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Abstract: Along with the development of remote sensing technology, the spatial–temporal variability
of vegetation productivity has been well observed. However, the drivers controlling the variation in
vegetation under various climate gradients remain poorly understood. Identifying and quantifying
the independent effects of driving factors on a natural process is challenging. In this study, we adopted
a potent machine learning (ML) model and an ML interpretation technique with high fidelity to
disentangle the effects of climatic variables on the long-term averaged net primary productivity (NPP)
across the Amazon rainforests. Specifically, the eXtreme Gradient Boosting (XGBoost) model was
employed to model the Moderate-resolution Imaging Spectroradiometer (MODIS) NPP data, and the
Shapley addictive explanation (SHAP) method was introduced to account for nonlinear relationships
between variables identified by the model. Results showed that the dominant driver of NPP across
the Amazon forests varied in different regions, with temperature dominating the most considerable
portion of the ecoregion with a high importance score. In addition, light augmentation, increased CO2

concentration, and decreased precipitation positively contributed to Amazonia NPP. The wind speed
for most vegetated areas was under the optimum, which benefits NPP, while sustained high wind
speed would bring substantial NPP loss. We also found a non-monotonic response of Amazonia NPP
to VPD and attributed this relationship to the moisture load in Amazon forests. Our application of
the explainable machine learning framework to identify the underlying physical mechanism behind
NPP could be a reference for identifying relationships between components in natural processes.

Keywords: net primary productivity; MODIS; vegetation response; climatic drivers; machine learning;
Amazon

1. Introduction

To grapple with climate change, mitigating the increasing carbon dioxide (CO2) con-
centration in the atmosphere becomes of great urgency [1,2]. Terrestrial ecosystems greatly
benefit climate change alleviation since they absorb about one-third of CO2 released by
fossil fuel emissions and land use [2]. Therefore, it is important to broaden our understand-
ing of the spatial and temporal dynamics of terrestrial carbon fluxes for model simulations
to optimize policymakers’ decisions on forest carbon sequestration measures. Vegetation
productivity is the driving force in the terrestrial carbon cycle and a staple regulator of the
natural carbon sequestration process of the terrestrial ecosystem. The Amazon rainforest
is the largest intact tropical forest worldwide [3] and one of the regions with the most
vigorous carbon exchange. It accounts for 50% of carbon stocks in tropical forests [4]. Thus,
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exploring the Amazonia vegetation productivity and the driving mechanism behind it
is essential.

Exploring the dominant factors and their driving pattern of Amazonia NPP is impor-
tant in identifying the future direction and measures to improve productivity and address
climate change. Previous studies have shown that under natural conditions, climatic factors
are usually the major factors affecting the spatial variability of vegetation growth [5–8].
Generally, temperature, precipitation, and radiation are the dominating climatic factors of
ecosystem carbon exchange [9–11], but at the regional level, the specific dominant envi-
ronmental factors may vary [12–15]. For example, radiation dominated the productivity
increase in 1982–1999 in the Amazon rainforest due to the reduced cloud cover and the
improved light conditions [12]. CO2 concentration is argued to dominate the changes in
vegetation productivity worldwide [16], and VPD also appears to have played a significant
role [17]. However, in recent years, studies have shown that the CO2 fertilization effects
in South America have increased [18], and the VPD has increased in many places world-
wide [19]. These changes have prompted us to explore the dominant driving factors behind
NPP and how it is affected by changes in various climate factors.

In recent years, the effects of atmospheric dryness and soil water dryness on vegetation
have been studied in the context of global warming, sparking debate on the dominant
factors and driving mechanisms of plant water stress. They present different responses
of vegetation to atmospheric dryness in humid ecosystems. For example, Chen et al.
and Green et al. [20,21] found that Amazonia vegetation growth responded positively to
VPD in seasonal dynamics. Chen et al. [22] also suggested a positive correlation between
vegetation productivity and VPD in humid ecosystems on daily data exploration. However,
Yuan et al. [17] showed a negative correlation between VPD and vegetation productivity in
the southern hemisphere on a longer interannual scale.

Explainable machine learning (XML) techniques may provide a valuable tool to reveal
the complex relationship between physical quantities. XML has irresistible advantages that
combine the robust data fitting ability of machine learning without shouldering empirical
assumptions of biophysical mechanisms [23] while making complex relationships trans-
parent and interpretable [24]. At present, many XML technologies have been developed.
Some XML models’ structures are relatively simple and inherently interpretable such as
Cubist. On the contrary, some models’ structures are complex. Still, they can be interpreted
by model-specific interpretation techniques such as knowledge distillation or by model-
agnostic techniques such as Local Interpretable Model-agnostic Explanations (LIME) or
Shapley Additive exPlanations (SHAP). So far, XML has had broad applications in Earth
science [25–27].

