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Abstract: Prompt and precise acknowledgement of surface change around subways is of considerable
significance in urban rail protection and local environmental management. Research has proven
the considerable potential of synthetic aperture radar (SAR) images for detecting such information;
however, previous studies have mostly focused on change intensity using single Difference images
(DIs), e.g., difference value DI (DVDI) and mean value DI (MVDI). With the aim of more accurate
information with respect to surface changes around subways, in this study, we proposed a novel SAR
detection method that involved three steps: (1) the calculation of three single DIs, (2) the combination
of the single DIs and (3) the delineation of the changed area. Compared to existing detection methods,
the proposed method represents three major improvements. First, both the intensity information
and phase information were applied by combining the DVDI, MVDI and coherent difference images
(CDIs). Secondly, a local energy weight (LEW) approach was proposed to combine single DIs instead
of the normally used equal weights. Because the changed area often comprises continuous rather
than discrete pixels, a combined DI with the LEW (“CoDI-LEW” hereafter) fully considers the
attributes of adjacent pixels and enhances the signal-to-noise ratio of SAR images. Thirdly, the FCM
algorithm, instead of the widely used threshold methods, was applied to distinguish changed areas
from unchanged areas. An experimental comparison with several existing detection methods showed
that the proposed method could delineate changed areas with higher accuracy in terms of both
quality and quantity. Furthermore, it can effectively execute detection under diverse surface change
conditions with good feasibility and applicability.

Keywords: SAR; subway; local energy weight; change detection; combined difference image

1. Introduction

In recent decades, a considerable amount of subways have been constructed in urban
areas and become one of the major modes of daily travel for urban residents. Multifunc-
tional communities have been formed centered around subway stations, meeting the needs
of residence, work, shopping, entertainment, travel, rest, etc. [1,2]. Therefore, the comple-
tion of subway systems drives the construction of surrounding commercial and residential
buildings. Within a certain range, the changes in the surrounding surface affects the safety
of the subway system. Moreover, change detection around subways is conducive to guiding
and controlling land development along the track [3,4]. Therefore, quickly and accurately
locating the change area is the focus of change detection surrounding subways.

At present, multiple datasets have been used for change detection research, such
as optical images (e.g., [5]), light detection and ranging (LIDAR) (e.g., [6]) and synthetic
aperture radar (SAR) (e.g., [7]). Among them, optical images at low, medium and high
spatial resolutions generally show the richest spectral information, which has been widely
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applied to extracting newly expanded urban land [8], distinguishing unreasonable housing
construction [9] and monitoring the degradation of urban greenspace [10]. However, the
precision of the detected results is highly dependent on weather conditions, with inter-
ference from cloud and shadow. Due to the strong penetrability and three-dimensional
attributes of ground objects, LIDAR (i.e., images obtained from unmanned aerial vehicle)
surface detection and manual patrol have become vital ways to recognize surface change
around urban rail transit [11–13]. However, these methods lead to relatively low detection
efficiency due to the difficulty in obtaining data in with long time series and wide cover-
ages [12]. Recently, many researches have proven the potential of synthetic aperture radar
(SAR) images to detect such information, providing an opportunity to master the impact of
subway construction on urban development and the urban environment, serving as basic
data for the coordinated development of urban rail transit and land use and promoting
urban sustainable development [14,15]. This is due to the fact that SAR can work at any
time of the day or night and under all weather conditions.

A large number of traditional and state-of-the-art methods have been applied to detect
change areas using SAR images, including but not limited to algebraic operation [16,17],
image transformation [18], image classification [19] and clustering [20] methods. Among
these methods, the deep learning method has received considerable attention in the field
of image change detection [21–23]. There are two main detection methods based on deep
learning. One is two-stage detectors based on a convolutional neural network (CNN). For
instance, Liu et al. [24] designed a dual-channel convolutional neural network (CNN) model
and proved its superiority relative to other up-to-date methods, Radarsart-1 and ERS-2 SAR
images. Tang et al. [25] proposed the use of revised Bhattacharyya distance to detect large-
difference-scale targets and obtained progressive detection results. The other deep learning
detection method is one-stage detectors based on CNN. For instance, Zhao et al. [26]
proposed a novel open set domain adaptation classification method for unlabeled SAR
images containing unknown classes using Sentinel-1 and Gaofen-3 satellite datasets. These
existing publications strongly support the powerful ability of deep learning methods to
automatically learn and extracting the required context features [27–29]. However, such
methods face considerable difficulties in implementation due to their high computational
and spatial complexity [23,30]. Although the deep features extracted from pretrained
networks have shown excellent performance in solving such problems, their efficiency
and effectiveness are generally dependent on a number of prior samples. In particular,
detection precision and accuracy are limited when the study coverage area is too small
to provide enough sample pixels for training [31–33]. Therefore, traditional methods are
another good choice when focusing on surface change in a small study area that lacks
sufficient sample pixels.

