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Abstract: Hyperspectral target detection is one of the most challenging tasks in remote sensing due to
limited spectral information. Many algorithms based on matrix decomposition (MD) are proposed to
promote the separation of the background and targets, but they suffer from two problems: (1) Targets
are detected with the criterion of reconstruction residuals, and the imbalanced number of background
and target atoms in union dictionary may lead to misclassification of targets. (2) The detection
results are susceptible to the quality of the a priori target spectra, thus obtaining inferior performance
because of the inevitable spectral variability. In this paper, we propose a matrix decomposition-based
detector named dictionary learning-cooperated matrix decomposition (DLcMD) for hyperspectral
target detection. The procedure of DLcMD is two-fold. First, the low rank and sparse matrix
decomposition (LRaSMD) is exploited to separate targets from the background due to its insensitivity
to the imbalanced number of background and target atoms, which can reduce the misclassification of
targets. Inspired by dictionary learning, the target atoms are updated during LRaSMD to alleviate
the impact of spectral variability. After that, a binary hypothesis model specifically designed for
LRaSMD is proposed, and a generalized likelihood ratio test (GLRT) is performed to obtain the final
detection result. Experimental results on five datasets have shown the reliability of the proposed
method. Especially in the Los Angeles-II dataset, the area under the curve (AUC) value is nearly 16%
higher than the average value of the other seven detectors, which reveals the superiority of DLcMD
in hyperspectral target detection.

Keywords: hyperspectral target detection; low rank and sparse matrix decomposition; dictionary
learning; generalized likelihood ratio test

1. Introduction

Hyperspectral imagery (HSI) is a three-dimensional cube staked with hundreds of
narrow-band images, with an electromagnetic spectrum covering from visible to far-
infrared range. Hyperspectral images possess higher spectral resolution than infrared
and multispectral images, thus providing more precise information about the objects [1,2].
Taking these advantages, it is natural for HSI to be one of the most essential tools to detect
and recognize ground surface materials in the remote sensing domain. After decades of
development, HSIs are now composed of hundreds or even thousands of bands and show
their superiority in classification and target detection [3,4]. HSI attracts more and more
attention and is now a hotspot in remote sensing, which has been widely applied in various
fields, including environmental monitoring, mineral exploration, target detection, and
intelligent agriculture [5–11].

Hyperspectral target detection aims at exploring targets in the scene with very little
or even no spectral information about the targets. As an essential part of target detection,
anomaly detection tries to distinguish objects that differ from the majority of the image
in an unsupervised manner [12–15]. On the contrary, if we can obtain the spectrum of
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the target, we are going to separate a specific kind of object from the background. Target
detection in HSIs can be viewed as a binary classification problem, where pixels are
labeled as background or target by comparing their spectral characteristics with given
targets. In practice, there is no prior knowledge about the background, and only a few
or even one target spectra are available; this makes target detection a hot but challenging
task in hyperspectral image processing [16–18]. There are a variety of algorithms based
on statistical theory or binary hypothesis models to exploit the implicit information in
HSIs. Constraint energy minimization (CEM) [19,20] and target-constrained interference-
minimized filter (TCIMF) [21] design a specific finite impulse response (FIR) filter to
minimize the filter’s output energy while preserving the response of target pixels. Adaptive
coherence/cosine estimator (ACE) [22] and spectral matched filter (SMF) [23] assume that
targets share the same covariance matrix with the background but different mean values.

Recent years have witnessed the development of matrix decomposition (MD). MD-
based algorithms do not exert any distribution assumptions on data and noise, and it
decomposes the original input data into several parts by gradually minimizing the objec-
tive function until convergence. The original data without preprocessing is usually directly
used for decomposition and thus can be applied to a variety of datasets. The well-known
optimization theory is exploited to ensure the physical meanings are maintained in each
part during the procedure. Taking these advantages, MD-based algorithms now have been
widely employed in many fields, including but not limited to computer vision, recommen-
dation systems, and natural language processing. In terms of hyperspectral target detection,
there are many MD-based algorithms proposed to better distinguish targets from the back-
ground as well. Take sparse representation (SR) for instance, each pixel can be linearly
represented by a few items in an over-complete dictionary. Sparsity-based target detector
(STD) [24] exploits training samples from both the background and targets to represent
each pixel in the scene and the class label of each pixel is determined by the residual of
recovery. Wu et al. [25] model background pixels with low rank and sparse representation
and targets with sparse representation. Furthermore, the detection model is incorporated
into a multitask learning framework to reduce spectral redundancy. Considering that `1
norm minimization requires strong incoherence among atoms in the dictionary, Ref. [26]
utilizes the `p norm in SR to obtain a more accurate approximation; a thresholding method
is thus proposed to solve the non-convex coding. Zhu et al. [27] propose a binary-class
SR model to separate targets from the background, a new target dictionary construction
method based on a given target spectrum is derived to get more sufficient target samples.
Nevertheless, MD-based detectors still face the following challenging problems.

(1) The imbalanced amount of training samples between targets and the background
always lead to the misclassification of targets. The primary purpose of MD-based
methods such as SR is to classify each sample by the corresponding reconstruction
residual. The number of atoms of each class is equal to one another, and each sample
is represented in a competing pattern. In hyperspectral target detection, however,
the ratio between the number of background and target atoms is desperately skewed
under the low probability of the occurrence of targets. Under such a circumstance, the
target pixels tend to be misclassified as background, thus deteriorating the final result.

