target return expression
through slight modification of (2), which is expressed as

Ym,k = ρkα0ar(θm,k)a
T
t (θd)SJrm,k ∈ CNR×2L, (5)

where ρk and θm,k are, respectively, the corresponding reflective coefficient of the surface
and the arrival direction of the multipath return. rm,k is the relative fast time delay of the
kth possible path compared with the direct return.
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Similarly to the derivation in (4), we can rewrite Ym,k as a 2NRL× 1 vector by resorting
to the vectorization operator:

ym,k = vec(Ym,k) = ρkα0

(
JT

rm,k
⊗ ar(θm,k)a

T
t (θd)

)
︸ ︷︷ ︸

Hm,k

s ∈ C2NR L×1

= ρkα0Hm,ks.

(6)

2.3. Disturbance Model

In a radar operation, there are inevitable undesired reflections from other objects in
the scene, e.g., the ground, water, and trees, which will have an obvious impact on the
received echo. Herein, aside from the clutter within the same range cell as the target signal,
we also take into consideration the impact of the clutter from the neighboring range cells.
Therefore, the signal-dependent clutter is modeled as the superposition of signals from
different directions and range cells. Suppose that there are P scatters in the scene interfering
with the received echoes; then, based on the previous analysis, the clutter caused by the
pth considered scatter can be expressed as

Yc,p = βpar(θp)aT
t (θp)SJlc,p ∈ CNR×2L, (7)

where βp represents the complex backscattering coefficient of the pth interfering object,
θp is its relative direction with respect to (w.r.t) the radar, and lc,p is the relative fast time
delay compared with the direct return. It should be pointed out that, here, we assume that
no multipath return is involved in the clutter item. Hence, the total clutter item can be
expressed as

Yc =
P

∑
p=1

βpar(θp)aT
t (θp)SJlc,p ∈ CNR×2L. (8)

Similarly to the derivations in the previous subsections, we write Yc in vector form
through column-wise stacking as follows:

yc = vec(Yc) =
P

∑
p=1

βp

(
JT

lc,p
⊗
(

ar(θp)aT
t (θp)

))
︸ ︷︷ ︸

Hc,p

s

=
P

∑
p=1

βpHc,ps ∈ C2NR L×1.

(9)

On the other hand, there are also signal-independent disturbances in the received data,
which result from the system noise. Without loss of generality, we consider the signal-
independent noise to be Gaussian, with its covariance matrix given as Rn.

3. Problem Formulation and Proposed Algorithm

In addition to the various waveform design criteria, which include mutual infor-
mation (MI) maximization [18,30,31], ambiguity function shaping [32–35], and Cramer–
Rao-bound (CRB) minimization [36,37], the SINR is widely utilized as the optimization
criterion due to its close relationship with the target detection and parameter estimation
performance [38–40]. In this context, we deal with the joint design of the transmitted wave-
form and the corresponding receiving filter bank by optimizing the worst-case SINR over
the unknown multipath return for enhanced target detection performance. Unlike in the
single-filter case, herein, our goal is to enhance the worst-case SINR, namely, the minimum
SINR among the available branches, at the output of the filter bank. By doing this, we are
able to improve the output SINR performance of the radar system in comparison with that
of the conventional design regardless of the actual multipath return expression. Specifi-
cally, we propose the processing of the received data through a filter array consisting of K
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filters, with each filter being tuned to a specific multipath return case. As for the constraint
imposed on the transmitted waveform, we restrict the waveform to have finite energy,
i.e., ‖s‖2

2 = 1. We denote by wk the kth filter; its output SINR under the kth multipath
return case can be calculated with

SINRk =
|α0|2

∣∣wk(Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn

)
wk

. (10)

where σ2
c,p = E

[
|βp|2

]
is the interfering power of the pth scatter. Herein, the numerator

of SINRk denotes the useful energy at the output of the filter, and the denominator of
SINRk represents the remaining energy of the clutter and signal-independent noise. The
worst-case SINR at the output of the filter bank is defined as

S̃INR = min
k=1,...,K

SINRk . (11)

Based on the above analysis, the robust joint transmitted waveform and receiving
filter bank design problem can be cast as

P


max

s,{wk}K
k=1

min
k=1,...,K

|α0|2
∣∣wH

k (Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn

)
wk

s.t. ‖s‖2
2 = 1

. (12)

It is seen thatP is a non-convex problem (max–min objective and the energy constraint)
and it NP-hard, which is difficult to solve. Nevertheless, as will be shown in the remainder
of this part, a novel algorithm can be devised in order to effectively obtain a sub-optimal
solution to P . To begin with, the following proposition provides an equivalent formulation
of P , which lays the foundation for the subsequent derivations.