In this study, we adopted net primary productivity (NPP) to characterize Amazonia
vegetation productivity since it indicates the rate at which carbon accumulates in plants
after considering the losses from plant respiration and other metabolic processes [28,29].
We employed a machine learning method fed with climate data to establish a prediction
model with high accuracy to model the continuous long-term averaged MODIS NPP in
the Amazon ecoregion. We then adopted a high-fidelity model interpretation method to
attribute NPP to the individualized effect of various driving factors. Our goals were (1) to
determine the main drivers of NPP spatial variability in the Amazon region and (2) to reveal
the individualized patterns of how each driver impacts NPP in the Amazon ecoregion.
Our findings could benefit ecosystem model development through the improvements in
determining model drivers and their influence patterns on carbon exchange.

2. Methodology
2.1. Study Area

The spatial extent of the Amazon ecoregion (Figure 1) is based on the Terrestrial
Ecoregions of the World [30]. The vegetation of the Amazon is a mostly moist old-growth
forest, and the broadleaf forest is the prevailing plant function type across the Amazon
Rainforest. The Amazon ecoregion is located at an elevation below 1000 m [31], bounded
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by the Andes Mountains to the west, the Lanos Mountains and the Atlantic Ocean to the
north and east, and the Cerrado (the vast tropical savanna ecoregion in Brazil), and dry
forests to the east and south [32], with its annual mean temperature above 20 ◦C and mean
annual precipitation more than 2000 mm in the period ranging from 2001 to 2020.
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Figure 1. Amazon ecoregion based on the definition from the Terrestrial Ecoregions of the World.

2.2. Data

We adopted Moderate Resolution Imaging Spectroradiometer (MODIS) NPP (MOD17A3H,
version 6.0) [33] for analysis of vegetation productivity. The product is a cumulative 8-day com-
posite of values with 500 m pixel size and was derived from a light use efficiency photosynthesis
model fed with MODIS fPAR (fraction of absorbed photosynthetically active radiation). Taking
vegetation maintenance and respiration into account [13,34], it accounted for respiratory costs
and environmental stress on vegetation growth separately [35] by a Biome Parameter Lookup
Table (BPLUT). MODIS NPP shows consistency (R2 = 0.77) with an extensive worldwide NPP
dataset assembled from more than 1000 field-observed data [34] and also shows close agreement
with the Bigfoot NPP products, which were measured at nine different ecosystem flux towers
throughout the world [36].

To explore the relationship between NPP and its potential drivers, we considered
the mean annual values of the following environmental variables in light of previous
studies [15,17,19,37,38]: daytime land surface temperature (TS; ◦C), precipitation (P; mm),
downward surface shortwave radiation (SR; W m−2), wind speed (WS; m s−1), soil moisture
content of 0–10 cm (SM10; m3 m−3), soil moisture content of 100–200 cm (SM200; m3 m−3),
vapor pressure deficit (VPD; kPa), and atmospheric carbon dioxide concentration (CO2;
mol m−2 s−1). In addition, three factors depicting soil characteristics were also considered,
including total Nitrogen (TN; % of weight), total phosphorus (TP; % of weight), and clay
content (CLAY; % of weight), in the soil layer to the depth of 2.3 m.

Here, TS is derived from a monthly MODIS product with a 0.05◦ × 0.05◦ spatial
resolution (MOD11C3, version 6.0) [39]. We chose land surface temperature as an explain-
able variable instead of air temperature because the former more approaches the canopy
temperature [40]. SR, P, and WS were extracted from the TerraClimate (Table 1) product