(2) These MD-based detectors rely on the quality of the a priori target spectra, which are
usually contaminated by spectral variability. An ideal target spectrum is supposed
to be pure and representative of the corresponding material. In most cases, the
target spectra are derived from the known target pixels in the image. Unfortunately,
this strategy may lead to degradation due to the spectral variability in HSIs. The
uncompensated atmospheric effects and contamination by adjacent pixels make it
difficult to obtain highly qualified a priori target spectra. Given a set of stained target
spectra, the MD-based detectors fail to separate target pixels from the background
and subsequently lead to inferior detection performance.

Overall, most of the MD-based algorithms suffer from the above obstacles and thus
fail to yield an expressive detection performance.
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Considering the spectral variability in HSIs, it is necessary to generate a set of op-
timal target spectra from the limited reference target spectra. Meanwhile, there is also
a clear need for a new detection model to overcome the imbalanced amount of training
samples between targets and the background. To address these problems, we propose a
new MD-based detector for hyperspectral target detection named the dictionary learning-
cooperated matrix decomposition (DLcMD) detector. First, low rank and sparse matrix
decomposition (LRaSMD) [28] rather than SR is utilized to separate the targets from the
background. The reason why we employ LRaSMD is that it can better separate targets from
the background and artfully avert the negative impact of the imbalance between targets and
the background. Inspired by dictionary learning, we further update the target dictionary
in each iteration of LRaSMD to alleviate the spectral variations and reach a more compact
representation. After that, we construct a binary hypothesis model based on LRaSMD,
and a generalized likelihood ratio test (GLRT) is introduced in DLcMD to obtain a more
meaningful result.

Following are two contributions of the proposed DLcMD detector for hyperspectral
target detection.

(1) A LRaSMD-based hypothesis model is proposed for hyperspectral target detection.
Here, LRaSMD rather than SR is used to separate targets from the background because
of the insensitivity of LRaSMD to the imbalanced amount of target pixels and back-
ground pixels. Meanwhile, GLRT is also introduced to better get rid of this dilemma.

(2) The dictionary learning is incorporated into LRaSMD to avert the degradation caused
by spectral variability. With the aim of forming a more compact representation for
detection, the target dictionary is updated in each iteration of LRaSMD, and the final
detection result verifies the rationality of this strategy.

The rest of the paper is arranged as follows. Section 2 briefly introduces two widely
used models for hyperspectral target detection. The proposed DLcMD detector will be
described in Section 3 in detail. Extensive experiments are conducted in Section 4 to
demonstrate the effectiveness of the proposed DLcMD algorithm. Conclusions are drawn
in Section 5.

2. Related Works
2.1. The Linear Mixing Model

Because of the limitation of spatial resolution, many of the pixels in HSI consist of
more than one material in practice, which are the so-called mixed pixels. The well-known
linear mixing model (LMM) [29] assumes that any pixel x ∈ Rb in HSI can be expressed as:

x = Eα + n

s.t. α � 0, 1T
p α = 1

(1)

where E ∈ Rb×p consists of p endmembers, α denotes the abundance fractions correspond-
ing to each endmember, and n is the noise vector. The abundance vector should be subject
to the abundance nonnegative constraint and the abundance sum-to-one constraint simul-
taneously. Many tasks, such as hyperspectral unmixing and target detection, are based on
this model, and a variety of algorithms are proposed to solve this problem [30,31].

Derived from LMM, the replacement model [32] divides Eα in (1) into two parts,
standing for the target spectral signature et and background spectral signature eb. The
replacement model is usually exploited in target detection, and a binary hypothesis model
based on this can be written as:

H0 : x = eb + n, target absent

H1 : x = ket + (1− k)eb + n, target present
(2)

where k denotes the proportion of targets in a single pixel x.
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When we have access to the target dictionary Dt and background dictionary Db, (2) is
specified as:

H0 : x = Dbγ + n0, target absent

H1 : x = Duβ + n1 = Dbβb + Dtβt + n1, target present
(3)

where γ and β are the abundance vectors. In practice, however, the background dictionary
Db is unavailable and is usually individually generated for each PUT through a dual
window.

Before figuring out which class each PUT belongs to, the abundance vectors γ and
β need to be solved. SR assumes that a pixel can be sparsely represented by several
atoms in the dictionary. To be specific, most elements in γ and β are zero, while the
remaining part satisfies the nonnegative constraint and sum-to-one constraint. SR shows
its advantage in many HSI-related tasks, including target detection, hence many SR-based
algorithms [3,24,31,33] are proposed to find the optimal abundance vector.

Despite the fact that these SR-based detectors are effective in HSI-related tasks, there
are two major drawbacks that need addressing.

(1) In most cases, the number of atoms in the target dictionary and background dictionary
are extremely imbalanced. When encountered with a target pixel, SR tends to select
more background atoms, and thus, the reconstruction residual will dramatically
increase accordingly. Consequently, an inferior detection result is always obtained.

(2) As there is no prior knowledge about the background in hyperspectral target detection,
most SR-based detectors construct the background dictionary by applying a dual con-
centric window on each PUT. Whereas the sizes of the window are set manually, which
is elaborative and varies for different HSIs. What is worse, some target pixels may
corrupt the background dictionary, leading to degradation in detection performance.
In addition, it is time consuming for these detectors because they have to traverse the
entire image to construct the dictionaries for pixels in the scene.

2.2. Low Rank and Sparse Matrix Decomposition

Obstacles in SR suggest we find a more practical way to separate targets from the back-
ground. Some studies [13,34–36] have pointed out that the background of an image lies in a
low-dimensional subspace, while targets are randomly distributed and have a sparse property.
Under this assumption, LRaSMD holds that a reshaped HSI X ∈ Rb×n, which consists of n
pixels with b bands, is the sum of a low-rank matrix L corresponding to the background, a
sparse matrix S stands for the target, and a noise matrix N, as shown in Figure 1. This method
makes fewer assumptions about the background and targets, which has been widely used in
many detection-related tasks.