Proposition 1. In terms of the optimal solution, Problem P is equal to the following problem:

P̃



max
s,{wk}K

k=1

min
k=1,...,K

|α0|<
(
wH

k (Hd + ρkHm,k)s
)√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

s.t. <
(

wH
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (13)

This means that, once an optimal solution to P̃ is obtained, it is possible to build an optimal solution
to P , and vice versa.

Proof. To begin with, it is obvious that the problem P shares the same optimal objective
value with the following unconstrained max–min problem:

max
s,{wk}K

k=1

min
k=1,...,K

|α0|2
∣∣∣wH

k (Hd + ρkHm,k)
s
‖s‖2

∣∣∣2
wH

k

(
P
∑

p=1
σ2

c,pHc,p
ssH

‖s‖2
2
HH

c,p + Rn

)
wk

. (14)
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Moreover, since the value of the objective function in (14) is invariant by multiplying a
scalar for the numerator and denominator at the same time, we can further recast (14) as

max
s,{wk}K

k=1

min
k=1,...,K

|α0|2
∣∣wH

k (Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

. (15)

It is immediately ascertainable that (15) is equivalent to the following problem in the sense
of optimal solutions:

max
s,{wk}K

k=1

min
k=1,...,K

|α0|
∣∣wH

k (Hd + ρkHm,k)s
∣∣√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

. (16)

We denote the feasible points of (13) and (16) by Ω1 and Ω2, respectively. Then, it is
obvious that Ω1 ⊆ Ω2. Moreover, we note that, for any given point in Ω1, the objective
value of (16) is larger than that of (13), which leads to the result that the optimal value of (16)
is higher than that of (13). On the other hand, ∀x̄ = (s̄, {w̄k}K

k=1) ∈ Ω2, so one can verify

that ˆ̄x = (s̄,
{

w̄k · ej arg{w̄H
k (Hd+ρkHm,k)s̄}

}K

k=1
) is in Ω1, and the objective in (13) achieves

the same value at ˆ̄x as the objective in (16) attains at x̄. That is to say, the optimal value of
(13) is not lower than that of (16). In conclusion, (13) and (16) share the same optimal value,
and any optimal solution for (13) is also optimal for (16). It is sufficient for us to deal with
(13). Therefore, the proof is completed.

Based on Proposition 1, we can focus on dealing with P̃ in the following content.
Though the reformulated form P̃ is still non-convex and NP-hard due to the max–min
fractional objective function, in what follows, we develop an effective algorithm based on
alternative optimization to obtain a sub-optimal solution to P̃ . In particular, at the nth
iteration, we focus on tackling the problems of P̃ (n)

1 and P̃ (n)
2 w.r.t. the waveform and

filters, respectively:

P̃ (n)
1



max
{wk}K

k=1

min
k=1,...,K

|α0|<
(

wH
k (Hd + ρkHm,k)s(n−1)

)
√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,ps(n−1)s(n−1)HHH
c,p + Rn‖s‖2

2

)
wk

s.t. <
(

wH
k (Hd + ρkHm,k)s

(n−1)
)
≥ 0, k = 1, 2, ...K

(17)

and

P̃ (n)
2



max
s

min
k=1,...,K

|α0|<
(

w(n)H
k (Hd + ρkHm,k)s

)
√√√√w(n)H

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
w(n)

k

s.t. <
(

w(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

, (18)

where s(n) and
{

w(n)
k

}K

k=1
denote the optimized waveform and filters at the nth itera-

tion, respectively.
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3.1. Optimizing Filters with a Fixed Waveform

Since P̃ (n)
1 consists of K objective functions that are separable, we can proceed to

dealing with the problem w.r.t. wk, which is formulated as

P̃ (n)
1,k



max
wk

|α0|<
(

wH
k (Hd + ρkHm,k)s(n−1)

)
√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,ps(n−1)s(n−1)HHH
c,p + Rn‖s(n−1)‖2

