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Abstract: The gas plume is a direct manifestation of sea cold seep and one of the most significant
symbol indicators of the presence of gas hydrate reservoirs. The multibeam water column (MWC)
data can be used to extract and identify the gas plume efficiently and accurately. The current
research methods mostly start from the perspective of image theory, which cannot identify the three-
dimensional (3D) spatial structure features of gas plumes, reducing the efficiency and accuracy of
detection. Therefore, this paper proposes a method for identifying and extracting the gas plume based
on an MWC point cloud model, which calculates the spatially resolved homing of MWC data and
constructs a 3D point cloud model of MWC containing acoustic reflection intensity information. It first
performs noise suppression of the 3D point cloud of the MWC based on the symmetric subtraction
and Otsu algorithm by leveraging the noise distribution of the MWC and the reflection intensity
characteristics of the gas plume. Then, it extracts the point cloud clusters containing the gas plume
based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN) according to the
density difference between the gas plume point cloud and the background MWC point cloud and
next identifies the point cloud clusters by feature matching based on fast point feature histograms
(FPFHs). Finally, it extracts the gas plume point cloud set in the MWC. As evidenced by the MWC
data collected from gas hydrate enrichment zones in the Gulf of Mexico, the location of gas plume
extracted by this method is highly consistent with that of gas leakage points measured during the
cruise. Using this method, we obtained the point cloud data set of gas plume for the first time and
accurately characterized the 3D spatial morphology of the subsea gas plume, providing technical
support for gas hydrate exploration, subsea gas seepage area delineation, and subsea seepage gas
flux estimation.

Keywords: multibeam; water column; point cloud; gas plume

1. Introduction

Seabed gas seepage is a natural phenomenon widely distributed in the global marine
environment [1–3], which is typically methane gas produced by the escape of gasification
from seabed gas hydrates after state instability [4,5]. The seeping methane gas forms bubble
plumes that develop in regional aggregations and spill upward from the seafloor, and the
escaping gases are mainly greenhouse gases (e.g., CH4, CO2, etc.), which may affect global
climate change when escaping into the atmosphere [6]. Meanwhile, seafloor gas leakage is
also one of the remarkable markers for the identification of gas hydrate formation zones [7].

With the rapid development of ocean exploration technology, the means for seafloor
plume detection are becoming more abundant, and the information processing is moving
toward multi-source integration. The seafloor gas plume can be observed in an all-round
manner by a variety of means such as a sub-bottom profiler, multi-channel seismic ex-
ploration, in situ observation, geological sampling, and multi-beam echo sounder system
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(MBES) [8]. The sub-bottom profiler and multi-channel seismic exploration help to identify
anomalous areas of plume seepage by acquiring sedimentary stratigraphic features, but
their detection range is limited to a narrow area from the survey vessel route to the seafloor
projection, with a low detection efficiency and coverage [9,10]. The new generation of
devices that rely on multiple sensors, such as the Innomar SES2000 Quattro or Sixpack,
improve the data density of shallow water measurements and can generate 3D palaeo-
horizons below the seabed. In situ seafloor observation and geological sampling provide
crucial data support for the detection of seafloor plumes by directly acquiring acoustic
and optical data and geological samples from the target area with high accuracy, but they
are limited by the high cost of detection and the difficulty of directly tracing gas seepage
points on the seafloor [11]. MBES, characterized by the advantages of a large measurement
range, high speed, and high accuracy, has made its traditional version widely available for
subsea topographic surveys. With the continuous development of the multibeam system,
the backscatter data of MWC and the seafloor can also be collected simultaneously in topog-
raphy measurement (Figure 1), and MWC detection has the advantages of high coverage,
high accuracy, and low cost to become a new choice for seafloor gas plume detection and
identification [7,12,13].
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The modern MBES is a large integrated system that contains several subsystems with
different functions [7,14]. It uses transmitting transducer arrays to send fan-shaped acoustic
pulses to the seafloor, and when the sent acoustic waves reach the seafloor through the
MWC, receiving transducer arrays receive acoustic pulses and perform beam synthesis.
The backscattered acoustic signal is often described by the sonar equation as follows:

EL = SL− 2TL + TS (1)

where EL (energy level) is the source level accepted at the multibeam receiver, SL (source
level) is the transmitting transducer source level, TL (transmission loss) is the transmis-
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sion loss accounting for both spreading and absorption, and TS (target strength) is the
target strength of the scatterer [7,15]. The obtained water scattering information is able to
generate a two-dimensional spatial cross-sectional water column image (WCI) within a
single ping [14,16,17]. In the process of multibeam data acquisition, the continuous ping
beams launched along the track direction contribute to the construction of a 3D space
of the seafloor MWC [13,16] for high-precision and high-resolution 3D observation and
analysis of fisheries [18,19], gas emission [20,21], and suspended sediment [22,23] in the
MWC. Plume detection, identification, and extraction based on MWC data is currently a
hot research topic, and previous authors have mostly analyzed and studied MWC data
from the perspective of WCI. The leakage of plume gas in MWC can be detected using WCI,
and the methane gas flux at high backscattering flares can be estimated by combining in
situ observation and visualization data [20]. Related scholars have achieved plume extrac-
tion and recognition within single ping water images from an imaging perspective using
various methods such as mask denoising [12], edge detection [24], and deep learning [25].
The images of many factors, such as vessels, suspended matter, signal loss, and sidelobes,
during MWC data acquisition lead to the low efficiency and high complexity of gas plume
extraction based on image classification and detection angles [26,27].

