Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Mining Area Identification Based on LandTrendr
2.4. Quantifying ESV in Mining Area
2.5. Evaluation Procession of ECE in Mining Area
2.6. Exploring Trade-Offs and Synergies among Ecosystem Services
3. Results
3.1. Mining Area Identification Based on LandTrendr
3.2. Temporal and Spatial Characteristics of Land Use Types
3.3. The Overall Spatial–Temporal Variations in ECE
3.4. ECE Spatial Characteristics of Individual Ecosystem Service Functions
3.5. Exploring Trade-Offs and Synergies among Ecosystem Services
4. Discussion
4.1. Spatial and Temporal Changes in ECE
4.2. Spatiotemporal Trade-Offs and Synergies among Ecosystem Services
4.3. Mapping of ECE in Surface Mining Area
4.4. Limitations and Future Research Priorities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, W.; Chen, W.; Deng, X. Coupling and coordination of coal mining intensity and social-ecological resilience in China. Ecol. Indic. 2021, 131, 108167. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, J.; He, C.; Fang, X. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau. Resour. Conserv. Recycl. 2021, 173, 105730. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Cai, Q.; Zhou, W.; Shah, S.A.A. Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production. Resour. Policy 2021, 71, 102007. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, B.; Li, J.; Zhao, J. Temporal and spatial changes of land use and landscape in a coal mining area in Xilingol grassland. IOP Conf. Ser. Earth Environ. Sci. 2017, 52, 12052. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Qian, D.; Yan, C.; Xiu, L.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping annual land disturbance and reclamation in a surface coal mining region using google earth engine and the landtrendr algorithm: A case study of the shengli coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef]
- Höök, M.; Aleklett, K. Historical trends in American coal production and a possible future outlook. Int. J. Coal Geol. 2009, 78, 201–216. [Google Scholar] [CrossRef]
- Yuan, C.; Cui, H.; Wang, W.; Ma, S. Cause factors in emergency process of fire accidents for oil and gas storage and transportation systems based on ISM and AHP. J. Hazard. Toxic Radioact. Waste 2019, 23, 4018038. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.S. Fuzzy Comprehensive Evaluation Method for Electric Safety in Plants and Mines. Appl. Mech. Mater. 2010, 40–41, 398–403. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Y.; Reniers, G.; Liu, J. Analysis of the interaction mechanism of the risk factors of gas explosions in Chinese underground coal mines. Int. J. Environ. Res. Public Health 2022, 19, 1002. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, K.; Xiong, X.; Gao, F. Assessment of coal mining land subsidence by using an innovative comprehensive weighted cloud model combined with a PSR conceptual model. Environ. Sci. Pollut. Res. 2022, 29, 18665–18679. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, G.; Li, M.; Zhou, J.; Du, J.; Du, C.; Sun, Z. Influence of coal mining on regional karst groundwater system: A case study in West Mountain area of Taiyuan City, northern China. Environ. Earth Sci. 2011, 64, 1525–1535. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Feng, Y. Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach. Land Use Policy 2019, 86, 375–386. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Demirbugan, A. Changes in ecosystem service benefit in Soma lignite region of Turkey. Resour. Policy 2019, 64, 101522. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Yang, J.; Tang, Y. The increase in ecosystem services values of the sand dune succession in northeastern China. Heliyon 2019, 5, e02243. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, J.; Liang, J.; Wu, Y.; Yin, S.; Yang, Z.; Hu, Z. Quantitative evaluation of ecological cumulative effect in mining area using a pixel-based time series model of ecosystem service value. Ecol. Indic. 2021, 120, 106873. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martín-López, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.C.; López, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Häyhä, T.; Franzese, P.P.; Paletto, A.; Fath, B.D. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosyst. Serv. 2015, 14, 12–23. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Yao, X.; Yun, W.; Ma, J.; Gao, L.; Li, P. Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China. Land Use Policy 2022, 114, 105991. [Google Scholar] [CrossRef]
- Gissi, E.; Manea, E.; Mazaris, A.D.; Fraschetti, S.; Almpanidou, V.; Bevilacqua, S.; Coll, M.; Guarnieri, G.; Lloret-Lloret, E.; Pascual, M. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 2021, 755, 142564. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Dun, Y.; Wang, J.; Bai, Z.; Chen, X.; Guo, Y. Changes in Pingshuo opencast mining area ecosystem service values based on grey prediction modeling. Resour. Sci. 2015, 37, 494. [Google Scholar]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Azar, D.; Engstrom, R.; Graesser, J.; Comenetz, J. Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data. Remote Sens. Environ. 2013, 130, 219–232. [Google Scholar] [CrossRef]