2

)
wk

s.t. <
(

wH
k (Hd + ρkHm,k)s

(n−1)
)
≥ 0

. (19)

We denote by
dk(s

(n−1)) = |α0|(Hd + ρkHm,k)s
(n−1)

Q(s(n−1)) =
P

∑
p=1

σ2
c,pHH

c,ps(n−1)s(n−1)HHc,p + Rn‖s(n−1)‖2
2

(20)

and recast the filter design problem as

P̃ (n)
1,k

max
wk

<(wH
k dk(s(n−1)))

wH
k Q(s(n−1))wk

s.t. <(wH
k dk(s

(n−1))) ≥ 0

. (21)

One can easily verify that P̃ (n)
1,k is equivalent to the following problem:

P̃ (n)′

1,k

max
wk

wH
k Q(s(n−1))wk

s.t. <(wH
k dk(s

(n−1))) = 1
. (22)

The optimal solution of the kth filter at the nth iteration can be immediately ob-
tained [41], and it is given as

w(n)
k = Q−1(s(n−1)) · dk(s

(n−1)). (23)

3.2. Optimizing the Waveform with Fixed Filters

For fixed filters
{

w(n)
k

}K

k=1
, the optimization problem of s(n) is cast as

P̃ (n)
2



max
s

min
k=1,...,K

|α0|<
(

w(n)H
k (Hd + ρkHm,k)s

)
√√√√w(n)H

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
w(n)

k

s.t. <
(

w(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (24)

Note that the denominator of the objective in P̃ (n)
2 can be equivalently formulated as√√√√w(n)H

k

(
P

∑
p=1

σ2
c,pHc,pssHHH

c,p + Rn‖s‖2
2

)
w(n)

k =

√√√√sH

(
P

∑
p=1

σ2
c,pHH

c,pw(n)
k w(n)H

k Hc,p + w(n)H
k Rnw(n)

k

)
s

= ‖
(

P

∑
p=1

σ2
c,pHH

c,pw(n)
k w(n)H

k Hc,p + w(n)H
k Rnw(n)

k

) 1
2

s‖2

. (25)
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Therefore, we can reformulate P̃ (n)
2 as

P̃ (n)′
2


max

s
min

k=1,...,K

|α0|<
(

w(n)H
k (Hd + ρkHm,k)s

)
‖
(

P
∑

p=1
σ2

c,pHH
c,pw(n)

k w(n)H
k Hc,p + w(n)H

k Rnw(n)
k

) 1
2

s‖2

s.t. <
(

w(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (26)

It is obvious that P̃ (n)′
2 is non-convex. By defining the functions

u(n)
k (s) = |α0|<

(
w(n)H

k (Hd + ρkHm,k)s
)

v(n)k (s) = ‖
(

P

∑
p=1

σ2
c,pHH

c,pw(n)
k w(n)H

k Hc,p + w(n)H
k Rnw(n)

k

) 1
2

s‖2

, k = 1, 2, ..., K, (27)

we can re-express P̃ (n)′
2 as

P̃ (n)′
2


max

s
min

k=1,...,K

u(n)
k (s)

v(n)k (s)

s.t. u(n)
k (s) ≥ 0, k = 1, 2, ...K

. (28)

It is worth noting that P̃ (n)′
2 is a typical generalized fractional programming prob-

lem
{

u(n)
k (s)

}K

k=1
—are all non-negative concave functions;

{
v(n)k (s)

}K

k=1
—are all positive

convex). Therefore, we propose that we tackle P̃ (n)′
2 by exploiting the idea of generalized

Dinkelbach fractional programming. In detail, the approach involves an iteration process.
At the qth iteration, the following problem is considered:

P (n,q)
2

max
s

min
k=1,...,K

u(n)
k (s)− ε(n,q−1)v(n)k (s)

s.t. u(n)
k (s) ≥ 0, k = 1, 2, ...K

. (29)

where ε(n,q−1) = min
1≤k≤K

u(n)
k (s(n,q−1))

v(n)k (s)(n,q−1)
, with s(n,q−1) being the optimized waveform at the

(q− 1)th iteration. Subsequently, we will show that, by resorting to the epigraph form,
P(n,q)

2 can be recast into a maximization as

P (n,q)′
2



max
s,t

t

s.t. u(n)
k (s) ≥ 0,

u(n)
k (s)− ε(n,q−1)v(n)k (s) ≥ t,

k = 1, 2, ..., K

. (30)

where t is an auxiliary variable. It is seen that P (n,q)′
2 is actually a second-order cone

programming (SOCP) problem that can be solved in polynomial time via the interior point
method. Based on the generalized Dinkelbach fractional programming paradigm, we

can obtain a global optimal solution to P̃ (n)
2 by solving a series of problems

{
P (n,q)′

2

}∞

q=1
.