X L S N

= + +

Figure 1. Process of the LRaSMD algorithm. L is the low-rank part corresponding to the background.
S is the sparse part corresponding to the target. N stands for the noise matrix.

LRaSMD is usually formulated as an optimization problem as follows.

min
L,S

rank(L) + λ · card(S)

s.t. X = L + S + N
(4)
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where rank(·) and card(·) denote the rank and cardinality of a certain matrix, respectively,
while λ is a positive tradeoff parameter that balances these two parts. However, due to
the discrete nature of the rank function, problem (4) is non-convex and cannot be solved
in polynomial time. Fortunately, it has been proven in [37] that the nuclear norm (i.e.,
the sum of singular values) is a good surrogate for the rank function. Meanwhile, since
the occurrence probability of targets is relatively low, only a few columns of matrix S are
supposed to be nonzero. The `2,1 norm of a matrix is defined as the sum of the `2 norm
of each column, which encourages the columns of S to be zero. It is utilized for “sample-
specific” corruptions [38], which is feasible for modeling the targets in hyperspectral images.
Based on the above analysis, the following problem is a usual surrogate for problem (4).

min
L,S
‖L‖∗ + λ‖S‖2,1

s.t. X = L + S + N
(5)

where ‖ · ‖∗ and ‖ · ‖2,1 are the nuclear norm and `2,1 norm of a certain matrix, respectively.
There are many algorithms proposed to solve the above optimization problem, such as
alternating direction method of multipliers (ADMM) [39], GoDecomposition (GoDec) [34]
and linearized alternating direction method with adaptive penalty (LADMAP) [40].

When it comes to target detection in HSI, each column in the sparse matrix S can be
linearly represented by a dictionary D ∈ Rb×Nt , which consists of Nt target spectra given
in advance; problem (5) can thus be substituted as follows.

min
L,A
‖L‖∗ + λ‖A‖2,1

s.t. X = L + DA + N
(6)

where DA = S. Obviously, problem (5) is actually a special case of problem (6) by setting
D = I.

3. Proposed Methodology
3.1. LRaSMD-Based Hypothesis Model

LRaSMD is liberated from the elaborative background dictionary design, as shown
in (6). Since it can separate targets from the background automatically by the different
characteristics between these two parts, LRaSMD can avert the misclassification of target
pixels caused by SR as well. Moreover, there is only one parameter λ that needs adjusting,
which will make LRaSMD less sensitive to different scenes in practice.

The above analysis motivates a new hypothesis model based on LRaSMD for hyper-
spectral target detection. Following the formulation in (2), we can obtain the LRaSMD-based
hypothesis model for each PUT x as follows.

H0 : x = l + n0, target absent

H1 : x = l + Dα + n1, target present
(7)

where l and Dα are the columns of matrices L and DA corresponding to the PUT.
In the null hypothesis, the absence of a target in x demonstrates that elements in

coefficient vector α are close to zero and thus can be discarded when representing x. When
it comes to the alternate hypothesis, however, elements in α are not zero because the target
is present in x, and Dα cannot be ignored when constructing x. This new target detection
hypothesis model takes advantage of LRaSMD in better distinguishing targets from the
background, thus being more sensible in practice.

In this LRaSMD-based hypothesis model, we hold that the reconstruction residuals
under different hypotheses obey the Gaussian distribution with the same covariance
structure but different variances:

n0 ∼ N (0, σ2
0ΓΓΓ) n1 ∼ N (0, σ2

1ΓΓΓ) (8)
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where σ2
0 and σ2

1 are the corresponding variances for both hypotheses. ΓΓΓ is the covariance
matrix, which is estimated from a given independent dataset Y = {yi|yi ∼ N (0, ΓΓΓ),
i = 1, · · · , N} [41]. When N is very large, the covariance matrix can be obtained by:

Γ̂ΓΓ =
N

∑
i=1

yiyT
i (9)

In practice, it is not uncommon to derive the covariance matrix by the residual. In our
work, we simply utilize the noise part (N) to construct Γ̂ΓΓ. The joint likelihood equations
under each hypothesis can be subsequently obtained according to (7)–(9).

L(x, Y|H0) =
1

((2π)b|Γ̂ΓΓ|)
(N+1)

2 (σ2
0 )

b
2

exp

{
−1

2

N

∑
i=1

yT
i Γ̂ΓΓ
−1

yi

− 1
2σ2

0
(x− l)TΓ̂ΓΓ

−1
(x− l)

}

L(x, Y|H1) =
1

((2π)b|Γ̂ΓΓ|)
(N+1)

2 (σ2
1 )

b
2

exp

{
−1

2

N

∑
i=1

yT
i Γ̂ΓΓ
−1

yi

− 1
2σ2

1
(x− l −Dα)TΓ̂ΓΓ

−1
(x− l −Dα)

}
(10)

In order to obtain a GLRT-based detector, we estimate the variances for both
hypotheses under the maximum likelihood estimation (MLE). After some numerical opera-
tions, we have:

σ̂2
0 = arg max

σ2
0

L(x, Y|H0)

=
1
b
(x− l)TΓ̂ΓΓ

−1
(x− l)

σ̂2
1 = arg max

σ2
1

L(x, Y|H1)

=
1
b
(x− l −Dα)TΓ̂ΓΓ

−1
(x− l −Dα)

(11)

After that, the GLRT-based [42] detector under this hypothesis model can be obtained
as follows.