Remote Sens. 2022, 14, 4401 4 of 18

that provides a 1/24-degree gridded monthly meteorological dataset. The TerraClimate
dataset was derived from a combination of high-spatial-resolution climatological normal
from the WorldClim dataset, the time-varying data from CRU Ts4.0, and the Japanese
55-year Reanalysis (JRA55) by using climatically aided interpolation [41]. We adopted this
data product mainly due to its high spatial resolution and verified accuracy on a global
scale. SM10 and SM200 were collected from FLDAS Noah Land Surface Model L4 Global
Monthly 0.1◦ × 0.1◦ reanalysis dataset for its high resolution and long available period
compatible with our study [42]. VPD is an indicator illustrating atmospheric dryness and
is defined as the difference between the saturation vapor pressure at air temperature and
the actual vapor pressure of the air. VPD was calculated from air temperature and specific
humidity data from the Famine Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS) data in Equation (1) [43,44]. CO2 was extracted from the
CarbonTracker dataset (CT2019B), which estimates the land biosphere net CO2 fluxes on
the global 1◦ × 1◦ grid [45]. TN, TP, and CLAY were obtained from the gridded Global Soil
Dataset for use in Earth System Models (GSDE) dataset with 30 arc-seconds resolution [46].

VPD = 0.611× exp
17.27× TA

TA

(
1− RH

100

)
(1)

where TA is the air temperature (K) and RH is the relative humidity (kg kg−1).

Table 1. Summary of data products used in this study.

Dataset Data Unit Spatial
Resolution

Temporal
Resolution Reference Data Acquisition

MODIS
(Version 6.0)

Net primary
productivity

(MOD17A3H)
g C m−2

500 m in a
Sinusoidal
projection

yearly [33]

https:
//e4ftl01.cr.usgs.gov/

(accessed on
19 March 2022)

Daytime land
surface

temperature
(MOD11C3)

◦C 0.05◦ monthly [39]

Land cover type
(MCD12C1) − 0.05◦ yearly [47]

TerraClimate

Downward
surface

shortwave
radiation

W m−2

1/24◦ monthly [41]
https://www.

climatologylab.org/
terraclimate.html

(accessed on
19 June 2022)

Precipitation mm

Wind speed m s−1

FLDAS
(Noah Land

Surface Model L4)

Soil moisture
content of
0–10 cm

m3 m−3

0.1◦ monthly [42]

https://ldas.gsfc.
nasa.gov/FLDAS/

(accessed on
6 July 2022)

Soil moisture
content of

100–200 cm

Air temperature K

Specific humidity kg kg−1

CarbonTracker
CT2019B

Land biosphere
net CO2 fluxes mol m−2 s−1 1◦ × 1◦ monthly [45]

https:
//gml.noaa.gov/

ccgg/carbontracker/
CT2019B/ (accessed

on 5 July 2022)

GSDE

Total Nitrogen

% of weight 30” − [46]

http://globalchange.
bnu.edu.cn/research/

soilw (accessed on
6 July 2022)

Total phosphorus

Clay content

https://e4ftl01.cr.usgs.gov/
https://e4ftl01.cr.usgs.gov/
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://ldas.gsfc.nasa.gov/FLDAS/
https://ldas.gsfc.nasa.gov/FLDAS/
https://gml.noaa.gov/ccgg/carbontracker/CT2019B/
https://gml.noaa.gov/ccgg/carbontracker/CT2019B/
https://gml.noaa.gov/ccgg/carbontracker/CT2019B/
https://gml.noaa.gov/ccgg/carbontracker/CT2019B/
http://globalchange.bnu.edu.cn/research/soilw
http://globalchange.bnu.edu.cn/research/soilw
http://globalchange.bnu.edu.cn/research/soilw
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In addition, we applied land cover data to filter pixels that had plant function types
changed to exclude the effects of land use change. Land cover data were extracted from
the MODIS dataset (MCD12C1, version 6.0) [47], where we employed the International
Geosphere-Biosphere Program (IGBP) classification layer to determine the land cover type.
Moreover, we used the quality layer for all the applied MODIS data to filter pixels with poor
quality. All the selected driving datasets were reprojected to the World Geodetic System
1984 and resampled to 0.05◦ × 0.05◦ spatial resolution using the bilinear resampling method
(for downsampling) and the average composite method (for upsampling). To eliminate the
inter-annual fluctuation and avoid distractions from short-term phenomena, we averaged
all data over 20 years from 2001 to 2020, except for CO2, of which the available period
only ranged from 2001 to 2018. After filtering the raw data according to the conditions
applicable for all variables, there were 171,819 samples for model inputs.