Traditional methods of change detection based on SAR images can be divided into two
types according to whether prior knowledge is required, i.e., supervised and unsupervised
techniques [14,34–36]. Compared to the supervised technique, which is time-consuming
and labor-intensive due to its reliance on real reference data [37], the unsupervised change
detection method is more widely used in practice [19,38]. For example, Gong et al. pro-
posed a ratio method based on a neighborhood to generate difference images to detect
the changed area [39,40]. Although this method is superior the traditional method of
generating difference images, its detection results are seriously disturbed by noise, and the
denoising effect is not ideal. The use of unsupervised techniques to distinguish change
areas involves two key steps: first, the acquisition of the difference image (DI), and second,
the analysis of the DI to detect changes [41,42]. DI acquisition is an extremely important
step in the research of unsupervised change detection, which directly determines the de-
tection accuracy [35]. Difference or ratio arithmetics are commonly used to generate DIs,
e.g., difference value difference images (DVDIs) or mean value difference images (MVDIs).
Building DVDIs based on the difference arithmetic is easy to implement, but this method
ignores the neighborhood information of each pixel in the image [38]. Therefore, multiplica-
tive noises cannot be effectively suppressed. Superior to DVDI, the construction method of
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MVDI considers the neighborhood information of pixels in the image, making it robust to
noise. Given their advantages and limitations, many researchers have attempted to improve
the DVDI and MVDI methods with the aim of more accurate surface change detection.
For instance, Hou and Wei [42] proposed an unsupervised detection method based on
Gauss-log ratio image fusion, which is regarded an improvement of the DVDI method.

In order to exploit the advantages of different single DIs, some researchers have at-
tempted to combine single DIs when executing surface change detection. For example,
Ma et al. [43] fused the logarithmic ratio operator and the mean ratio operator to obtain
a DI, and Zheng et al. [44] proposed an unsupervised image change detection method
based on PPB filter denoising and K-means clustering to generate combined difference
images. In view of existing relevant publications, multiple DIs are often combined in a simple
linear manner, whereas the weights of different DIs are not fully considered [45–47]. Among
such research, the most common method is to set equal weights for the DIs, the detection
accuracy of which is limited because the value of each pixel and its neighborhood are
neglected [48,49]. In addition, SAR images contain valuable information on both amplitude
(i.e., intensity) and phase [50]. However, existing SAR change detection algorithms are usu-
ally based on intensity information but ignore phase information [15,51]. Many researches
have proven that the application of intensity information is subject many limitations when
retrieving soil moisture information of complex underground structures due to its sensi-
tivity to dielectric constant [52–54]. Taking the underground cavity as an example, its soil
moisture generally appears differently from the surroundings. This phenomenon leads to
false change detection results if only using intensity information. Previous studies have
confirmed that small changes in surface moisture can maintain high coherence between
two SAR images [55]. Therefore, our aim was to improve this detection error by adding
phase information.