GLR(x) ,

[
L(x, Y; σ̂2

1 |H1)

L(x, Y; σ̂2
0 |H0)

]2/b

=
(x− l)TΓ̂ΓΓ

−1
(x− l)

(x− l −Dα)TΓ̂ΓΓ
−1

(x− l −Dα)

(12)

When the target is absent, (x− l) ≈ (x− l −Dα) and GLR(x) equals 1. Whereas,
when the target is present in the PUT, the Mahalanobis distance between x and l is greater
than that between x and l + Dα, hence GLR(x) > 1. In order to obtain a more meaningful
result, we rewrite (14) by subtracting one for each PUT and obtain the DLcMD detector:

DDLcMD(x) =
(x− l)TΓ̂ΓΓ

−1
(x− l)

(x− l −Dα)TΓ̂ΓΓ
−1

(x− l −Dα)
− 1 (13)

After applying LRaSMD to the test HSI, the detection result for each PUT can be
obtained with (13). Pixels with values near zero tend to be background, while those with
large values are supposed to have a higher probability of being targets.
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3.2. Dictionary Learning-Cooperated Matrix Decomposition

In most hyperspectral target detectors, the a priori target spectra are directly used
to determine whether a PUT is a target or not. However, the spectral variability caused
by various mechanisms, such as radiometric and atmospheric effects, may influence the
accuracy of target spectra. In this instance, detectors that are susceptible to the quality of
the given target spectral information always lead to inferior performance.

Some efforts are made to get out of this dilemma. In [43], Yang et al. utilize an inequality
constraint to make CEM more robust to the variation. A reweighted ACE (rACE) [44] is
proposed to reconstruct an optimal target spectrum from the given spectrum, but the perfor-
mance relies on the result of its first iteration. In [45], an adaptive weighted learning method
is developed to obtain the specific target spectrum for hyperspectral target detection.

In this section, we embed dictionary learning into LRaSMD to alternately generate
more meaningful target spectra and separate targets from the background. Derived from (6),
LRaSMD with dictionary learning for hyperspectral target detection can be transformed
into an optimization problem as follows.

min
L,D,A,J

‖L‖∗ + λ‖J‖2,1

s.t. X = L + DA + N

A = J

(14)

where J is an auxiliary variable to make the objective function separable. The augmented
Lagrangian function of problem (14) is:

f (L, D, A, Y1, Y2) = ‖L‖∗ + λ‖J‖2,1

+ 〈Y1, X− L−DA〉+ 〈Y2, A− J〉

+
µ

2
(‖X− L−DA‖2

F + ‖A− J‖2
F)

(15)

wherein Y1 ∈ Rb×n and Y2 ∈ Rb×Nt are the Lagrange multipliers, 〈·〉 stands for the dot
product, and µ > 0 is the penalty parameter. The global optimal solution can be obtained
because the augmented Lagrangian function is always convex. The widely used ADMM is
utilized here, and the problem can be divided into several subproblems.

(1) Fix other variables and update L. The objective function with respect to L can be
rewritten as follows.

Lk+1 = arg min
L

‖L‖∗ +
〈
Y1,k, X− L−DkAk

〉
+

µk
2
‖X− L−DkAk‖2

F

= arg min
L

‖L‖∗ +
µk
2
‖L− (X−DkAk +

Y1,k

µk
)‖2

F

(16)

Subproblem (16) can be solved via the singular value thresholding (SVT) operator [46]:

Lk+1 = ULS1/µk
[ΣΣΣL]VT

L (17)

with
X−DkAk +

Y1,k

µk
= ULΣΣΣLVT

L (18)

and

S1/µk
[ΣΣΣL]ij =


(ΣΣΣL)ij − 1/µk, (ΣΣΣL)ij > 1/µk

(ΣΣΣL)ij + 1/µk, (ΣΣΣL)ij < −1/µk

0, otherwise

(19)
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(2) Fix other variables and update J. The objective function with respect to J can be
rewritten as follows.

Jk+1 = arg min
J

λ‖J‖2,1 +
〈
Y2,k, Ak − J

〉
+

µk
2
‖Ak − J‖2

F

= arg min
J
‖J‖2,1 +

µk
2λ
‖J− (Ak +

Y2,k

µk
)‖2

F

(20)

Solution of the i-th column of J can be obtained via the `2,1 norm operator [47]:

J·i,k+1 =

(1− λ/µk
‖Q·i‖

)Q·i, ‖Q·i‖ > λ/µk

0, otherwise
(21)

where Q = Ak + Y2,k/µk.
(3) Fix other variables and update A. The objective function with respect to A can be

rewritten as follows.

Ak+1 = arg min
A

〈
Y1,k, X− Lk+1 −DkA

〉
+
〈
Y2,k, A− Jk+1

〉
+

µk
2
(‖X− Lk+1 −DkA‖2

F + ‖A− Jk+1‖2
F)

=
µk
2
(‖(X− Lk+1 +

Y1,k

µk
)−DkA‖2

F

+ ‖A− (Jk+1 −
Y2,k

µk
)‖2

F)

(22)

Subproblem (22) has the solution:

Ak+1 =(DT
k Dk + I)−1(

DT
k Y1,k − Y2,k

µk
+ DT

k X

−DT
k Lk+1 + Jk+1)

(23)

(4) Fix other variables and update D. The objective function with respect to D can be
rewritten as follows.

Dk+1 = arg min
D

〈
Y1,k, X− Lk+1 −DAk+1

〉
+

µk
2
‖X− Lk+1 −DAk+1‖2

F

=
µk
2
‖(X− Lk+1 +

Y1,k

µk
)−DAk+1‖2

F

(24)

Subproblem (24) has the solution:

Dk+1 = (X− Lk+1 +
Y1,k

µk
)A†

k+1 (25)

where A† is the pseudoinverse operation of matrix A.
(5) Fix other variables and update Y1 and Y2. The Lagrangian multipliers can be

updated with the gradient ascent method.