For clearer illustration, we summarize the developed approach in Algorithm 1. It is worth
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stressing that Hd,
{

Hm,k
}K

k=1, {ρk}K
k=1,

{
Hc,p

}P
p=1,

{
σ2

c,p

}P

p=1
, and Rn are assumed to be

known in advance.

Algorithm 1 Developed approach.

Input : Hd,
{

Hm,k
}K

k=1, {ρk}K
k=1,

{
Hc,p

}P
p=1,

{
σ2

c,p

}P

p=1
, Rn

Step 1. n = 0, initialize the waveform s(0).
Step 2. n = n + 1. Compute Q(s(n−1)) and get the optimized kth filter as w(n)

k =

Q−1(s(n−1)) · dk(s(n−1)).
Step 3. Obtain the optimized waveform s(n) by solving a series of SOCP problems{
P (n,q)′

2

}∞

q=1
Step 4. Repeat steps 2 and 3 until convergence.

Output Optimized waveform s? = s(n) and filters
{

w?
k
}K

k=1 =
{

w(n)
k

}K

k=1
.

3.3. Complexity Analysis

As to the computational complexity of the proposed algorithm, it is dependent on the
number of iterations and the complexity in each inner iteration. In particular, the overall
complexity is linear w.r.t. the number of iterations, and it includes the computation of the
matrix inversion and the solution of a series of SOCP problems in each iteration. While
the optimization of the filters involves O((2NRL)3) floating-point operations, the opti-
mization of the waveform is related to the number of inner iterations, and O((2NT L)3.5)

floating-point operations are required for solving the SOCP problem P (n,q)′
2 in each inner

iteration [42].

4. Simulation Results

In this section, a series of examples are given to demonstrate the effectiveness of the
proposed design. Specifically, we consider an MIMO radar with an inter-element spacing of
2d for both the transmitting and receiving array, where d is a half-wavelength. Throughout
this part, the considered elements for the MIMO radar are fixed at NR = 4. The carrier
frequency of the probing signals is set to 1 GHz, and the length of the code to be designed
in each channel is set to L = 20. As for the target, it is placed in the direction θd = −20◦.
With reference to the two-way direct propagation and backscattering effects from the target,
α0 = 1 is set. We assume that there are K = 20 possible reflective surface configurations
in the scenario, accordingly resulting in 20 possible multipath return parameter pairs.
Specifically, for the kth multipath return, θm,k, |ρk|, and arg(ρk) are randomly drawn from
the sectors [−30◦, 0◦], [0.92, 0.94], and [−π

4 ,− π
12 ], and rm,k is drawn as a random integer

from the region [L− 5, L]. We consider the signal-independent disturbance to be white
Gaussian noise with a uniting power of σ2

n = 1. For the signal-dependent item, we assume
that there are P = 30 scatters in the clutter area with azimuth directions {θp}30

p=1 that are
uniformly drawn from the region [−90◦, 90◦]. The relative delay {lc,p}30

p=1 is uniformly
drawn from integers in the region [0, 2L]. The scatters are set to have the same mean
interfering power σ2

c,p = σ2, which is defined by the interference-to-noise ratio (INR),

which is calculated as INR = 10 log σ2

σ2
n

. Throughout this part, the INR is set to 20 dB.