Based on the above analysis, in the present study, we propose a novel approach to
SAR change detection. The Jinan Rail Transit Line R1 (“Line R1” hereafter) was selected
as the study area. Using multitemporal Sentinel-1 SAR data, in this study, we aimed to
obtain more accurate information with respect to surface changes around this subway. The
basic workflow comprised (1) generating single DIs with intensity and phase information,
(2) combining different DIs using the local energy weight (LEW) method and (3) detecting
the changed area using a fuzzy c-means (FCM) algorithm. Compared to the aforementioned
methods, the proposed method offers three major improvements. First, considering the
complex underground structure in Jinan City, i.e., rich in underground springs and shallow
burial, both intensity information and phase information were applied to reduce the false
detection caused by changes in the underground structure. In this study, the former
was adopted to generate DVDIs and MVDIs, whereas the latter was adopted to generate
coherent difference images (CDIs). Secondly, in contrast to previous studies in which single
DIs or Dis combined them with equal weights were directly applied, in this study, we
proposed a local energy weight (LEW) approach. Because the changed area often comprises
continuous rather than discrete pixels, a combined DI with LEW (“CoDI-LEW” hereafter)
fully considers the attributes of adjacent pixels and enhances the signal-to-noise ratio of
SAR images. Thirdly, when delineating the changed areas from the CoDI-LEW, we applied
the FCM algorithm instead of the widely used threshold method. Finally, the feasibility
and applicability of the proposed approach was verified by executing comparisons with
several existing SAR change detection methods.

The remainder of this paper is structured as follows. In Section 2, we introduce
the study area and datasets. In Section 3, we introduce the methodology and accuracy
estimation. In Section 4, we introduce the detected results of single and combined difference
images and comparisons with other existing methods. In Section 5, we provide a discussion.
Finally, in Section 6, we draw our conclusions.
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2. Study Area and Datasets
2.1. Study Area

Line R1 is located in Jinan, a four-seasons city in the north temperate zone. As the
capital city of Shandong Province in China, Jinan has a large population and relatively
congested transportation. As the first subway line opened on 1 January 2019, Line R1 passes
through the most densely populated counties of Jinan, relieving local traffic pressure. Line
R1 contains four underground stations and seven ground stations, with a total length of
26.1 km from the southwest to northeast direction. In addition to daily travel, the operation
of Line R1 has also had a significant impact on the surrounding surface. After confirming
with Shandong Rail Transit Survey and Design Company Limited, a subway construction
unit, the ground surface of Wangfu Zhuang Station and Fangte Station have changed
significantly from 2019 to 2020 compared with the other nine stations in the system. The
Wangfu Zhuang Station and Fangte Station on Line R1 were selected as the study areas to
execute change detection (Figure 1). The former is an underground and transfer station,
whereas the latter is an underground station, as well as the terminal of Line R1. Surrounded
by apparently distinct features, these two stations have exhibited diverse surface changes
in recent years. For instance, the Wangfu Zhuang Station is located on relatively flat terrain
and mainly surrounded by villages, farmland and schools. Along with the operation of Line
R1, large amounts of farmlands have been occupied by rural construction, e.g., the newly
developed residential building and parks in Wangfu Zhuang Village and the widening
of Liuchangshan Road, as shown in Figure 1c. In contrast, Fangte Station is surrounded
by urban residences and a business district, with the rapid emergence of schools and
commercial buildings, such as the Runyuan Experimental School and Evergrande YaYuan
West District, as well as some hotels and small supermarkets under construction (Figure 1d).
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Figure 1. Study area: (a) location of Jinan Rail Transit Line R1, (b) location of the Fangte and Wangfu
Zhuang Stations and (c,d) their surroundings.

2.2. Data Acquisition and Preprocessing

In this study, the experimental data were obtained from the European Space Agency’s
Sentinel-1 SAR satellite. Sentinel-1 is a C-band SAR sensor with dual polarimetric capabili-
ties (VV + VH). Previous studies have proven that the echo intensity of ground objects in
VH mode is much lower than that in VV mode [51]. In order to enhance the image feature
difference between changed and unchanged areas, VV polarization mode was selected for
the construction and processing of DIs in this study.

We used Sentinel-1A interferometric wide (IW) swath mode, VV polarization and
single-look complex (SLC) products. A total of three scene images were used for change
detection, with imaging times of 10 January 2019, 22 January 2019 and 5 January 2020,
respectively. According to the weather website, there was no rainfall or snow in the entire
coverage area of Line R1 from 10 December 2018 to 22 January 2019 and from 5 December
2019 to 5 January 2020. The time interval between 10 January 2019 and 22 January 2019
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was just 12 days; therefore, the surface change during this period might be negligible
based on prior knowledge. Because all data were collected in winter, the vegetation
was withered. The spatial resolution of Sentinel-1′s IW products was 2.3 m × 13.9 m
(range × azimuth), and the incidence angle was 39.1768◦. Data preprocessing included
track correction, coregistration, filtering, geocoding and clipping. Track correction needs to
be completed with precise orbit data (https://qc.sentinel1.eo.esa.int, accessed on 20 August
2021). In the coregistration operation, the SAR image collected on 10 January 2019 was
selected as the master image. During the filtering processing, the frost method was selected,
and the filtering window was set to 5 × 5. The image sizes of Wangfu Zhuang Station and
Fangte Station after pre-processing were 488 × 325 pixels and 286 × 174 pixels, respectively
(Figure 2).