Y1,k+1 = Y1,k + µk(X− Lk+1 −Dk+1Ak+1)

Y2,k+1 = Y2,k + µk(Ak+1 − Jk+1)
(26)



Remote Sens. 2022, 14, 4369 9 of 19

(6) Fix other variables and update µ. The penalty parameter µ is adaptively updated
with the criterion:

µk+1 = min(µmax, ρµk) (27)

where µmax is an upper bound of {µk}, and ρ > 0 is defined as

ρ =

{
ρ0 > 1, (‖Nk+1‖2

F − ‖Nk‖2
F)/‖Nk‖2

F > ε

ρ1 < 1, otherwise
(28)

where in Nk = X− Lk −DkAk, and the tolerance ε > 0 is a predefined value. This penalty
is changed adaptively to accelerate the convergence [40].

The optimal solution can be obtained by alternately updating the above variables
until convergence.

3.3. Final Scheme of DLcMD

The scheme of the proposed DLcMD detector for hyperspectral target detection is
demonstrated in Algorithm 1. The flow chart of the whole algorithm is shown in Figure 2.
Given an HSI to be tested, DLcMD first exploits LRaSMD to decompose it into three
parts, denoting background, target, and noise. Here, the widely used ADMM is used
to alternately update the variables to approach the optimal solution. Different from the
traditional MD-based methods, the target dictionary is updated during each iteration of
LRaSMD. By this means, the spectral variability caused by atmospheric effects is alleviated.
The decomposition procedure goes until convergence. After that, a new hypothesis model
dedicated to LRaSMD is constructed, and a GLRT-based detector is derived from this
hypothesis model. The final detection result is finally obtained by this GLRT-based detector.

Algorithm 1 The proposed DLcMD detector
Input:

(1) the reshaped HSI data set X ∈ Rb×n;

(2) the target dictionary D0 ∈ Rb×Nt given in advance;

(3) the tradeoff parameter λ > 0.

Output:

hyperspectral target detection map.

Initialization:

L0 = X, A0 = J0 = 0Nt×n, µ0 = 1, µmax = 106, ρ0 = 1.1, ρ1 = 0.99, ε = 10−3, the

Lagrangian multipliers Y1,0 and Y2,0 are initialized randomly, Itermax, k = 0.

Procedure:

1: Repeat:

2: Update Lk+1 via Equation (17).

3: Update Jk+1 via Equation (21).

4: Update Ak+1 via Equation (23).

5: Update Dk+1 via Equation (25).

6: Update Lagrangian multipliers Y1,k+1 and Y2,k+1 via Equation (26).

7: Update µk+1 via Equation (27).

8: k := k + 1.

9: Until: k >= Itermax

10: For each PUT xi in X, obtain the detection result DDLcMD(xi) via Equation (13).
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Figure 2. Flowchart of the proposed algorithm.

4. Experiments

In this section, we employ several experiments with five HSI datasets to evaluate the
performance of the proposed DLcMD detector for hyperspectral target detection. After a
brief introduction of the five hyperspectral datasets employed here, we will first analyze the
impact of parameter λ on the final detection performance. Then, DLcMD is compared with
the other classical and advanced detectors. The experiments are implemented in MATLAB
on an Intel Quad-Core i5-6200 CPU with 4 GB of RAM.

4.1. Datasets

In this paper, five HSI datasets are employed to evaluate the performance of the
proposed DLcMD detector. The pseudocolor images and the corresponding ground truth
are shown in Figure 3.

(1) San Diego-I: This hyperspectral image was captured by the airborne visible/infrared
imaging spectrometer (AVIRIS) sensor over the San Diego airport area. This dataset
has a 3.5-m spatial resolution and 10-nm spectral resolution. The size of this image
is 100× 100, which contains 224 spectral channels in wavelengths ranging from 370
to 2510 nm. A total of 189 bands remain after the removal of bad bands (1–6, 33–35,
97, 107–113, 153–166, and 221–224), which correspond to low signal-to-noise ratio and
water absorption regions. Three aircraft in the scene, which consists of 134 pixels in
total, are treated as targets.

(2) San Diego-II: This dataset was also derived from the AVIRIS sensor. This 100× 100 im-
age has a 3.5-m spatial resolution with 10-nm spectral resolution. A total of 189 bands
remain after bad bands are removed. Three airplanes located at the upper right of the
image, which consists of 57 pixels, are treated as targets.

(3) Los Angeles-I: This dataset was also derived from the AVIRIS sensor with a 7.1-m
spatial resolution. The size of the image is 100 × 100, with 205 spectral bands in
wavelengths ranging from 400 to 2500 nm after water vapor absorption bands are
removed. There are 87 pixels defined as targets, representing two aircraft.

(4) Los Angeles-II: This dataset was also derived from the AVIRIS sensor on the airborne
platform. This 100× 100× 205 image has a 7.1-m spatial resolution and 10-nm spectral
resolution. There are 25 human-made objects of different sizes that are treated as
targets.

(5) Texas Coast: This dataset was derived from the AVIRIS sensor on the airborne platform.
This image consists of 100× 100 pixels with 207 bands after the removal of bad bands.
The spatial resolution of this dataset is 17.2-m per pixel, and 20 objects corresponding
to oil tanks of different sizes are regarded as targets.



Remote Sens. 2022, 14, 4369 11 of 19

Figure 3. Pseudocolor images and the corresponding ground truth of the five HSI datasets.
(a) San Diego-I. (b) San Diego-II. (c) Los Angeles-I. (d) Los Angeles-II. (e) Texas Coast.

4.2. Experimental Settings

For each of these five datasets, we randomly select one pixel from each object to meet
the requirement in practice. Thus, we have Nt = 3, Nt = 3, Nt = 2, Nt = 25, and Nt = 20
target spectra in each dataset for hyperspectral target detection, respectively.