2.3. Machine Learning Model

Tree-based models consistently outperform neural networks in tackling tabular-style
datasets whose features lack strong multiscale structures and have individual meanings [48].
Therefore, we developed our prediction model by adopting the tree-based eXtreme Gradient
Boosting (XGBoost) algorithm [49]. XGBoost is an enhanced version of GBDT (Gradient
Boosting Decision Tree) with its core algorithm based on the idea of “boosting”—a stepwise
forward addictive strategy. Specifically, the process of “boosting” in XGBoost is explained
below. As a powerful estimator (ensembled estimator), XGBoost executes its output
prediction by aggregating all the predictions of a set of the weak estimators (single estimator,
usually decision trees) that are orderly constructed in the fitting process. The first estimator
constructed is fitted to the whole data during the process. A later estimator is then built and
fitted to the residuals of the previous estimator prediction. The significant improvement in
XGBoost compared to GBDT draws on the regularization term added in the target function,
the more precise loss function, and a set of related regularization work which can reduce
overfitting and errors, such as shrinkage and column subsampling [49].

We used the XGBoost package and the Scikit-learn library to implement the model
construction in the Python 3.8 environment. Among the 171,819 available samples for
model construction, 120,273 for training and 51,546 for testing were randomly sampled. Hy-
perparameter tuning before model training was performed using a 10-fold cross-validation
method based on the training set. The performance of the model trained after each round
of parameter update was evaluated with the averaged root mean square error (RMSE) of
the 10 cross-validation results.

The model hyperparameters were optimized by a stochastic hill-climbing algorithm, a
stochastic local search optimization algorithm. Specifically, the hyperparameter adjustment
range for each parameter was set first, thus defining the parameter searching space. Then,
the initial search value and step size for each hyperparameter were set. When the hyperpa-
rameter tuning started, the parameter stepped forward from the initial value in the search
space until the local optimum point (the point corresponding to the minimum RMSE) was
met, which is the so-called “hill climbing” process. The search for each parameter was
performed sequentially. Once the optimal value of the last parameter is obtained, it is fixed,
the parameter combination is updated, and then the search traversal of the latter parame-
ter is performed. We mainly tuned nine hyperparameters and confirmed the optimized
hyperparameters as follows: n_estimators = 700, learning_rate = 0.15, max_depth = 10,
colsample_bylevel = 0.9, colsample_bynode = 0.9, colsample_bytree = 0.9, reg_alpha = 1000,
reg_lambda = 150, and gamma = 0.

We also used another two tree-based ML algorithms—Random Forest and Cubist—for
modeling as a comparison. The former is also an ensemble tree algorithm based on the
bagging concept. On our dataset, the results of Random Forest after hyperparameter
optimization are not as good as XGBoost. The essence of Cubist is a piecewise linear
decision tree [50,51]. Cubist has a simple model structure with inherent interpretability.
The main principle is to divide the whole response variables into subsets by different rules
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expressed by linear formula between the response variables and their explanatory variable.
Our test results show that on our data, at least establishing 500 linear regression models
(n_rules = 500) can achieve a fitting score comparable to XGBoost. However, excessive rule
establishment sacrifices the interpretability of the model. Therefore, we finally adopted
XGBoost as the fitting model.

2.4. Model Interpretation

Many machine learning interpretation techniques with high fidelity have been devel-
oped [52–55]. In this study, we adopted the SHaley Addictive exPlanation (SHAP) method
for its mature application technology and series of good qualities such as addictive property
and fairness in attribution [56,57]. SHAP has its solid theoretical foundation—Shapley
value [58], which came from the coalitional game theory [59,60]. A SHAP value is the
amount of mathematical deformation of the Shapley value within the SHAP framework.
SHAP quantifies the contributions of each sample to the predicted value and decomposes
the contributions into piece contributions from each feature. When SHAP begins to inter-
pret a prediction model, it first obtains the “base value” of the model, which indicates the
value that the model would have predicted if no knowledge of the features was provided
for the current output (the average of the predicted values by the model). For each sample,
our prediction model predicts the corresponding predicted value. Then, SHAP translates
the difference between the base value and the predicted value into the sum of the attribution
value for each input feature, where the attribution values are the SHAP values [61].

The explanation could be specified as:

g
(
z′
)
= ϕ0 +

M

∑
j=1

ϕiz′i (2)

ϕi = ∑
S⊆{N/{i}

|S|!(M−|S|−1)!
M!

( fx(S ∪ {i})− fx(S)) (3)

where g is the explanation model, ϕ0 is the average of the prediction, and ϕi∈R is the
feature attribution for a feature I. z′ ∈ {0, 1}M is the coalition vector, M is the number of
the features input, N is the set of all input features, S is the set of non-zero indexes, and fx
is the expected value of the function conditioned on a subset of the input features.