Two Sentinel-2 level 1C images collected on 5 January 2019 and 23 December 2019
were used for accuracy estimation. Sentinel-2 images have a total of 13 spectral bands, with
a spatial resolution of up to 10 m and a playback period of 10 days. Data preprocessing
include image resampling, band composition and visual interpretation. The visually
interpreted changed areas were applied as the reference maps for accuracy estimation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

We used Sentinel-1A interferometric wide (IW) swath mode, VV polarization and 
single-look complex (SLC) products. A total of three scene images were used for change 
detection, with imaging times of 10 January 2019, 22 January 2019 and 5 January 2020, 
respectively. According to the weather website, there was no rainfall or snow in the entire 
coverage area of Line R1 from 10 December 2018 to 22 January 2019 and from 5 December 
2019 to 5 January 2020. The time interval between 10 January 2019 and 22 January 2019 
was just 12 days; therefore, the surface change during this period might be negligible 
based on prior knowledge. Because all data were collected in winter, the vegetation was 
withered. The spatial resolution of Sentinel-1′s IW products was 2.3 m × 13.9 m (range × 
azimuth), and the incidence angle was 39.1768°. Data preprocessing included track cor-
rection, coregistration, filtering, geocoding and clipping. Track correction needs to be 
completed with precise orbit data (https://qc.sentinel1.eo.esa.int, accessed on 20 August 
2021). In the coregistration operation, the SAR image collected on 10 January 2019 was 
selected as the master image. During the filtering processing, the frost method was se-
lected, and the filtering window was set to 5 × 5. The image sizes of Wangfu Zhuang Sta-
tion and Fangte Station after pre-processing were 488 × 325 pixels and 286 × 174 pixels, 
respectively (Figure 2). 

Two Sentinel-2 level 1C images collected on 5 January 2019 and 23 December 2019 
were used for accuracy estimation. Sentinel-2 images have a total of 13 spectral bands, 
with a spatial resolution of up to 10 m and a playback period of 10 days. Data prepro-
cessing include image resampling, band composition and visual interpretation. The visu-
ally interpreted changed areas were applied as the reference maps for accuracy estimation. 

 
Figure 2. Sentinel-1 A intensity images around (a,b) Wangfu Zhuang Station and (c,d) Fangte Sta-
tion. 

3. Methodology and Accuracy Estimation 
3.1. Methodology 

Given the individual advantages of three single DIs, including DVDI, MVDI and 
CDI, in this study, we proposed an LEW method to combine these three DIs. The work-
flow involves three key steps: (1) the calculation of three single DIs (Section 3.1.1), (2) the 
combination of single DIs based on the LEW method (“CoDI-LEW” hereafter) (Section 
3.1.2) and (3) the FCM clustering of changed and unchanged area (Section 3.1.3). The 

Figure 2. Sentinel-1 A intensity images around (a,b) Wangfu Zhuang Station and (c,d) Fangte Station.

3. Methodology and Accuracy Estimation
3.1. Methodology

Given the individual advantages of three single DIs, including DVDI, MVDI and CDI,
in this study, we proposed an LEW method to combine these three DIs. The workflow
involves three key steps: (1) the calculation of three single DIs (Section 3.1.1), (2) the
combination of single DIs based on the LEW method (“CoDI-LEW” hereafter) (Section 3.1.2)
and (3) the FCM clustering of changed and unchanged area (Section 3.1.3). The workflow
is shown in Figure 3. Building the CoDI-LEW is the most vital step, which determines the
weights of each pixel in the single DIs according to its “energy”. The aim of this step is
to increase the difference between changed areas and unchanged areas in SAR images. A
detailed explanation is illustrated in Section 3.1.2. In order to investigate the advantages
of the proposed SAR detection method, the accuracy of its detected changed area was
compared with those detected using single DIs or other combinations of DIs with equal
weights. In addition, in order to validate the advantages of the FCM clustering method, the
widely used Otsu and iteration methods were selected to for comparison with our detection

https://qc.sentinel1.eo.esa.int
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results. Furthermore, the applicability the proposed method was explored by observing
the detection results across additional selected regions.
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3.1.1. Single Difference Image (DI) Build Method