The detectors utilized here in comparison with DLcMD are: ACE [22], SMF [23], the
matched subspace detector (MSD) [48], STD [24], HSSD [30], the background learning
based on target suppression constraint (BLTSC) method [49], and the decomposition model
with background dictionary learning (DM-BDL) [50]. STD and HSSD require a background
dictionary to better distinguish targets from the background, and the dual concentric
window strategy is usually utilized to obtain the background spectra. The range of radius
of the outer window Rout is set as {3, 4, 5, 6, 7, 8, 9}, and that of the inner window Rin
is set from 1 to Rout − 1, when Rout is fixed. Further, these two detectors adopt SR to
linearly represent each pixel, and the sparsity level K0 is a significant parameter in these
two detectors. As there is no generic method to select the optimal value of K0, it is usually
searched manually. The range of K0 is set as {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30}. Moreover,
HSSD needs to purify the background dictionary to obtain a promising result; coefficient t
is selected from {1, 2, 3, 4}, following the setting in [30]. In terms of MSD, the eigenvectors
corresponding to the first K largest eigenvalues of the covariance matrix formed by the
training atoms are used to generate the background dictionary, and the range of K is set
the same as K0. BLTSC consists of the background selection block, adversarial autoencoder
block, and target detection block. Thus it is necessary to design the network structure (depth
of the network d and the number of hidden nodes Nhid) and related parameters (tradeoff
parameter λ, threshold values ε, and δ). DM-BDL requires a background dictionary to
present each pixel; the learning parameter γ and the number of atoms K are utilized to
train a discriminative background dictionary. The parameters of these target detectors are
set to get the optimal detection performance for the sake of fairness.

Two widely used metrics, the receiver operating characteristic (ROC) curve and area
under the curve (AUC), are utilized to evaluate the performance. ROC curves reveal the
relationship between the true positive rate PTPR and false positive rate PFPR with different
thresholding rates. Specifically, PTPR and PFPR are defined as follows.

PTPR =
Ndetected
Ntarget

PFPR =
N f alse

Nbackground
(29)

where Ndetected and Ntarget are the number of detected targets and the total number of target
pixels, while N f alse and Nbackground are the number of pixels mistaken as target and the
total number of background pixels in the image. A detector is supposed to have better
detection performance when its ROC curve is at the top-left of the other detectors. However,
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this situation does not always occur in practice. Thus the AUC value is introduced to
quantitatively evaluate the detection performance, and a higher AUC demonstrates a better
detection performance.

4.3. Parameter Analysis

The proposed DLcMD detector involves only one parameter needing fine-tuning: the
positive tradeoff parameter λ. Here, we will discuss the effect of λ on the final detection
performance for DLcMD. All of the five hyperspectral datasets will be exploited in this
subsection to provide a convincing statement.

The tradeoff parameter λ determines the information maintained in the low-rank
part and the sparse part, which influences the detection performance ulteriorly. Here, we
execute an extra experiment to show how the tradeoff parameter λ influences the separation
between background and targets. As shown in Figure 4, when λ is set properly, the low-rank
part and sparse part can preserve the most valuable information in the background and
targets, respectively. However, when the tradeoff parameter λ is set improperly, especially
when λ is very large, the target information may be lost in the sparse part, which will
degrade the detection performance. The reason behind this is that increasing the value
of λ imposes a stronger penalty on the sparse part and vice versa, a relatively large set
of λ enforces the `2,1 norm to be small, and thus, information about targets is distributed
into the low-rank part. Based on the analysis of this additional experiment, we find that
a satisfying setting of λ provides robust and outstanding performance in distinguishing
targets from the background.

(a) (b)

Figure 4. Low-rank part and sparse part with different settings of the tradeoff parameter λ. (a) Results
when λ is set properly. (b) Results when λ is set improperly.

It is not surprising that the optimal values of λ vary from each other for these
hyperspectral datasets. In order to figure out the optimal value for these five hyperspec-
tral datasets, we set the range of λ as {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. The detection
performances are evaluated through the AUC values, and the results with respect to λ are
shown in Figure 5. For the San Diego-I dataset, when parameter λ is relatively very small
(i.e., λ ≤ 10−2), the AUC values with respect to λ are basically unchanged. This can also be
found in all of the other hyperspectral datasets, except Los Angeles-I. Note that despite the
decrease in AUC values when λ is set to 10−1, DLcMD still yields satisfying performance
with AUC values higher than or close to 0.99. However, things are different when it comes
to the Los Angeles-I dataset. The AUC values stay unchanged with the increase in the value
of λ until it reaches a certain threshold value. The best detection result is obtained when λ
is set to be 10−2. Then, there is a fall after the value of λ increases to 10−1. The reason for
this may be the complexity of the background. We find that the background is simple in the
San Diego-I, San Diego-II, Los Angeles-II, and Texas Coast datasets but more complicated
in the Los Angeles-I dataset. HSIs with a simpler background tend to have a more compact
low-rank representation, and the separation is less sensitive to the tradeoff parameter λ.
The optimal setting of λ encourages better separation between the background and targets.
In this experiment, the optimal detection results for each of these five datasets are obtained
when the tradeoff parameter λ is set to 10−5, 10−5, 10−2, 10−3, and 10−4, respectively. For
simplicity purposes, parameter λ is set to be 10−2 for all of the five hyperspectral datasets,
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which will be directly used in the next subsection for comparison with other hyperspectral
target detectors.

(a) (b) (c)

(d) (e)

Figure 5. AUC values with respect to the positive tradeoff parameter λ. (a) San Diego−I; (b) San
Diego−II; (c) Los Angeles−I; (d) Los Angeles−II; (e) Texas Coast.