Figure 2 visualizes the decomposition of an instance prediction into each feature.
Based on the feature attributions by SHAP, we could do some further analyses such as
global evaluation of feature importance, exploring the relationship between the value of a
feature and the impact on the prediction and the interaction effect between features.
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Figure 2. Decomposed SHAP values for the prediction of an example individual pixel. The base
value indicates the averaged output of the predictions. f(x) indicates the specific prediction of this
sample. Features that increase the value of the prediction are shown in red; those that lower the
prediction value are shown in blue.

The author of SHAP has also developed an efficient implementation of SHAP on tree-
based models, TreeSHAP [61], where it provides the concept of a SHAP interaction value
to assume the dependence relationship of features. A SHAP interaction value characterizes
the magnitude of the interaction effect of paired features. According to the same principle of
SHAP value, the sum of the SHAP interaction values of the feature with all other variables
(including the interaction with itself) constitutes the SHAP value of this feature [61].
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For SHAP interaction values, the explanation could be specified as:

ϕi = ∑ ϕi,j (4)

ϕi,j = ∑
S⊆r{i,j}

|S|!(M−|S|−2)!
2(M− 1)!

δij(S) (5)

δij(S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (6)

when i 6= j. The SHAP interaction value between feature i and feature j is equally split
between each feature. Thus ϕi,j = ϕj,i and the total interaction effect is ϕi,j + ϕj,i.

The main effects for a prediction can be defined as the interaction of the feature with
itself, which can be calculated as:

ϕi,i = ϕi −∑
i 6=j

Φi,j (7)

3. Results
3.1. Model Evaluation

Model evaluation was based on a testing subset. The constructed model obtained
a coefficient of determination (R2) of 0.923, a mean absolute error (MAE) of 30.85, and a
root mean square error (RMSE) of 64.28 on the testing subset (mean value and median
value of the testing data were 1152.12 g·C/m2 and 1133.47 g·C/m2, respectively). Figure 3a
compares the modeled NPP with the MODIS NPP. Figure 3b is a Quantile–Quantile plot
(QQ plot) embedded by frequency histograms, which compares their overall distributions.
We can see that there are some large deviations at the beginning and the end of the fitted
data distribution, while the vast majority of points are consistently fitted.
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plot of model residual distribution and a normal distribution. σ indicates the standard deviation of
the testing data of MODIS NPP.

Residual analysis was further performed. Figure 3c shows a scatter plot of residuals
(y-axis) versus the observed (x-axis) values of the dependent variable. For a well-performed
model, we expect a symmetric spread of points around the horizontal line at zero, indicating
random deviations of predictions from the observed values. The residuals are positive
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for the small observed values of the dependent variable, while for large values, they are
negative. Especially the outlier dots that have exceeded the threshold of three standard
deviations, mostly distributed at both ends of the distribution. Thus, the plot suggests that
the predictions inclined to the average. Figure 3d shows a comparison between the QQ
plot of the residual distribution and a set of normally distributed data with zero mean.
Theoretically, the residual should be random and unpredictable. One of the manifestations
of this randomness could be that the bias fits well with the normal distribution. As
seen from the Figure 3d, most of the residuals predicted by the model are close to the
normal distribution, but the residual values of the beginning and the end have a relatively
large deviation.

Overall, the constructed model predicted NPP was consistent with most of the testing
MODIS NPP with evaluation metrics indicating good performance, but in a local view,
the model overestimated small values and underestimated large values. In particular, the
deviations were significant for the extreme values. Only samples that have residuals less
than three times the standard deviation of the testing data joined the SHAP interpretation.

3.2. Relative Importance of Drivers of NPP

SHAP attribution was conducted (Figure 4). Feature importance was quantified as
each feature’s mean absolute SHAP values for all pixels. Then, the features were ranked
according to these importance indexes, as shown in Figure 5. TS appeared to be the most
crucial driver for the long-term averaged NPP distribution, followed by SR, whose mean
SHAP value was less than half of TS’s. SM200, VPD, SM10, WS, P, and CO2 orderly
came next, with their feature importance gradually decreasing and being 26.00 g·C/m2,
24.45 g·C/m2, 21.50 g·C/m2, 20.80 g·C/m2, 13.96 g·C/m2, and 12.85 g·C/m2, respectively.
The remaining three factors depicting the soil characteristic, TP, CLAY, and TN, ranked in
the lowest stream with their mean absolute SHAP values less than 10 g·C/m2.
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Figure 5. Feature importance plot. The feature importance was quantified as the average of absolute
SHAP values (mean |SHAP values|) of all 0.05◦ × 0.05◦ pixels. Units of SHAP values: g C/m2.