Given the individual advantages of the DVDI, MVDI and CDI methods analyzed in
the Introduction, three single DIs were built for combination in this study. Among the three
types of DIs, DVDIs and MVDIs mainly involve the intensity information of SAR images.
DVDIs and MVDIs are regarded as “difference of SAR intensity images” and “ratio of SAR
intensity images”, respectively. The two DIs were constructed as follows:

D1 = |(I2(i, j))− (I1(i, j))| (1)

D2 = 1−min
(

µ1(i, j)
µ2(i, j)

,
µ2(i, j)
µ1(i, j)

)
(2)

where D1 and D2 indicate the DVDI and MVDI, respectively; I1 and I2 indicate the ampli-
tudes of SAR images obtained on 22 January 2019 and 5 January 2020, respectively; and
µ1(i, j) and µ2(i, j) indicate the local mean value of pixel (i, j) of I1 and I2, respectively. The
values of D1 and D2 range from 0 to 1. High pixel values in D1 and D2 represent relatively
apparent surface change during the monitoring phase, with low values indicating few
apparent surfaces changes.

CDIs involve phase information. In this study, a difference arithmetic between two
groups of coherence coefficients was used to construct the CDI as follows:

D3 =
∣∣γi − γj

∣∣ (3)
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where D3 indicates the CDI, γi indicates the coherence coefficients between SAR images
obtained on 10 January 2019 and 22 January 2019 with a temporal baseline of 12 days and
γj indicates the coherence coefficients between SAR images obtained on 22 January 2019
and 5 January 2020 with a temporal baseline of 348 days. The value of D3 ranges from 0 to
1. High coherence coefficients represent high consistency between of each two SAR images,
that is, areas that have undergone considerable surface change present with low coherence
coefficients.

According to prior knowledge, the spatiotemporal baseline and surface moisture are
important factors causing incoherence [56]. In terms of the temporal baselines of selected
SAR images, we assume that the surface change during the period of 10–22 January 2019
was negligible, whereas that during the period between 10 January 2019 and 5 January 2020
was relatively apparent. The spatial baselines of two coherence coefficient images were
100 m and 117 m, respectively. The spatial baseline of the coherence images was far less
than 1/10 of the limit vertical baseline (5720 m), satisfying the demand of coherence of SAR
images. In terms of the surface moisture, as introduced in Section 2.2, it was not affected by
rainy or snowy weather at least 20 days in advance of the SAR image acquisition dates. In
total, based on the premise that the influence of the spatiotemporal baseline and surface
moisture can be neglected, the decoherence of the study area could be attributed to the
surface changes. Therefore, the difference algorithm between γi and γj in Formula (3)
could express the changes in the surrounding surface one year after the operation of Line
R1. Figure 4 presents the coherence coefficients of SAR images around Wangfu Station
and Fangte Station. The subgraphs imply that under the condition of a short temporal
baseline, the surface changes are not significant, with relatively coherent coefficients within
the entire region (Figure 4a1,a2). The surface changes are significant with low coherent
coefficients within the entire region with a long temporal baseline (Figure 4b1,b2).
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Figure 4. Coherent difference images around (a) Wangfu Zhuang Station and (b) Fangte Station.
Note: (a1,b1) indicate the coherence coefficients between SAR images obtained on 10 January 2019
and 22 January 2019; (a2,b2) indicate the coherence coefficients between SAR images obtained on
10 January 2019 and 5 January 2020. Regions within the red rectangles underwent apparent surface
changes during the monitoring phase.
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3.1.2. Local Energy Weight (LEW) Method

In SAR images, the changed area usually covers multiple pixels that are continuously
distributed in space. These pixels appear as neighborhoods with strong correlations instead
of isolated points distributed far from one another. As the detection accuracy of the
combined DI is sensitive to the weight of single DIs, we proposed the LEW method to
determine their weights by considering the neighborhood effects. This method involves a
total of three steps.