In the field of surveying and mapping, by means of laser measurement and pho-
togrammetry, the 3D coordinates (XYZ), laser reflection intensity (intensity), and color
information (RGB) of each sampled point on the surface of the object under test can be
obtained, leading to a collection of points called the “point cloud” [28,29]. The point cloud
model is a geometric model with discrete sampling points as primitives, which is a natural
representation of the 3D geometric model. The simple data structure and compact storage
space of the point cloud model [30] allow for direct representation and processing of op-
tical scan data, and the streamlined and compact data structure allows for the ability to
express rich surface detail in 3D geometric models, as no connection topology information
needs to be maintained [31,32]. Point cloud datasets are widely used as transitional data
models for land and ocean remote sensing [33] and can be combined with geographic
information systems (GISs) for analysis, object detection, and 3D modeling [34]. Similar to
laser measurements, the bathymetric points obtained from multibeam seafloor topography
measurements can be considered as a presentation of 3D point clouds [35,36], and the MBES
seafloor topography point cloud data can be used for automatic noise suppression [37] and
3D reconstruction of the seafloor and objects [33]. The high-resolution MWC data obtained
by sampling MWC at intervals according to the beam are a record of the acoustic scattering
information of the whole MWC from the transducer to the seafloor. By analyzing the data,
we can obtain the location, time, reflection intensity, and other information of the sampling
point, and it can also be regarded as 3D point cloud data after processing, transformation,
and modeling. The 3D geometric information added by the water point cloud model can
make up for the sparse sampling points in WCIs and improve the recognition effect of
targets in water. However, the MWC point cloud data, which can reflect the morphology of
the target in MWC, is also more challenging for the identification and extraction of MWC
targets due to its huge amount of sampling points and the presence of more noise.

To extract and identify the seafloor plume, this paper performs spatial homing calcula-
tion and other pre-processing for it using the MWC data based on the MWC data features
and transforms it into an MWC 3D field point cloud to achieve the point cloud separation
and identification of the plume in the MWC, with the feature extraction of the MWC plume
based on the 3D point cloud model. Compared with the extraction and recognition meth-
ods, from the perspective of imaging, the point cloud model-based extraction of the MWC
gas plume can take full advantage of the point cloud data processing to retain more details
of the MWC features, more conducive to the rejection of noise signals and the identification
of valid MWC targets. The 3D MWC point cloud data model can better help extract the
complete geometry of the plume, with higher accuracy and extraction efficiency.
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2. Materials and Methods

To achieve the target detection and extraction of the seafloor plume, an overall process
is developed as shown in Figure 2. Firstly, the raw multibeam data is parsed to construct a
3D spatial point cloud. Then, the symmetric subtraction and the between-class variance
algorithm (Otsu) are employed for MWC noise suppression, and the plume candidate
target point cloud is extracted based on the clustering algorithm. Next, the plume feature
points are extracted to cluster the candidate target point cloud for feature detection, and
finally the target is output to achieve the identification and extraction of the submarine gas
plume detected by multibeam.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 27 
 

 

recognition methods, from the perspective of imaging, the point cloud model-based ex-
traction of the MWC gas plume can take full advantage of the point cloud data processing 
to retain more details of the MWC features, more conducive to the rejection of noise sig-
nals and the identification of valid MWC targets. The 3D MWC point cloud data model 
can better help extract the complete geometry of the plume, with higher accuracy and 
extraction efficiency. 

2. Materials and Methods 
To achieve the target detection and extraction of the seafloor plume, an overall pro-

cess is developed as shown in Figure 2. Firstly, the raw multibeam data is parsed to con-
struct a 3D spatial point cloud. Then, the symmetric subtraction and the between-class 
variance algorithm (Otsu) are employed for MWC noise suppression, and the plume can-
didate target point cloud is extracted based on the clustering algorithm. Next, the plume 
feature points are extracted to cluster the candidate target point cloud for feature detec-
tion, and finally the target is output to achieve the identification and extraction of the 
submarine gas plume detected by multibeam. 

 
Figure 2. Methodology of this paper. 

2.1. Multibeam Data Analysis and MWC Point Cloud Data Location Calculation 
MBES for water column imaging has been applied in fishery, physical ocean, and 

other fields. ELAC Nautik’s Sea Beam deep-water MBES has been widely used, with 
MWC data used for fish spatial distribution, biomass estimation [38], and bubble detec-
tion [20]; Teledyne's third-generation full bathymetric multibeam system Hydro Sweep 
DSWCI is equipped with a WCI application—HYDROSTAR WCI Viewer, for online de-
tection of water column targets [39]; and Kongsberg’s EM series deep-water MBES enable 
a wide range of applications in gas [12,40,41], wreck detection, and fisheries [42]. This 
article will introduce the multibeam data storage format based on a case study of Kongs-
berg’s EM series multibeam. 

EM series multibeam raw data storage consists of three parts: system parameter mod-
ule, multibeam data acquisition module, and each external sensor output module. The 
data are stored in mixed ASCII and binary encoding and split into .all files for bathymetric 
topographic data, sonar images and system parameters, and .wcd files for MWC data and 
system parameters. The compatibility module and the file storage module have been added 
for the storage of its raw data. The following table shows the new EM series high-resolution 
multibeam datagrams .kmall format processing unit output datagrams (Table 1). 

Figure 2. Methodology of this paper.

2.1. Multibeam Data Analysis and MWC Point Cloud Data Location Calculation

MBES for water column imaging has been applied in fishery, physical ocean, and
other fields. ELAC Nautik’s Sea Beam deep-water MBES has been widely used, with MWC
data used for fish spatial distribution, biomass estimation [38], and bubble detection [20];
Teledyne’s third-generation full bathymetric multibeam system Hydro Sweep DSWCI is
equipped with a WCI application—HYDROSTAR WCI Viewer, for online detection of
water column targets [39]; and Kongsberg’s EM series deep-water MBES enable a wide
range of applications in gas [12,40,41], wreck detection, and fisheries [42]. This article will
introduce the multibeam data storage format based on a case study of Kongsberg’s EM
series multibeam.