In addition to measuring the magnitude of the force that a feature impacted on the
NPP output, the primary drivers of each 0.05-degree pixel were also identified and mapped
in Figure 6. The dominant driver of NPP varied widely across the ecoregion. Therefore,
we calculated the percentage of the spatial area dominated by the drivers at all grid cells
and ranked the drivers in light of this count. TS was the most significant impact factor of
NPP across variable areas. Radiation also has a considerable dominant sphere. Moisture
condition has great clout in the west of the ecoregion where precipitation is abundant.
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Overall, the results indicate that TS was the major driving factor of the spatial variabil-
ity of NPP in the Amazon ecoregion, both in terms of force and dominant space. In a more
local analysis, the dominant driver varied across the Amazon rainforest. SR and moisture
conditions (VPD, SM200, and SM10) also contributed to the spatial pattern of Amazonia
NPP. WS and CO2 played a minor role. Precipitation almost made a negligible effect.
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3.3. Impact of Individualized Climatic Drivers on Spatial Variability of NPP

We plotted the dependencies between each factor’s values and its corresponding
SHAP values for all samples to explore how these drivers affect the final model outputs
(Figure 7). The plots show the main effects of individual variables on the NPP, eliminating
the interactions between variables (SHAP dependence plots confounded interaction effect
are shown in Figure A1). The zero line of SHAP value (horizontal red line) distinguishes
the positive and negative driving force exerted on NPP compared to the multi-year average
forecast (base value). Overall, almost all of the factors influenced NPP non-monotonically,
suggesting that the influence of the environmental factors is regionally variable. Only
SM200 exerted a relatively linear and monotonical effect on NPP that enhanced SM200
directly decreased NPP. NPP had a similar non-monotonic relationship with TS, VPD, and
P. With the enhancement of the three factors, NPP reversed its original increasing trajectory
after reaching a certain level. Areas with extreme values of P even experienced substantial
NPP loss. The effects of SR, SM10, and CO2 on NPP were also similar, except for SR less
than 150 W/m2, which directly increases the NPP gain, but the threshold effects all occurred
until they reached a considerably large value. Most areas of low WS (WS < 2 m/s) failed
to contribute NPP to the average level (SHAP value = 0), and high WS directly impairs
NPP. The effect of CLAY on NPP mostly fluctuated in a small scope along the gradient of
CLAY but exerted a negative impact on NPP when CLAY is relatively low or when CLAY
is relatively high. Samples of high TN and high TP were scarce, but it can be seen that high
TP brought NPP loss and high TN brought NPP gain.
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Figure 7. SHAP dependence plots depicting the SHAP main values along the gradient of (a) TS,
(b) SR, (c) SM200, (d) VPD, (e) SM10, (f) WS, (g) P, (h) CO2, (i) TP, (j) CLAY, and (k) TN. The lateral
axis indicates the gradient of variable values. The vertical axis indicates the magnitude of the SHAP
main value. Positive SHAP values indicate the positive force on NPP output while negative SHAP
values indicate the opposite. The colors indicate the density. SHAP main values units: g C/m2.
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4. Discussion
4.1. Dominant Drivers of Spatial Variability of Amazonia NPP

In a humid forest ecosystem, vegetation productivity is generally dominated by radia-
tion or temperature [62,63]. Our SHAP analysis suggests that the temperature, dwarfing
other limitation elements, is the most potent driver of the spatial heterogeneity of Amazonia
NPP in terms of strength and space dominance (Figures 5 and 6). This is reasonable because
the temperature is the greatest limiting factor for the photosynthesis rate in well-lit, warm
leaves. To be specific, the photosynthetic efficiency of the canopy mainly depends on the
gas exchange rate of the sunlit leaves rather than the gas flux of the underlit leaves [64].
Moreover, most of the Amazon forests are tall, old-growth forests with large canopies,
reasonable light-receiving structures, with abundant water supply. Additionally, in recent
decades, as the dry season has extended, cloud cover has decreased, and radiation has in-
creased [12,65], thereby canopy leaves have received more sunlight. Thus, the temperature
became the dominant limiting factor.