4.4. Detection Performance

In this subsection, we will compare our DLcMD detector with the state-of-the-art
for hyperspectral target detection. All of the datasets described in Section 4.1 are used
in this subsection. The ROC curves and AUC values are used to evaluate the detection
performance. Before conducting the experiment, we briefly introduce several detectors and
explain why we apply these detectors for comparison.

(1) ACE: It discards any structured background information and uses a statistical dis-
tribution to model the background. The likelihoods are taken as a ratio to yield a
GLRT-based detector. ACE is one of the powerful subpixel target detectors and has
been widely used in hyperspectral target detection.

(2) SMF: The same as ACE, the SMF detector assumes that the background and targets
share the same covariance matrix but different mean values. SMF finds a filter that
maximizes the SCR and is also a classical method for target detection in HSIs.

(3) MSD: In the matched subspace model, a binary hypothesis model is introduced to
determine the classification result of each sample. MSD shares the same form with
DLcMD but different distributions of Gaussian noise. Further, a numerical solution of
the abundance vector is obtained with fully constrained least squares (FCLS) [51].

(4) STD: This detector sparsely represents each pixel with a union dictionary consisting
of the background and target spectra. STD is a matrix decomposition-based detector
and is exploited here for comparison with our proposed DLcMD method.

(5) HSSD: This detector linearly represents each pixel sparsely, but with different dic-
tionaries under the two competing hypotheses. It assumes that the reconstruction
residuals under these two hypotheses obey the Gaussian distribution with the same
covariance structure but different variances, the same as our proposed detector.
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(6) BLTSC: Considering the insufficiency of a priori target spectra, this detector learns the
distribution of background samples derived by CEM, and the discrepancy between
the reconstructed spectra and the original ones is used to spot the target. The result is
reweighted to suppress the undesired background. BLTSC is a reconstruction-based
detector and is used here to show the effect of GLRT in our proposed method.

(7) DM-BDL: This detector is based on LRaSMD, and the dictionary learning strategy
is also exploited during the iteration, the same as our DLcMD. However, DM-BDL
learns the background dictionary while ours focuses on targets. It is compared with
our method to illustrate the advantage of DLcMD in dealing with spectral variability
in hyperspectral imagery.

Parameters are set to get the optimal detection performance for all of the eight hyper-
spectral target detectors. From the analysis in Section 4.3, we can find that our DLcMD
detector is insensitive to the setting of parameter λ when the background is not very
complicated, and λ is set to 10−2 for all of the datasets in our follow-up experiments. It is
noteworthy that the global ACE and global SMF rather than the local versions are adopted
in this experiment because the latter ones are labor intensive to search for the optimal
sizes of the concentric dual window, and the optimal results of local versions are less
satisfying than those of the former ones. The number of background dictionary atoms K for
MSD and DM-BDL are set to {3, 30, 4, 10, 30} and {20, 20, 20, 20, 20} in these five datasets,
respectively. The learning parameter γ is set to 20 for DM-BDL in all of the five datasets, as
suggested in [50]. As for STD and HSSD, the radii of the outer and inner rectangle windows
(Rout, Rin) are set to {(9, 8), (9, 8), (9, 8), (6, 5), (3, 2)} and {(9, 8), (8, 7), (9, 8), (6, 5), (3, 2)},
respectively. Coefficient t about the background purification in HSSD is set to {3, 1, 3, 1, 1},
after labor-intensively searching. All of the parameters in BLTSC remain the same, as
suggested in [49].

The detection map and ROC curves are illustrated in Figures 6 and 7; the corresponding
AUC values are listed in Table 1. Since the detection result ranges obtained from these
detectors vary from each other, all of the results are constricted to the range of 0 to 1 with
min-max normalization.

Table 1. AUC values of the five datasets.

Algorithms San Diego-I San Diego-II Los Angeles-I Los Angeles-II Texas Coast

ACE 0.8501 0.9806 0.8835 0.5341 0.9938
SMF 0.9389 0.9864 0.8213 0.5973 0.6492
MSD 0.9691 0.9926 0.9163 0.9806 0.9954
STD 0.8192 0.9720 0.7930 0.9543 0.9565

HSSD 0.9662 0.9948 0.9618 0.9878 0.9186
BLTSC 0.9865 0.9957 0.9445 0.9704 0.9747

DM-BDL 0.9752 0.9835 0.9600 0.9960 0.9970
DLcMD 0.9892 0.9968 0.9716 0.9966 0.9985

Qualitatively, as shown in Figure 6, ACE can hardly distinguish targets from the
background, especially in Los Angeles-I and Los Angeles-II datasets. In contrast, SMF,
MSD, and BLTSC can better highlight targets, but the detection results are contaminated
by the noise, which degrades the detection performance. It needs addressing that the
detection maps obtained by HSSD are almost zeros except for several pixels, which are
taken as the target dictionaries given in advance. Consequently, most of the target pixels are
shadowed by pixels that are relatively more similar to the target dictionary, and it is hard
to determine a thresholding value to tell the background and targets apart. STD shows a
competing advantage in highlighting targets when compared with SMF, and the detection
map is smoother than SMF at the same time. However, the background is also conspicuous,
which increases the difficulty of separating targets. In detection maps obtained by DM-
BDL and the proposed DLcMD, the targets show dramatically high contrast with the
background; targets can be clearly observed with the naked eye. However, the response of
several background pixels in DM-BDL is so strong that this may deteriorate the detection
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performance. In contrast, our DLcMD can suppress the background well. The reason for
this may be that the spectral variability is alleviated by updating the target dictionary in
each iteration, and thus, DLcMD can construct a more compact representation. Generally
speaking, DLcMD outperforms other detectors in highlighting targets while suppressing
the background.