EM series multibeam raw data storage consists of three parts: system parameter
module, multibeam data acquisition module, and each external sensor output module. The
data are stored in mixed ASCII and binary encoding and split into .all files for bathymetric
topographic data, sonar images and system parameters, and .wcd files for MWC data and
system parameters. The compatibility module and the file storage module have been added
for the storage of its raw data. The following table shows the new EM series high-resolution
multibeam datagrams .kmall format processing unit output datagrams (Table 1).

The water backscattering intensity and other data in the MWC datagram are sampled
and stored at equal time intervals. It records the backscattering intensity data of a certain
area from the seabed to the sea surface with the position of the transducer as the center
and the distance from the edge beam to the transducer as the radius. The datagram also
records the transmitting angle of each ping data beam, sampling frequency, the number of
the sampling point at the beginning of each beam, and the number of the sampling point at
the seafloor detected by each beam (0 for absence).
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Table 1. EM datagrams on.kmall format.

Output Datagrams Datagram Type Code Description

Installation and runtime
datagrams

#IIP Installation parameters and sensor setup
#IOP Runtime parameters as chosen by operator
#IBE Built in test (BIST) error report
#IBR Built in test (BIST) reply
#IBS Built in test (BIST) short reply

Multibeam datagrams #MRZ Multibeam (M) raw range (R) and depth (Z) datagram
#MWC Multibeam (M) water (W) column (C) datagram

External sensor output
datagrams

#SPO Sensor (S) data for position (PO)
#SKM Sensor (S) KM binary sensor format
#SVP Sensor (S) data from sound velocity (V) profile (P) or CTD
#SCL Sensor (S) data from clock (CL)
#SDE Sensor (S) data from depth (DE) sensor
#SHI Sensor (S) data for height (HI)
#SVT Sensor (S) data for sound velocity (V) at transducer (T)

Compatibility datagrams #CPO Compatibility (C) data for position (PO)
#CHE Compatibility (C) data for heave (HE)

File datagrams #FCF Backscatter calibration (C) file (F) datagram

The process of spatial resolution and homing calculation of the MWC sampling point
data is shown in Figure 3.
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The equation for the spatial homing of MWC sampling points is as follows:

1. Calculate the distance between the water sampling point and the transducer:

L = (idx + Num)× c/(2 · f ) (2)

2. Calculate the water backscattering intensity sampling point along the ship transverse
position and water depth:

Y = −L× cos(α) (3)
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X = −L× sin(α) (4)

After obtaining the relative coordinates of the MWC backscattered intensity sampling
point in steps 1 and 2, the azimuth angle of the beam in the projection coordinates can
be calculated, and the absolute coordinates of the MWC backscattered intensity sampling
point can be obtained based on the projection coordinates of each ping data transducer.

3. Calculate the beam azimuth:

β = −mod(P_Head + P_Con + offset, 360) (5)

4. Calculate the projection coordinates of water sampling points:

East = P_East + X× cos α (6)

North = P_North + X× sin α (7)

where L represents the distance between the water sampling point and transducer;
idx represents the number of the sampling point of each column receiving beam echo;
Num represents the number of the sampling point at the beginning of the receiv-
ing beam of each column; c represents the sound speed; f represents the sampling
frequency; X and Y represent the transverse position and water depth of the backscat-
tering intensity sampling point along the ship; α represents the beam emission angle;
β represents the beam azimuth; P_prc represents the projection coordinates (P_ East,
P_ North), heading (P_ Head), and meridian convergence Angle (P_ Con) for each ping
data acquisition; Offset represents the installation angle of the transducer; (East, North)
represents the projection coordinates of water sampling points. Single ping WCI of
time-Angle (T-A) and Depth Acrosstrack (D-A) vertical tracks can be generated after
analyzing and calculating the data stored in the data packets of external sensors and
MWC [42], as shown in Figure 4.

• Time-Angle (T-A) Track Space (Figure 4a): The original point data recorded by
MBES. The horizontal axis is marked as the beam number, indicating the beam
transmission angle, and the vertical axis represents the sampling sequence. In
this display, the bottom is displayed in a near-parabolic shape, and because the
beam in the edge direction has its beam footprint significantly widened, the
bottom echo signal obtained in that direction is not obvious in its bottom region
and presents a widening of the bottom region on the image.

• Depth-Acrosstrack (D-A) Track Space (Figure 4b): The point data after spatial
homing. By converting the polar coordinate position of the water sampling point
into the absolute coordinate position, the underwater image environment of the
water information can be restored more truly.

Cartesian coordinate transformation was carried out for each ping sampling point in
the MWC data, and all ping sampling points were reconstructed in space to complete the
initial construction of the MWC point cloud space (Figure 4c).

2.2. MWC Noise Suppression
2.2.1. Symmetric Subtraction

MWC point cloud data is huge and contains a large amount of background noise with
high values of backward reflection intensity, which is from the diverse sources it contains
and is similar to the reflection intensity of the plume [41,43]:

• Noise caused by ships and transducers in MWC will cause an increase in the intensity
of acoustic scattering from the surface MWC, which is found in the MWC data within
very narrow limits and generally has little impact on the extraction of anomalous
targets in MWC.
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• A large amount of noise in MWC data is caused by the marine environment, including
turbulence, scattering of suspended matters, microbubbles, zooplankton, and other
reasons in water, mainly distributed in the strong backscattering layer structure hori-
zontally distributed in the subsurface of seawater, which has a significant influence on
the extraction and detection of objects.