The response of NPP to temperature was in tune with that in the leaf scale [66–68]. It
was worth noting that the temperatures of most of the vegetation had exceeded the optima
for photosynthesis, after which NPP showed negative feedback to increasing temperature
(Figure 7a) [40,64]. Considering the current upward trajectory of temperature and such a
high sensibility of NPP, it should be noted that the nucleus density center may move down
and the Amazonia vegetation productivity is likely to wind down soon.

Solar radiation also contributed to the spatial pattern of Amazonia NPP. Most of the
Amazonia vegetation complied with the fact that enhanced light intensity directly promotes
increased photosynthesis [69,70] (Figure 7b). However, in our SHAP analysis, the west of
the Amazon ecoregion covered with high precipitation made an exception for low radiation
to play a relatively positive impact on NPP (Figures 7b, 4b, and A2b). This may be because
under the low radiation conditions caused by the obstruction of thick clouds brought by
the large water vapor in the atmosphere [69,71]; although, the vegetation receives less
direct beam and total irradiance, the diffuse irradiance that penetrates canopies more
efficiently than direct beam irradiance would be increased, thereby increasing the area of
photosynthetic activity [72,73]. Therefore, the effect of radiation on vegetation productivity
may also depend on the trade-off between total irradiance, diffuse irradiance, and radiation
utilization efficiency [72]. More positive effects of solar radiation enhancement can be
obtained for well-structured stand and canopy structures.

Our SHAP analysis suggested an optimal wind speed of about 1.8 m/s (Figure 7f).
The mechanisms of how wind speed influences vegetation are complex. Wind movement
adjusted the photosynthesis of plants by affecting the leaf structure of the canopy [74,75].
For example, an appropriate increase in wind speed can increase the light receiving area
of the blade and the radiation absorption efficiency. However, the lower wind speed had
more respiratory CO2 recycled [76]. Generally, wind speed greater than 2 m/s can be
called strong wind. Sustained strong winds will hinder local vegetation leaf reproduction
and growth [77]. Moreover, high wind speed promoted the speed of fire spread [78]. It is
notable that the Amazon Rainforest suffered frequent fires in recent years in places with
high wind speeds.

In addition, an elevated CO2 concentration promoted Amazonia NPP (Figure 7h),
but it also had a threshold. A previous study reported that the CO2 fertilization effect in
Southern America has increased [18]. This is beneficial to the NPP growth in Amazon
forests. However, the increasing CO2 was always accompanied by increasing temperature
and other variables changes, but the effect of CO2 on Amazonia NPP seemed relatively
limited (Figures 5 and 6).

4.2. Amazonia Vegetation Responds to Moisture

Our study demonstrated a non-monotonic response of Amazonian vegetation to VPD,
with NPP initially being slightly promoted and then strongly suppressed in response to
increasing drying conditions (Figure 7d). Excluding phenological and seasonal dynamic
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factors such as leaf turnover [21], the moisture load of the humid rainforest itself can better
explain the long-term vegetation–VPD response mechanism of the Amazon rainforest. On
the one hand, the interaction of VPD with almost all magnitudes of shallow soil water
content shows a relatively more positive effect on NPP than that of low VPD (Figure 8b). On
the other hand, high VPD showed a suppressive impact on NPP in regions with low deep
soil moisture content but relaxed its negative effect in areas with high deep soil moisture
content (Figure 8c,d), indicating that the vegetation–VPD relationship may be regulated
by soil moisture. Amazon rainforests have a strong water-holding capacity and deep root
systems, which determines its water use strategy, in that the physiological activities of
vegetation rely more on stable and abundant deep soil water. However, excessive water
load may stress vegetation photosynthesis by impairing enzyme activity, chlorophyll, and
soluble protein levels [79]. Therefore, the reduction in deep soil moisture could alleviate
the pressure caused by the oversupply of moisture (Figure 7c).
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Furthermore, shallow soil water could act as a backup reservoir when water supple-
ments become urgent due to its strong resilience. Therefore, enhanced shallow soil water
content conduced NPP gain but also brought stress on NPP when it exceeded a certain
level (Figure 7e). Similarly, further consistent precipitation increases may also impair the
Amazonia NPP (Figure 7g).