- Grech, A.; Pressey, R.L.; Day, J.C. Coal, cumulative impacts, and the Great Barrier Reef. Conserv. Lett. 2016, 9, 200–207. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Jain, A.; Nandakumar, K.; Ross, A. Score normalization in multimodal biometric systems. Pattern Recognit. 2005, 38, 2270–2285. [Google Scholar] [CrossRef]
- Zhao, M.; Peng, J.; Liu, Y.; Li, T.; Wang, Y. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecol. Econ. 2018, 152, 106–117. [Google Scholar] [CrossRef]
- Alarcon, G.G.; Ayanu, Y.; Fantini, A.C.; Farley, J.; Schmitt Filho, A.; Koellner, T. Weakening the Brazilian legislation for forest conservation has severe impacts for ecosystem services in the Atlantic Southern Forest. Land Use Policy 2015, 47, 1–11. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, Z.; Yang, K.; Guo, J.; Li, P.; Li, G.; Fu, Y. Assessment of the Ecological Impacts of Coal Mining and Restoration in Alpine Areas: A Case Study of the Muli Coalfield on the Qinghai-Tibet Plateau. IEEE Access 2021, 9, 162919–162934. [Google Scholar] [CrossRef]
- Weiqi, L.; Guangzhou, C. Evolution of ecosystem service value and ecological storage estimation in huainan coal mining area. Bull. Environ. Contam. Toxicol. 2021, 107, 1243–1249. [Google Scholar] [CrossRef]
- Cortés-Calderón, S.; Mora, F.; Arreola-Villa, F.; Balvanera, P. Ecosystem services supply and interactions along secondary tropical dry forests succession. For. Ecol. Manag. 2021, 482, 118858. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Yu, C.; Luo, L.; Pan, Y. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J. Environ. Manag. 2017, 193, 70–78. [Google Scholar] [CrossRef]
- Tan, W.; Liu, P.; Liu, Y.; Yang, S.; Feng, S. A 30-year assessment of phytoplankton blooms in Erhai Lake using Landsat imagery: 1987 to 2016. Remote Sens. 2017, 9, 1265. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.; Zhang, S.; Huang, W.; Chen, P.; Chen, Y.; Xi, Z.; Yuan, Y.; Wang, K. Fluorine in Chinese coal: A review of distribution, abundance, modes of occurrence, genetic factors and environmental effects. Minerals 2017, 7, 219. [Google Scholar] [CrossRef] [Green Version]
Ecosystem Service | Farmland | Forestland | Grassland | Farmland after Reclamation | Forestland after Reclamation | Grassland after Reclamation | Water |
---|---|---|---|---|---|---|---|
Soil formation and protection | 301.3 | 804.9 | 402.5 | 198.5 | 530.3 | 265.2 | 0 |
Water conservation | 640.8 | 3417.9 | 854.5 | 422.1 | 2251.9 | 563.0 | 21,766.2 |
Biodiversity maintenance | 703.9 | 3232.2 | 1080.7 | 436.8 | 2129.5 | 712.0 | 2468.8 |
Climate regulation | 1839.5 | 5580.7 | 1860.3 | 1211.9 | 3676.8 | 1225.6 | 950.7 |
Food production | 1139.1 | 119.3 | 357.9 | 750.5 | 78.6 | 235.8 | 113.9 |
Year | 1986 | 1991 | 1996 | 2001 | 2006 | 2011 | 2016 | 2021 |
---|---|---|---|---|---|---|---|---|
Overall accuracy/% | 82% | 84% | 83% | 85% | 82% | 87% | 91% | 95% |
Kappa coefficient | 0.78 | 0.80 | 0.79 | 0.82 | 0.78 | 0.83 | 0.88 | 0.93 |
ECE | NA | DA | RA | Study Area |
---|---|---|---|---|
Ideal | 1847.69 | 750.11 | 680.01 | 3277.81 |
Real | 1983.32 | 587.47 | 578.24 | 3149.03 |
Effect | 135.63 | −162.64 | −101.77 | −128.78 |
ECE | NA | DA | RA | Study Area | |
---|---|---|---|---|---|
SP | Ideal | 162.93 | 66.04 | 59.53 | 288.50 |
Real | 165.27 | 50.28 | 47.45 | 263.00 | |
Effect | 2.34 | −15.76 | −12.08 | −25.50 | |
WC | Ideal | 345.95 | 140.27 | 126.62 | 612.84 |
Real | 356.62 | 109.80 | 110.87 | 577.29 | |
Effect | 10.67 | −30.47 | −15.75 | −35.55 | |
BM | Ideal | 437.20 | 177.15 | 159.49 | 773.84 |
Real | 438.45 | 134.28 | 130.41 | 703.14 | |
Effect | 1.25 | −42.87 | −29.08 | −70.70 | |
CR | Ideal | 754.33 | 306.20 | 277.46 | 1337.99 |
Real | 806.29 | 238.20 | 235.59 | 1280.08 | |
Effect | 51.96 | −68.00 | −41.87 | −57.91 | |
FP | Ideal | 147.27 | 60.43 | 56.89 | 264.59 |
Real | 216.66 | 54.90 | 53.91 | 325.47 | |
Effect | 69.39 | −5.53 | −2.98 | 60.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Mu, Y.; Zhang, W.; Wang, W.; Liu, J.; Peng, J.; Liu, X.; He, T. Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine. Remote Sens. 2022, 14, 4381. https://doi.org/10.3390/rs14174381
Yang W, Mu Y, Zhang W, Wang W, Liu J, Peng J, Liu X, He T. Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine. Remote Sensing. 2022; 14(17):4381. https://doi.org/10.3390/rs14174381
Chicago/Turabian StyleYang, Wenfu, Yao Mu, Wenkai Zhang, Wenwen Wang, Jin Liu, Junhuan Peng, Xiaosong Liu, and Tingting He. 2022. "Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine" Remote Sensing 14, no. 17: 4381. https://doi.org/10.3390/rs14174381
APA StyleYang, W., Mu, Y., Zhang, W., Wang, W., Liu, J., Peng, J., Liu, X., & He, T. (2022). Assessment of Ecological Cumulative Effect due to Mining Disturbance Using Google Earth Engine. Remote Sensing, 14(17), 4381. https://doi.org/10.3390/rs14174381