• When there is a target with a high scattering intensity or significant changes in seafloor
fluctuation, the transmitting beam sidelobe generates noise in WCI with an uncertain
location, which is recorded by single or multiple echo sequences in the same time
adjacent to each other and presented in the MWC image as a high-brightness arc-like
strip. This background noise has strong regularity, which is usually symmetrical with
the axis of the central beam [44].
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Additionally, the scattering intensity of the sampling points within the MWC data is
roughly normally distributed. Since the direct performance of recognition and extraction
is computationally intensive, of low efficiency, and prone to recognition errors, noise
suppression of the MWC data is required first. According to the symmetric distribution
characteristics of noise, the MWC data is demarcated by the central beam for symmetric
subtraction after spatial homing to suppress the noise initially for the above noise types, as
shown in Figure 5.
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Figure 5. Comparison of symmetric subtraction results for single-ping MWC data. Figures (a) and
(b) show the original single ping D-A spatial MWC images after the resolution of the MWC data,
where the plume appears in the central beam position, and the noise in the upper part of the image is
large and symmetrical, and the reflection intensity is similar to that of the plume, which is difficult to
distinguish. (a’,b’) are the WCIs of the two pings after symmetric subtraction, showing that the noise
in the upper part of the image is restored to normal, with the intensity of the plume reflection clearly
distinguished from that of the background reflection.

2.2.2. Background Point Cloud Removal

Large areas of regular noise within the MWC data return to normal after symmetric
subtraction, and a small number of sample point locations with high values of reflection
intensity are either targets to be identified or discrete irregular noise points (Figure 6b).
At this point, it is necessary to select a reasonable threshold using the Otsu algorithm to
segment the background point cloud with a normal reflection intensity of MWC from the
point cloud of sites with abnormally high reflection intensity values (Figure 6c).

The Otsu algorithm, also known as the maximum between-cluster variance method,
was proposed by the Japanese scholar Otsu in 1979 as an adaptive threshold determination
method [45]. The algorithm assumes that the image pixel can be divided into the back-
ground and target according to the threshold. Then, the optimal threshold is calculated to
distinguish the two types of pixels to maximize the distinction between the two types of
pixels.

The calculation is as follows:

1. The intensity value of an image is in the range [0, L-1]; then, the threshold k is also in
that range so that the threshold k is taken for each intensity value in the range.

2. Calculate the between-cluster variance for each threshold.
3. Calculate the global optimal segmentation threshold, which is equal to the threshold

k that maximizes the variance between clusters; take the mean value in case of more
than one threshold.

The results of the Otsu algorithm segmentation are shown in Figure 6.
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The Otsu algorithm, also known as the maximum between-cluster variance method, 
was proposed by the Japanese scholar Otsu in 1979 as an adaptive threshold determina-
tion method [45]. The algorithm assumes that the image pixel can be divided into the 
background and target according to the threshold. Then, the optimal threshold is calcu-
lated to distinguish the two types of pixels to maximize the distinction between the two 
types of pixels. 

Figure 6. Comparison of the histogram results of the MWC point cloud and sampling point scattering
intensity before and after calculation. (a) The point cloud image after spatial homing after raw
MWC data resolution, where the point cloud is attached with the scattering intensity, and a lot of
MWC noise with high scattering intensity values is found in MWC; (b) An MWC point cloud image
after symmetric subtraction, where the noise is restored to normal in large; (c) The image with the
background point cloud removed by Otsu algorithm, where the plume target in the MWC is exposed,
and there is still a small amount of unregulated noise in MWC; (d) A histogram of the scattering
intensity of the raw MWC data, where the amount of data at the water sampling points is huge,
and the reflected intensity values at the sampling points have a negatively skewed distribution;
(e) A histogram of the scattering intensity of the MWC data after symmetric subtraction, where the
scattering intensity of the sampling points has a standard normal distribution, and the amount of
data at the sampling points with high scattering intensity decreases while the peak increases; (f) A
histogram of the scattering intensity of the MWC data after the Otsu algorithm, where the data at the
sampling points is significantly reduced, and the reflection intensity values at the sampling points
have a double-peaked structure.

2.3. Candidate Target Point Cloud Extraction

The segmented field point cloud shows that the plume appears in a high density and
small area in space, and the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm contributes to distinguishing the noise and clustering in the spatial
point cloud and extracting them for storage separately [46,47]. The definitions involved in
this algorithm are as follows (Figure 7):
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• ε-neighborhood (circles): The area within the scan radius (Eps) for a given object.
• Core object (red dot): A point is called a core object if it has no less than the minimum

number of contained points (MinPts) in the Eps neighborhood.
• Directly density-reachable (green dot to red dot): For a given dataset D, an object p is

said to be directly reachable from object q if point p lies within the Eps neighborhood
of point q and q is the core object.

• Density-reachable: A point p is density-reachable from a point q if there is a chain
of points p1, . . . . . . , pi, . . . . . . , pn, p1 = p, pn = q, such that each pi + 1 is directly
density-reachable from pi.

• Density-connected (yellow dots): A point p is density-connected to a point q if there is
a point O such that both p and q are density reachable from O.
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Figure 7. Key definition of DBSCAN. (a) Points (green dots) in the ε-neighborhood (circles) are
density-reachable from core points (red dot); (b) density-connectivity (yellow dots). Adapted with
permission from ref. [48]. Copyright 2012 Copyright Cui.

The calculation is as follows:

1. Select an appropriate neighborhood value ε and density threshold MinPts according
to the characteristics of the data set and mark all data points as unprocessed.

2. Randomly select a point P and count the points in the ε-neighborhood of P. If it is
greater than or equal to MinPts, mark P as a core point and create a new category.
Using P as the starting point, find the points connected to the density of P, and find
the maximum set of density connected points. If it is less than MinPts, mark P as a
noise point.