In this context, appropriately increasing dryness may help mitigate the water over-
load by promoting leaf stomata openness and evapotranspiration. Moreover, as dry-
ness increases, Stomatal stomata gradually become more adaptable and less sensitive to
VPD [80,81], thereby enhancing photosynthesis ability. However, when VPD increases to
a certain extent, the water loss caused by intensified transpiration exceeds the benefit of
photosynthesis. At the same time, the reduction in the temperature by evaporative cooling
also increases the cost of photosynthesis. Therefore, over-high VPD shifts its positive effect
toward the suppressive effect on vegetation productivity [17,82,83]. Generally, the optimal
VPD for plants ranges from 0.3 to 1.0 kPa [84,85], and water stress occurs in plants when
VPD is over 1 kPa [86], which is consistent with our findings (Figure 7d). It is worth noting
that most of the Amazonia vegetation is under or exceeding optimal VPD conditions,
indicating that further increments of VPD may reduce vegetation productivity.
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4.3. Benefits and Uncertainty of Explainable Machine Learning

Machine learning has profound applications due to its notable advantages, among
which the most notable is the powerful ability to explore complex relationships behind data.
However, data-driven methods are intrinsically constrained by data and algorithms [87].
Moreover, machine learning fails to handle problems of extreme values well. Thus, care-
fully screening and processing for data quality and integrity is a crucial step to reducing
uncertainty in ML model construction.

A distinct drawback of SHAP values is that they are provided as the property of
the additive contribution of explanatory variables [56]. In other words, SHAP assumes
that the variables are independent of each other, which would make the model mixed
with high interaction less credible. However, the situation that the characteristics are
entirely independent rarely exists. Especially in Earth Science, various environmental
factors have coupling or interaction effects. Despite TreeSHAP [61] assuming less feature
independence and explaining some feature dependencies, it still fails to fully explain [57],
because, for example, SHAP interaction value is also endowed with the attribute of additive
contribution. We carefully observed correlations between features and made tradeoffs
before model input. Moreover, the model performance and consistency of the model results
with known physical mechanisms (Figure 3) lend us confidence in the constructed model.

Note that XML does not capture the complete behavior of a physical system but rather
provides a rough approximation of the system’s behavior [24]. Therefore, the model’s
credibility relies more on the rigorous and comprehensive selection of features during
model construction to approach the actual situation as closely as possible. Despite all the
uncertainty and drawbacks, XML remains a valuable method boasting a large potential to
comprehend the recondite functionality behind phenomena in Earth Science, not only for
prediction [25,88,89] but also for contrastive explanations [15,90].

5. Conclusions

As NPP is driven by multiple climatic variables, we adopted an explainable machine
learning technique to understand how the long-term averaged MODIS NPP responds to
the climate variables in the Amazon rainforest. The specific operation included: first, NPP
was learned through a potent machine learning model; then, the model was fed into the
SHAP framework to explain the mechanisms. Conclusions based on the SHAP analyses
are as follows:

1. Relative contributions of each driver were identified, showing that the temperature
outperformed other climatic variables in contributing to Amazonia NPP variability.
Radiation and vapor pressure deficit also made a considerable contribution. Wind
speed, CO2 concentration, and precipitation were also responsible.

2. Individualized feature attribution was detected. In most areas of Amazon forests,
the temperature exceeded the optimal value for NPP growth. Generally, elevated
radiation and increased CO2 concentration promote NPP gain monotonically, while
high precipitation impairs NPP. In addition, for most vegetation, the wind speed did
not reach the optimum value that benefits NPP, and sustained high wind speed would
bring substantial NPP loss.

3. Amazonia NPP responded to VPD non-monotonically. Considering the distinct
response of NPP to soil water content under different layers, the relationship between
NPP and VPD was highly connected to the water use policy and moisture overload
conditions in Amazon forests. Further increases in VPD largely impaired NPP despite
the moisture overload conditions in Amazon forests.

Continuous and high-covered remote sensing data allow us to make large-scale and
high-precision vegetation analyses, and the explainable machine learning technology
enables us to better understand the response mechanism of MODIS NPP to its climatic
factors. Applying a combination of remote sensing data and explainable machine learning
in Earth Science could serve as an effective reference for comprehending natural dynamics
in the ecosystem.
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Figure A1. SHAP dependence plots depicting the SHAP values along the gradient of (a) TS, (b) SR,
(c) VPD, (d) SM200, (e) SM10, (f) WS, (g) CO2, (h) P, (i) CLAY, (j) TN, and (k) TP. The lateral axis
indicates the gradient of variable values. The vertical axis indicates the magnitude of the SHAP main
value. Positive SHAP values indicate the positive force on NPP output while negative SHAP values
indicate the opposite. The colors indicate the density. SHAP values units: g C/m2.
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