First, each pixel value in the three single DIs was recalculated as follows:

Eµ(x, y) =
w

∑
i=1

w

∑
j=1

Dµ(x + i, y + j) (4)

where Eµ(x, y) indicates the recalculated pixel value of the pixel located in line x and row y
(“pixel(x, y)” hereafter), in the single DI, Dµ(x + i, y + j) indicates the value of its neighbor
pixel located in line x + i and row y + i and w indicates the calculation window size. In this
study, Eµ represents the recalculated DVDI (“ED” hereafter), MVDI (“ED” hereafter) and
CDI (“ED” hereafter). Furthermore, w was set as 3. Importantly, the changed area generally
shows higher pixel values than the unchanged area. Due to the continuous distribution,
pixels in the changed area are mostly surrounded by neighbor pixels, the values of which
are also high. That is, their recalculated pixel values are higher than those located within
the unchanged area. Therefore, by implementing this step, the differences in pixel values
between changed areas and unchanged areas in the single DIs were enhanced. We named
this phenomenon “local energy enhancement” in this study.

Secondly, the recalculated pixel value was normalized to 0~1 as follows:

E′µ(x, y) =
Eµ(x, y)−min

(
Eµ(x, y)

)
max

(
Eµ(x, y)

)
−min

(
Eµ(x, y)

) (5)

where E′µ(x, y) indicates the normalized value of the recalculated pixel(x, y) in the single DI.
Thirdly, the pixel values in the combined DI were calculated as follows:

DCo(x, y) = α× D1(x, y) + β× D2(x, y) +ψ× D3(x, y) (6)

where DCo(x, y) indicates the values of pixel(x, y) in the combined DI; α, β and ψ indicate
the combination coefficients; D1(x, y) , D2(x, y) and D3(x, y) indicate the recalculated value
of Pixel(x, y) in the DVDI, MVDI and CDI, separately. α, β andψwere calculated as follows:

α =
E′D(x, y)

E′D(x, y) + E′M(x, y) + E′C(x, y)
(7)

β =
E′M(x, y)

E′D(x, y) + E′M(x, y) + E′C(x, y)
(8)

ψ =
E′C(x, y)

E′D(x, y) + E′M(x, y) + E′C(x, y)
(9)

where E′D(x, y), E′M(x, y) and E′C(x, y) were calculated by using Formula (5) and indicate
the normalized value of the recalculated pixel (x, y) in the DVDI, MVDI and CDI separately;
α + β +ψ = 1. In view of Formulas (6)–(9), it is obvious that the combination coefficient is
strongly related to the values of E′µ(x, y). By implementing this step, the differences in pixel
values between changed areas and unchanged areas in the combined DI were enhanced.
We named this phenomenon “local energy enhancement again” in this study. Therefore,
the LEW method can increase the difference between changed areas and unchanged areas
in SAR images.



Remote Sens. 2022, 14, 4419 9 of 19

3.1.3. Fuzzy C-Means Method

When analyzing the DIs, the changed area we are interested in is the target, and the
unchanged areas is the background. Considerable differences in the pixel values of the
background and foreground are conducive to the identification of changed areas. Effective
and accurate identification of the changed area from the background is one of the key steps
of surface change detection.

The fuzzy c-means (FCM) algorithm considers the statistical characteristics of the
image and calculates the membership of each sample to all classes [20,57,58]. After the
DIs were obtained, the classical FCM algorithm was used to detect the changed area. This
algorithm minimizes an objective function that calculates the within-group sum of squared
distances from each data example to each cluster center. FCM alternates between calculating
cluster centers, given the membership values of each data example, and calculating the
membership values, given the cluster centers. If data samples are defined as feature vectors
xk in RS, the objective function (Jm) is expressed as Formula (10).

Jm(U, V) =
c

∑
i=1

n

∑
k=1

um
ik Dik(xk, vi) (10)

The formulae to determine membership values and cluster centers are as follows:

uik =
Dik(xk, vi)

1
1−m

∑c
j=1 Djk

(
xk, vj

) 1
1−m

(11)

vi =
∑n

j=1
(
uij

)mDxj

∑n
j=1

(
uij

)m (12)

where U and V indicate the set of cluster centers and membership matrix, respectively; n
and c indicate the number of samples and clusters, respectively; vi indicates the ith cluster
center; uik indicates the membership value of the kth data example (xk) for the ith cluster;
and Dik (xk, vi) indicates the squared distance between the kth data example and the ith
cluster center. Any inner product-induced distance metric can be used.