Figure 6. Hyperspectral target detection map on the five datasets. (a) San Diego-I. (b) San Diego-II.
(c) Los Angeles-I. (d) Los Angeles-II. (e) Texas Coast.

For the San Diego-I dataset, ACE, SMF, and MSD can detect almost 33% of targets
without misclassifying any background pixels. However, the detection results are surpassed
by other detectors when the FPR reaches a certain value. STD shows the worst performance
among the detectors, as the ROC curve is lower than the others most of the time. DM-
BDL and HSSD are located at the bottom right of our DLcMD most of the time and have
lackluster performance. The TPR of BLTSC increases dramatically when FPR is greater than
10−3, which results in a high AUC value. However, DLcMD yields a lower false alarm rate
when detecting all of the target pixels, it thus obtains the highest AUC value among the
eight detectors as well, which is nearly 9% higher than the average value of the other seven
detectors, as illustrated in Table 1.

For the San Diego-II dataset, DLcMD can detect almost half of the targets when FPR
equals 0, and all of the target pixels are found with the lowest FPR. As the ROC curves of
these detectors cross each other, it is difficult to judge which one performs better than the
others. The AUC values in Table 1 also confirm that all of these detectors show inspiring
detection performances, yet DLcMD still yields a higher value than other detectors.

For the Los Angeles-I dataset, the ROC curve of DLcMD is located to the upper left of
the others most of the time, as shown in Figure 7c. HSSD and DM-BDL show competing
performances with DLcMD, whereas they require higher FPR to find all the target pixels in
the scene. The background is complicated in this dataset; thus the AUC values decrease
slightly for all of the detectors, including DLcMD. Furthermore, we can find that STD,
HSSD, and DM-BDL are based on SR theory, but they show an apparent difference in
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detecting targets. We think that the background dictionary purification procedure in HSSD
and DM-BDL help in better overcoming this problem.

(a) (b) (c)

(d) (e)

Figure 7. ROC curves of (Pd, Pf ) on the five datasets. (a) San Diego−I. (b) San Diego−II.
(c) Los Angeles−I. (d) Los Angeles−II. (e) Texas Coast.

For the Los Angeles-II dataset, DLcMD yields higher TPR when the FPR is fixed, as
shown in Figure 7d. However, ACE and SMF fail to detect the targets in the scene and
thus show the worst performances. It is obvious that all the detectors except for DM-BDL
and DLcMD can hardly distinguish all the targets from the background, as they require
higher FPR when the TPR reaches 1, which means that the targets are covered up by
the background.

For the Texas Coast dataset, DLcMD outperforms other detectors as its ROC curve
is closest to the upper left side, and DLcMD can detect all the targets with a lower false
alarm rate, as illustrated in Figure 7e. We can also find that SMF has the worst performance
in this dataset, as the ROC curve demonstrates that SMF loses some of the target pixels
even with high FPR. Nevertheless, the detectors, except for SMF, show expressive detection
performances, as listed in Table 1. Still, the proposed DLcMD yields the highest AUC value
among the eight detectors.

In a nutshell, the proposed DLcMD outperforms other state-of-the-art detectors in
these five hyperspectral datasets. The reason for this can be summarized as follows. First,
LRaSMD is utilized in DLcMD to separate targets from the background. Compared with
STD and HSSD, the proposed LRaSMD is more powerful in splitting the sparse portion
from the redundant background, and it is also less sensitive to the imbalanced amount of
target pixels and background pixels. A GLRT-based detector derived from a hypothesis
model that was specially designed for LRaSMD is introduced here to better address the
problem. Moreover, the dictionary learning theory is incorporated into LRaSMD. Spectral
variability deteriorates the detection performance, which is reflected in the other seven
hyperspectral target detectors. By exploiting the dictionary learning theory in DLcMD,
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we can obtain a more compact representation. The detection map in Figure 6 shows that
target pixels share almost the same response to the detector and have high contrast with
the background, which is beneficial when dividing the two parts from each other.

5. Conclusions

In this paper, a matrix decomposition-based detector named DLcMD is proposed for
hyperspectral target detection. Aiming to alleviate the negative impacts of spectral variabil-
ity and the imbalanced amount of training samples, we adopt the following strategies to
improve the detection performance. First, LRaSMD rather than SR is used to represent the
pixels because it is superior in separating the sparse part from the abundant background.
After that, a hypothesis model specially designed for LRaSMD is proposed, and then a
GLRT-based detector is derived for hyperspectral target detection. Last but not least, the
dictionary learning theory is introduced into DLcMD to alleviate the negative impact of
spectral variability and construct a more compact representation to better separate targets
from the background.

Extensive experiments are conducted on five widely used hyperspectral datasets to
verify the superiority of our DLcMD detector in hyperspectral target detection. There is
only one parameter in DLcMD that needs fine-tuning, which is an additional advantage
of the proposed target detector. Further, DLcMD is insensitive to this trade-off parameter
when the background is not very complicated, which indicates that DLcMD has the po-
tential to be applied in real scenes. Then, the proposed DLcMD is compared with seven
other hyperspectral target detectors. The detection results demonstrate the advantage
of DLcMD in alleviating the impact of spectral variability, as the detection map shows.
To quantitatively evaluate the performance, the ROC curves and AUC values are also
introduced in the experiment. The ROC curves of DLcMD are located on the upper left
side most of the time, and the AUC values are nearly 9%, 1%, 8%, 16%, and 8% higher
than the average values of the other seven detectors in five datasets, which reveals the
superiority of DLcMD for hyperspectral target detection. However, it should be mentioned
that the proposed detector is sensitive to the trade-off parameter when the background
is complicated. How to automatically decide the optimal parameters for the proposed
method will be the focus of our future work.
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