3. Select another point in the dataset and repeat step 2 until all points are marked as processed.

2.4. Plume Target Point Cloud Detection
2.4.1. Model Point Cloud Feature Point Extraction

The actual seafloor plume collected in the National Oceanic and Atmospheric Admin-
istration (NOAA) NA080 cruise 2017 in the U.S. Cascadia margin from the open data set
of MWC data is used as the model point cloud for this experiment to extract features and
learn the plume target detection on the MWC data. Point cloud feature points are those
in the point cloud with certain stability and differentiation, and the model point cloud is
extracted with feature points for the next step of feature matching. The intrinsic shape
signature (ISS) is a feature point extraction method that represents the solid geometric
shapes of point clouds. It represents the degree of point identity using the relationship
between eigenvalues by calculating the eigenvalue decomposition (EVD) of the scatter
matrix of all points in the spherical region [49,50]. The calculation is as follows:

1. Create a coordinate system for each point pi and set the radius r.
2. Calculate the Euclidean distance weights for all points pj in a spherical region:

wij =
1

‖ pi − pj ‖
,
∣∣pi − pj

∣∣ < r (8)
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3. Calculate the covariance array for each point:

cov(pi) =

∑
‖pi−pj‖<r

wij
(

pi − pj
)(

pi − pj
)T

∑
‖pi−pi‖<r

wij
(9)

4. Calculate the eigenvalues
{

λ1
i , λ2

i , λ3
i
}

of each point cov(pi) and rank the eigenvalues
from largest to smallest.

5. Set the threshold ε1 and ε2, and the point satisfying the following conditions is the ISS
feature point:

λ2
i

λ1
i
6 ε1,

λ3
i

λ2
i
6 ε2 (10)

where pi represents the point picked by the algorithm, pj represents all points in
the spherical region calculated by pi, r represents the spherical region search ra-
dius, wij represents the Euclidean distance of all points in the spherical region,{

λ1
i , λ2

i , λ3
i
}

are the eigenvalues of the points, and ε1 and ε2 are the thresholds of
the ISS feature points.

After the DBSCAN algorithm, the results are shown in Figure 8.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 27 
 

 

3. Select another point in the dataset and repeat step 2 until all points are marked as 
processed. 
After the DBSCAN algorithm, the results are shown in Figure 8. 

 
Figure 8. Comparison of the DBSCAN calculation results. (a) shows the 2D image of the original 
point cloud mapped to the XOY domain, and (b) shows the 2D image results of the point cloud 
mapped to the XOY domain after calculation, with the large blue dots being the identified noise 
points in the MWC, and the detection of three high-density regions clustered with different color 
markings; (c) shows the original spatial point cloud, and (d) shows the point cloud results after 
calculation, in which the identified noisy points are removed, and it can be seen that only three high-
density, small-area candidate point cloud clusters remain in the MWC after denoising, and they are 
extracted and stored separately as candidate target point clouds for the next step of target detection. 

2.4. Plume Target Point Cloud Detection 
2.4.1. Model Point Cloud Feature Point Extraction 

The actual seafloor plume collected in the National Oceanic and Atmospheric Ad-
ministration (NOAA) NA080 cruise 2017 in the U.S. Cascadia margin from the open data 
set of MWC data is used as the model point cloud for this experiment to extract features 
and learn the plume target detection on the MWC data. Point cloud feature points are 
those in the point cloud with certain stability and differentiation, and the model point 
cloud is extracted with feature points for the next step of feature matching. The intrinsic 
shape signature (ISS) is a feature point extraction method that represents the solid geo-
metric shapes of point clouds. It represents the degree of point identity using the relation-
ship between eigenvalues by calculating the eigenvalue decomposition (EVD) of the scat-
ter matrix of all points in the spherical region [49,50]. The calculation is as follows: 
1. Create a coordinate system for each point pi and set the radius r. 
2. Calculate the Euclidean distance weights for all points pj in a spherical region: 

Figure 8. Comparison of the DBSCAN calculation results. (a) shows the 2D image of the original
point cloud mapped to the XOY domain, and (b) shows the 2D image results of the point cloud
mapped to the XOY domain after calculation, with the large blue dots being the identified noise points
in the MWC, and the detection of three high-density regions clustered with different color markings;
(c) shows the original spatial point cloud, and (d) shows the point cloud results after calculation,
in which the identified noisy points are removed, and it can be seen that only three high-density,
small-area candidate point cloud clusters remain in the MWC after denoising, and they are extracted
and stored separately as candidate target point clouds for the next step of target detection.
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2.4.2. Target Point Cloud Recognition Based on FPFH Features

The overall geometric characterization of the point cloud can be achieved using the
point cloud feature points for their neighborhood feature calculation. The fast point feature
histogram (FPFH) is a simplified form of the point feature histogram (PFH) computational
approach, which is to parameterize the spatial differences between query points and neigh-
boring points and form a multidimensional histogram to describe the geometric properties
in the k-neighborhood of a point (Figure 9a). Instead of computing the combination of all
adjacent points, FPFH simplifies its computational complexity by computing the simplified
point feature histogram (SPFH) for each point in the k-neighborhood of the query point, and
then weighting all the SPFHs into the final fast point feature histogram [51,52] (Figure 9b).
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Figure 9. Schematic diagram of PFH and the FPFH calculation area. (a) is the calculation area map
of PFH, where the query point (red) is fully interconnected with its K neighbors (purple) in the
neighborhood; (b) is the calculation area map of FPFH, where the query point (red) is connected only
to its immediate K-neighbor (circled in gray); the direct K-neighbor point is connected with its own
K-neighbor point, and the histogram obtained is weighted with the histogram of the query point to
form FPFH. Adapted with permission from ref. [51]. Copyright 2009 Copyright Rusu.

The calculation is shown as follows:

1. By establishing a local coordinate system to calculate the relative relationship between
two points pt and ps in the k-neighborhood, a local coordinate system with u, v, and
w as axes is created with nt and ns as the corresponding normal vectors, and ps as the
coordinate origin. The calculation is as follows:

u = ns

v = u× (pt−ps)
‖pt−ps‖2

w = u× v

(11)

2. Compute the angular variations of nt and ns as follows:

α = v · nt

φ = u · (pt−ps)
d

θ = arctan(w · nt, u · nt)

(12)

where D represents the Euclidean distance between two points. By calculating the
(a, φ, θ, d) quaternions for each point pair in the neighborhood, it is possible to reduce
the coordinate information of the two points and their normal vectors associated
with 12 parameters (xyz coordinate values and the corresponding normal vector
components) to four. This results in a relative relationship between two points that
can be used to describe surface features.