In this study, the Euclidean distance was used to calculate the distance between
each pixel and the cluster center. The clustering number (c) of the FCM algorithm was
2 (changed/unchanged). In order to suppress noise and improve calculation efficiency,
the weighting index m of the FCM algorithm was set to 2, and the maximum number of
iterations was set to 50 [43,59].

3.2. Accuracy Estimation

The detection results of the single and combined DIs were objectively analyzed by
four indices, including the number of false positives (FPs), overall errors (OEs), percentage
correct classification (PCC), and kappa coefficient (K). K indicates the consistency between
the generated change detection map and ground truth, both of which have a value of falling
into the interval [0,1]. The formulae of the four indices are as follow:

FP = P12/(P11 + P12)× 100% (13)

OE = (P12 + P21)/(P1 + P2)× 100% (14)

PCC = (P11 + P22)/(P1 + P2)× 100% (15)

K = (PCC− Pe)/(1− Pe) (16)

Pe = [P1 × (P11 + P21) + P2(P22 + P12)]/n× n (17)

where P12 indicates the number of unchanged pixels that were misjudged as changed pixels;
P21 indicates the number of changed pixels that were misjudged as unchanged pixels; P11
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indicates the number of changed pixels extracted by the different methods; P22 indicates
the number of unchanged pixels extracted by the different methods; and P1 and P2 indicate
the number of changed/unchanged pixels in the reference truth map, respectively. The
higher the PCC value, the better the change detection performance. n indicates the number
of pixels.

4. Results and Analysis
4.1. Combined Difference Images of the Proposed CoDI-LEW

The CoDI-LEWs of Wangfu Station and Fangte Station along Line R1 are shown in
Figure 5. This method combined DVDI, MVDI and CDI using the LEW algorithm, which
considers both phase and intensity information of SAR images. The pixel weight in each DI
was determined based on the local energy of each pixel and its neighborhood pixels. The
pixel values of the CoDI-LEW show severe polarization, mostly close to 1 or 0, whereas
values ranging from 0.3 to 0.7 are negligible. The mean and variance of CoDI-LEW of
Wangfu and Fangte reach 0.0739, 0.0274 and 0.1133, 0.0283, respectively. The difference
between the unchanged and changed area is obvious. The two most obvious regions with
high CoDI-LEW values are marked by red rectangles; the one in Figure 5a represents the
Wangfu Village round Wangfu Zhuang Station, whereas that in Figure 5b corresponds to
the Runyuan Experimental School around Fangte Station. These two places are also the
main changed areas around the two subway stations from 2019 to 2020. This indicates that
the use of CoDI-LEW is feasible to determine the changed area in SAR images.

A special phenomenon is shown in Figure 5a and marked by a yellow rectangle.
During the field investigation, we found an underground cavity surrounding Wangfu
Village. Although it is falsely recognized as a changed area in the single DIs of DVDI,
MVDI and other combined DIs (as elaborated in Section 4.2), it appears as an unchanged
area in the CoDI-LEW. The existence of underground cavities causes the surface moisture
to differ from that of the surrounding surface, although the difference is not obvious under
the condition of a lack of precipitation for a long time. Although not shown in the single
SAR image (Figure 2a,b), it is obvious in the intensity difference images (i.e., DVDI and
MVDI). The addition of phase information weakens the performance of the underground
cavity on the intensity difference images. Results show that the CoDI-LEW can effectively
suppresses the speckle noise of SAR images.
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Figure 5. CoDI-LEWs of (a) Wangfu Zhuang Station and (b) Fangte Station. Note: the CoDI-LEWs
are combined by the DVDI, MVDI and CDI with local energy weights. (c,d) Underground cavity
around Wangfu Village.