4.1. Convergence and Computation Time Analysis

In this example, we check the effectiveness of the developed algorithm on the se-
quentially improvement of the output worst-case SINR, as well as its convergence and
computation time. As depicted in Figure 2, the worst-case SINR curves are plotted against
the number of iterations for different transmitting array sizes NT . As expected, the devel-
oped algorithm monotonically enhances the worst-case SINR, which significantly improves
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the target detection ability w.r.t. unknown multipath return. Furthermore, it is observed
that a higher transmitting array size leads to a higher worst-case SINR due to the higher
number of degrees of freedom (DOFs) that it introduces. Finally, the results shed light on
the effectiveness of the developed algorithm in ensuring an optimized worst-case (w.r.t.
unknown multipath return) target detectability. Indeed, significant performance gains
through iterations can be explicitly observed. The corresponding computation times are
reported in Table 1. One can clearly observe that, though higher worst-case SINR values
can be achieved as the transmitting array size becomes larger, the computational burden
accordingly becomes heavier, which coincides with the complexity analysis in Section 3.3.
Moreover, to illustrate the effectiveness of the proposed algorithm in optimizing the trans-
mitted waveform more directly, we draw the modulus and the phase of the optimized
waveform with different transmitting array sizes. As depicted in Figure 3, the waveforms
optimized under different NT values exhibit different behaviors in the fast time domain,
but all are constrained by the energy constraint.
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Figure 2. Worst-case SINR values of the waveform and filter with the proposed design versus the
iteration number.

Table 1. Computational times of the proposed algorithm with different transmitting array sizes.

NT 4 6 8 10

Computational time/s 627.077466 770.360833 1007.908756 1303.744407

4.2. Robustness of the Developed Design against Different Multipath Returns

In this example, we further check the robustness of the waveforms and filters designed
with the developed algorithm against the uncertainty of multipath return. In particular, we
compute the actual achieved output SINR over various multipath returns with different
transmitting array sizes. Moreover, for better illustration of the superiority of the proposed
design, a non-robust design is added for comparison [27], which is defined as the solution
to the following problem:

max
s,w

|α0|2|w(Hd + ρ5Hm,5)s|2

wH
(

∑P
p=1 σ2

c,pHc,pssHHH
c,p + Rn

)
w

s.t. ‖s‖2
2 = 1

(31)

This means that we utilize the fifth multipath return case for the non-robust design.
As shown in Figure 4, the worst-case output SINR provided by the proposed design
significantly outperforms that of the non-robust design. Moreover, in these four situations,
it can be observed that the proposed design provides a robust output SINR over various
multipath propagation scenarios. The superiority of the proposed design is highlighted by
observing that, in almost all multipath return cases, the SINR provided by the proposed
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design stayed around 3.5 dB higher than that of the non-robust design, except in the fifth
multipath propagation case. This can be explained by the proposed design’s improvement
of the worst-case SINR by averaging the performance over all possible cases, while the
non-robust design was only effective in the fifth case. In practices, if there are mismatches
between the models of the assumed and the actual scenarios, the performance of the non-
robust design will be significantly degraded, but our design enjoys quite stable performance
as the scenario changes. The results also show that a larger transmitting array size leads to
a higher SINR value.
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Figure 3. Modulus and phase of the optimized waveform with different transmitting array sizes.
(a) NT = 4, (b) NT = 6, (c) NT = 8, and (d) NT = 10.

4.3. The Impact of the Transmitting Array Size on the Worst-Case SINR

In the final example, we check the impact of the transmitting array size NT on the
worst-case SINR provided by the proposed algorithm. In particular, we plot the worst-case
SINR curve with NT values varying from 4 to 10 in Figure 5, with the other parameters
fixed. Unsurprisingly, the result clearly shows an increasing SINR trend w.r.t NT , as a larger
number of antennas can bring more DOFs in the waveform design process for disturbance
suppression; consequently, higher worst-case SINR values can be obtained.
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Figure 4. SINR values achieved with the proposed design and the non-robust design over different
multipath propagation cases with various transmitting array sizes. (a) NT = 4, (b) NT = 6, (c) NT = 8,
and (d) NT = 10.
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Figure 5. The worst-case output SINR provided by the proposed design versus the transmitting
array size.
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5. Conclusions

In this paper, a robust joint MIMO design for a transmitted waveform and receiving
filter bank under uncertain multipath return was investigated. The goal of the robust
design was to make the designed waveform and filters provide relatively stable output
SINR values regardless of the actual multipath return expression, which was cast as a
max–min problem and was hard to solve. A corresponding algorithm was developed based
on a cyclic optimization paradigm. The simulation results show that the proposed design
can achieve robustness against different multipath scenarios; this is of great significance
in real applications, since actual information about an operating scene may be imprecise.
Future research may include this robust design under more complex constraints on the
transmitted waveform, such as spectral compatibility constraints.
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