3. At the end of the calculation, the quadratic parameters between all point pairs are
put into the histogram in a statistical way. Each parameter is divided into b subinter-
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vals, and finally, the number of subintervals falling into each subinterval is counted
separately to obtain the PFH feature descriptors.

FPFH for the query point only computes a set of (α, φ, θ) between that point and the
points in the neighborhood to obtain SPFH.

The formula is as follows:

FPFH(p) = SPFH(p) +
1
k

k

∑
i=1

(
1

wk
·SPFH(pk)

)
(13)

where wk represents the weight and the FPFH feature histogram stores feature vectors of
33 elements. Figure 10 shows the visualized FPFH feature histogram of two feature points
a and b in the selected model point cloud.

FPFH is used to identify the matching features between point clouds, and the key
points of the model and candidate point clouds are detected for features by setting the
spatial relation threshold and matching threshold to determine whether they are target
point clouds [53]. The thresholds defined for feature matching are as follows:

The matching threshold consists of scalars in the range [0, 1]. Two feature vectors are
matched when the normalized Euclidean distance is less than or equal to the matching
threshold. The spatial relation threshold, on the other hand, uses point cloud data to
estimate the spatial relationship between points associated with potential feature matches,
and finds potential matches based on the spatial relationship threshold.

For FPFH feature matching, the normalized Euclidean distance matching feature
is calculated based on the found matching points, the algorithm initialization detection
threshold is set to 0.1, and the scores are returned as a column vector to evaluate the degree
of matching, where a smaller value indicates a higher probability that the point cloud to
be detected is a plume. The threshold is adjusted to the optimal matching state in the
experiment and determines the threshold, as shown in Figure 11. The scores are averaged
to determine whether the cloud at the detection point is a plume.
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Figure 10. FPFH feature histogram of the plume model point cloud key point (a,b). The spatial
location of the key points of the selected plume model is shown in the left panel, and the FPFH
histograms of key points a and b are shown in the right panel, respectively. It can be seen that the
histogram shows that the two feature point feature histograms are extremely similar, and that 6, 17,
and 28 have unusually high dimensional values, which play an important role in the subsequent
feature detection of the point cloud model.
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Figure 11. Schematic diagram of plume point cloud detection. The figure shows the matching process
between the point cloud to be detected (blue dots) and the plume model feature points (red dots): the
matching feature points (circled in red) are connected with gray straight lines, the detection threshold
is set to 0.1, and the final score is 0.025, indicating it is a gas plume, and the same threshold is used to
detect the point cloud in the subsequent detection.

3. Results
3.1. Data Acquisition

In this paper, three experimental areas were selected for method validation using
multibeam data collected by the Kongsberg EM302 multibeam system aboard the NOAA
Okeanos Explorer in the northern Gulf of Mexico in late summer 2011 (Figure 12). The
cruise carried a 30 kHz Kongsberg EM302 multibeam system, a 18 kHz Kongsberg EK
60 single-beam system, and collected backscattered intensity from the MWC and seafloor
in the northern Gulf of Mexico.

The ship used the onboard Applanix POS/MV (ver. 4) to record and correct multibeam
data for any ship’s motion before being logged by SIS software. The C-NAV GPS satellite
service system provided DGPS correctors to the POS/MV with the positional accuracy
expected to be better than 2.0 m. All the corrections (motion, sound speed profile, sound
speed at sonar head, draft, sensor offsets) were applied during real-time data acquisition in
Kongsberg data acquisition software Seafloor Information System (SIS) ver. 3.8.3. Sippican
XBT casts (Deep Blue, max depth 760 m) were taken every 6 h.

3.2. Process and Results of Experimental

By analyzing the MWC data in the experimental area for noise suppression, we
extracted a total of some candidate target point clouds as shown in Figure 13, which were
irregular noises within the plume or MWC.
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Figure 13. Extraction of some candidate point clouds by the DBSCAN algorithm. The data from
the experimental area is parsed and the high reflection intensity clustering point cloud in MWC is
extracted using the method in this paper, where (a,b) is a single plume, (c,d) is a dense plume over a
large area in the gas leakage area, and (e–i) is an unusually high density of noise in MWC.
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Then, the target detection of the candidate point clouds was performed through the
method and threshold selection in Section 2.4 of this paper, candidate point clouds with
scores less than 0.1 were selected, and finally, the plume target detection results were
output, verifying the location of the plume seepage nozzle compared with those observed
in real time during the cruise (Figure 14).
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Figure 14. Comparison of the detection results of this paper with the real-time observation results of
the cruise. In experimental area 1, large continuous and strong backscattering straight column bubble
plumes were detected, indicating active gas leakage in experimental area 1; a single gas plume was
detected in experimental areas 2 and 3; the location of the large-scale plume detection in experimental
area 1 was basically consistent with that of the plume leakage observed in real time during the cruise,
but the plume was too dense to distinguish its single-beam leakage points when using the method in
this paper, as shown in Figure 13c,d; the location of the sporadic plume in experimental area 2 and 3
was generally consistent with the location of the seepage observed in real time during the cruise.

3.3. Experimental Conclusion

Experimental area 1 is located at the edge of the salt dunes in the Gulf of Mexico, and
3D seismic data in this area indicate its past carbonate or hydrate formations, justifying
the large-scale gas leakage in experimental area 1. By comparing the voyage measured gas
leakage points and the acoustic profiler observation study of the water plume in this area,
the salt dune edge in the northern Gulf of Mexico is the active area of methane plume leak-
age, and other areas also have sporadic plume leakage points [54,55], which are consistent
with the detection results of this method, and the practicability of the method is verified.

The proposed method relies on the construction of point cloud space to achieve MWC
noise suppression and plume recognition and extraction. The two plumes extracted by the
detection of the method in this paper are shown in Figure 15. The construction of the point
cloud space preserves the partial structure of the plume, which cannot be determined in
the single ping image, and more fully preserves the spatial structure of the plume.
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(b) is the identified and extracted single plume in experimental area 1.

Compared with the single ping identification and extraction method, the recognition
efficiency is enhanced, and the recognition process is simplified. The test time of three
experimental areas is shown in the following Table 2. The length of the route line, ping
number, and time of each step of the experiment were counted in the three test areas. The
noise suppression in experimental area 1 cost 39.29 s, which was the longest step in each
step. The time of point cloud extraction and identification is relatively random, which is
related to the noise and the number of plumes in the experimental area. If there is less noise
in MWC, it only takes a short time to extract and identify the plume point clouds, as shown
in the experimental area 3.

Table 2. The time of the algorithm process.

Length of Route
Line (m) Number of Ping Time of Noise

Suppression (s)
Time of Point Cloud

Extraction (s)
Time of Target
Detection (s)

area 1 17,441.15 1130 39.29 4.56 10.13
area 2 2469.47 178 6.56 3.16 7.17
area 3 16,197.88 1402 30.98 1.84 8.23

4. Discussion

This method builds a 3D point cloud scene model of MWC based on the acoustic
reflection intensity, extracts and detects objects in MWC through the 3D geometric features
of the point cloud, and verifies the feasibility of the method through experimental areas. In
the process of target detection and extraction using MWC data, the accuracy of the method
is affected by the data itself and many problems in the process of constructing the point
cloud space. its performance may be influenced by the following factors.

4.1. Characteristics of MWC Noise

In this paper, using the methods of symmetric subtraction and the Otsu algorithm, we
mainly suppress the ocean environment and the sidelobe interference noise and extract the
anomalous point cloud in MWC. As shown in Figure 16, the range of the sound scattering
intensity of MWC is about (−120 dB, 8 dB) before symmetric subtraction, with a peak value
of −60 dB, compared to about (−70 dB, 75 dB) after symmetric subtraction, with a peak
value of 0 dB. The data volume at the peak increases from 3.7 × 106 to 4.0 × 106. After the
Otsu algorithm, the amount of sound scattering intensity data in MWC is greatly reduced,
in a double-peak structure, with the peak values located at −24 and 10 dB, respectively.
According to the statistics of the plume scattering intensity data volume subsequently
extracted, the peak of 10 dB is at the high probability of the plume distribution while the
peak of −24 B is the anomalous noise within MWC.
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Figure 16. Histogram of the reflection intensity and distribution frequency of MWC data at different
stages of the algorithm. (a) shows the backscattering intensity of MWC. The sampling point of the
backscattering intensity of the original MWC and MWC after subtraction has a large amount of
data (left axis) while the backscattering intensity of the MWC plume after the Otsu algorithm has
a large amount of data (right axis); (b) shows the frequency of the different backscattered intensity
distributions of the MWC at each stage of the algorithm.

The histogram of the water reflection intensity at different stages of the proposed
method allows for more intuitive observation and analysis of the characteristic relationship
between the MWC noise and plume reflection intensity (Table 3). The original water
reflection intensity showed a negative skewness distribution with a peak value of 3.2696.
After symmetric subtraction, the water reflection intensity showed a standard normal
distribution and its peak value increased to 3.6584. It can be seen that the method of
symmetric subtraction in this paper has a significant effect, and the large-scale abnormal
noise points were mostly caused by the marine environment. After the Otsu algorithm,
the amount of data decreased dramatically, and the noise points with high reflective
intensity that were not removed temporarily in the water led to the double-peak structure
presented in the histogram. According to the mean value, the skewness and peakness of the
backscattering intensity of the final plume reached the maximum value. It can also be seen
that the extracted plume noise points are basically removed in this paper, and the plume
itself has a highly reflective intensity and a negatively skewed and spiked distribution.

Table 3. Distribution patterns of the backscattered intensity in MWC at different stages of the algorithm.

Original Reflection
Intensity

After Symmetric Subtraction’s
Reflection Intensity

After Otsu’s
Reflection Intensity

Gas Plume Reflection
Intensity

Data volume 186,662,016 186,662,016 9301 2612
Median −38 0 3 11

Skewness −0.3329 0 −0.4827 −0.5836
Kurtosis 3.2696 3.6584 3.1081 3.9414

4.2. Spatial Distribution of MWC Point Cloud

In this paper, based on the reflection intensity information of the sampling points of
MWC data, spatial point cloud modeling was carried out to realize the plume identification
and extraction of the 3D point cloud. In the extraction of 3D point clouds, the hierarchical
clustering algorithm based on the Euclidean distance uses KD-tree to search the neigh-
borhood and classifies point clouds according to the spatial Euclidean distance between
proximal points as a judgment criterion. The calculation is shown as follows:
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1. Select the seed points; the KD-tree is used to search the radius R neighborhood
of the seed points. If there are points in the neighborhood, they are grouped into
the same cluster Q.

2. Select a new seed point in cluster Q and continue to perform step (1). If the number of
points in Q does not increase, Q clustering ends

3. Set the threshold interval of cluster points. If the number of points in cluster Q is
within the threshold interval, the clustering results will be saved.

4. Select a new seed point from the remaining point cloud Q and continue to perform
the above steps until all points in the point cloud are traversed.

The above clustering methods are compared and analyzed with the results of the
DBSCAN algorithm in this paper. As shown in Figure 17, it is found that the hierarchical
clustering algorithm has a good clustering effect, but it can only classify the point cloud
by the cluster, and its segmentation effect is not satisfactory for the small discrete noise
points around a certain cluster. In contrast, the DBSCAN algorithm has a better clustering
effect. It can independently identify MWC noise in the point cloud based on the density to
remove it, and it can more accurately identify discrete points around the point cloud cluster
as noise removal. The comparison results show that consideration of the water target and
water density difference between the noise points of the DBSCAN algorithm is unaffected
by the clustering points set K. The arbitrary-shaped high-density points can find the water
glowed class, in terms of both plume flow water extraction and anomaly target discovery
in water extract, and also has great application value.
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method enables the identification of the point cloud noise points (blue dots) based on density while
the Euclidean distance clustering method can only contribute to partitioning them into different
clusters; (b,b’) are the comparison of the DBSCAN and Euclidean distance algorithm after spatial
point cloud clustering, respectively; different colors represent different point cloud clusters identified
by the algorithm, where the DBSCAN algorithm in (b) directly removes the identified noisy points
and the Euclidean distance clustering removes the point clouds that cannot form clusters; (c,c’) are the
point cloud clusters containing plumes extracted by the DBSCAN and Euclidean distance algorithm,
respectively, and it can be seen that the plumes extracted by the DBSCAN algorithm contain less
spatial point cloud noise.

The construction of the MWC 3D space relies on the stacking of per-ping data by
the track direction, using the acoustic reflection intensity information to respond to the
target object within MWC [12]. However, the resolution of MWC data according to the
track direction is much lower than that of sampling points within ping, which leads to
faultiness and sparsity in the water space, and has adverse effects on the target extraction,
subsequent gas flux estimation, and 3D reconstruction of the target. Currently related
scholars use Fledermaus, Voxler 3, and other software to visualize the target objects in the
MWC data in a virtual 3D environment with volume rendering and 3D data display [56]
and construct WCI as a 3D voxel grid to reduce the effect of MWC data discontinuity and
improve the accuracy of subsequent MWC target processing [12,40]. Improving the spatial
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target object within MWC [12]. However, the resolution of MWC data according to the
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Figure 17. DBSCAN clustering versus Euclidean distance clustering. (a,a’) are the results of DBSCAN
and Euclidean distance XOY spatial point cloud clustering, respectively. The DBSCAN clustering
method enables the identification of the point cloud noise points (blue dots) based on density while
the Euclidean distance clustering method can only contribute to partitioning them into different
clusters; (b,b’) are the comparison of the DBSCAN and Euclidean distance algorithm after spatial
point cloud clustering, respectively; different colors represent different point cloud clusters identified
by the algorithm, where the DBSCAN algorithm in (b) directly removes the identified noisy points
and the Euclidean distance clustering removes the point clouds that cannot form clusters; (c,c’) are the
point cloud clusters containing plumes extracted by the DBSCAN and Euclidean distance algorithm,
respectively, and it can be seen that the plumes extracted by the DBSCAN algorithm contain less
spatial point cloud noise.

The construction of the MWC 3D space relies on the stacking of per-ping data by
the track direction, using the acoustic reflection intensity information to respond to the
target object within MWC [12]. However, the resolution of MWC data according to the
track direction is much lower than that of sampling points within ping, which leads to
faultiness and sparsity in the water space, and has adverse effects on the target extraction,
subsequent gas flux estimation, and 3D reconstruction of the target. Currently related
scholars use Fledermaus, Voxler 3, and other software to visualize the target objects in the
MWC data in a virtual 3D environment with volume rendering and 3D data display [56]
and construct WCI as a 3D voxel grid to reduce the effect of MWC data discontinuity and
improve the accuracy of subsequent MWC target processing [12,40]. Improving the spatial
inhomogeneity of MWC point clouds will improve the accuracy of target identification and
detection of MWC data and provide a strong basis for subsequent work.

4.3. Experimental Results outside MSR

When the transmitted beam reaches the seabed, its reflection intensity is much higher
than the backscattering intensity, and the reflected wave reaches the receiving transducer
first. Due to the presence of the receiving beam sidelobe, the echo is recorded by most
beams, thus forming a strong interference with the same time, which is reflected in the
MWC data as a half-arc-shaped strong reflection zone. This reflection zone is called specular
reflection, and the radius of this arc is called the minimum slant range (MSR) [41]. The
MWC data within MSR are all from seawater and of high quality while the data outside
MSR contain significant interference from the receiving sidelobe [12]. The algorithm used in
this paper achieved a good recognition effect for the data within MSR, but the application
of the algorithm outside MSR has some limitations. In the noise suppression stage, the
seabed part outside the MSR range cannot be completely removed, which has a significant
impact on the subsequent point cloud extraction, as shown in Figure 18.
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Figure 18. Symmetric subtraction results for outside MSR.

Although using the data inside the MSR for target detection can improve the efficiency
and accuracy of target recognition, it significantly weakens the advantage of the large
coverage width of MBES and limits the application of MWC data. Therefore, it is of great
significance to improve the quality of data outside MSR and improve the utilization rate of
MWC data.

5. Conclusions

This paper proposes a method to extract and identify the gas plume based on the
MWC point cloud by calculating the spatial homing of MWC data, transforming the
MWC data into a 3D field point cloud, and realizing 3D imaging, feature extraction, and
identification of the seafloor plume based on the spatial point cloud. According to the
analysis of MWC noise, the MWC noise suppression method was proposed to realize the
initial segmentation of abnormal targets in the MWC point cloud. According to the spatial
distribution characteristics of the MWC point cloud model, the DBSCAN algorithm and
FPFH feature detection algorithm were proposed to realize the extraction and detection of
3D targets of the MWC plume. Compared with existing methods, this study reduced the
difficulty of plume contour shape identification, improved the performance and accuracy of
plume identification and extraction based on the 3D point cloud, and verified the reliability
of this method using data from the northern Gulf of Mexico.
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