4.2. Other Difference Images of the CoDI-DM, CoDI-DMC, DVDI and MVDI
4.2.1. Single Difference Images of the DVDI and MVDI

The intensity images collected on 22 January 2019 and 5 January 2020 were used
to construct single DIs of Wangfu Zhuang Station and Fangte Station. Figure 6 shows
that most pixels of DVDI and MVDI around these two stations are concentrated near 0,
indicating that most surrounding surfaces remained relatively stable during the operation
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of Line R1. However, partial pixels located around Wangfu Village and Beiyuan Viaduct
exhibit relatively high values of more than 0.6. Limited pixels show high values close to 1,
as shown in Figure 6a,b and marked by a red rectangle. These high values of DVDI and
MVDI imply that the operation of Line R1 resulted in dramatic surface changes within
local regions.
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Figure 6. Single difference images: (a) DVDI and (b) MVDI around Wangfu Zhuang Station and
(c) DVDI and (d) MVDI around Fangte Station. Note: these images were derived from SAR images
captured during the period between 22 January 2019 and 5 January 2020.

According to the statistics, Fangte Station has relatively higher DVDI values, with
a mean of 0.1173 and a variance of 0.0095; in comparison, the mean DVDI value and
variance of Wangfu Zhuang Station are slightly lower, at 0.0829 and 0.0050, respectively.
This indicates that Fangte Station underwent more apparent surface change during the
monitoring phase. The MVDI exhibits a better ability to distinguish between changed and
unchanged features, although with more noise than DVDI. With respect to Fangte Station,
the mean pixel value of MVDI was 0.2110, whereas the pixel values of MVDI around
Wangfu Zhuang Station were concentrated around 0.1, with a mean of 0.1592. Although the
MVDI shows more obvious surface change than the DIVI, it is more discrete than the DVDI,
with a higher variance of 0.0171 around Fangte Station and 0.0103 around Wangfu Zhuang
Station. Therefore, false information is inevitable, especially in the MVDI. The MVDI uses
the local mean to replace the value of the original pixel, considers the spatial neighborhood
information of the pixel and plays a role in suppressing noise. However, the introduction of
local neighborhood information cannot clearly exhibit the boundary between background
area and changed area, which is not conducive to executing the subsequent classification.

Compared to the CoDI-LEW, the mean values of the DVDI and MVDI are both higher,
implying that the two single DIs can represent more changed areas. The underground cavity
shown within the yellow rectangle seems to have higher pixel values in the DVDI (Figure 6a)
than in the CoDI-LEW (Figure 5a). The false detection in the MVDI as indicated by the
yellow rectangle in Figure 6b is much more apparent. This phenomenon indicates that
single DIs only focusing on intensity information cannot efficiently distinguishing between
changed and unchanged areas, especially in relatively complex underground structures.

4.2.2. Combined Difference Images of the CoDI-DM and CoDI-DMC

Two combined DIs with equal weights were built to explore the superiority of the
LEW method proposed in this study (Figure 7). On the one hand, the CoDI-DM was built
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by only focusing on the intensity information of SAR images, which combined the DVDI
and MVDI with equal weights. On the other hand, the CoDI-DMC was built by focusing
on both intensity and phase information of SAR images, combining the DVDI, MVDI and
CDI with equal weights.

The CoDI-DMs around Wangfu Zhuang Station and Fangte Station are shown in
Figure 7a and Figure 7c, respectively. According to the statistics, the mean and variance of
the CoDI-DM in Wangfu Zhuang Station and Fangte Station reach 0.1211, 0.0092 and 0.1641,
0.1410, respectively. The mean values were higher than those in the CoDI-LEWs but lower
than those in the DVDIs. There were no rules to follow with respect to the variance of the
CoDI-DMs. The CoDI-DMCs around Wangfu Zhuang Station and Fangte Station are shown
in Figure 7b and Figure 7d, respectively. The CDI was obtained by the difference algo-
rithm of two coherence coefficient images, i.e., 20190110–20190122 and 20190110–20200105.
Compared to the CoDI-DMs, the CoDI-DMCs have higher mean values of 0.1938, 0.2366
and lower variances of 0.0066, 0.0102. This implies that the contrast of changed areas
and unchanged areas in the CoDI-DMCs were more obvious than that in the CoDI-DM.
The underground cavity indicated by yellow rectangles, was considerably suppressed in
the CoDI-DMCs relative to the CoDI-DM. This indicates that although the CoDI-DM is
normally superior to the CoDI-DMC in detecting changed areas, the application of the CDI
could suppress the false detection of complex underground structures.

In summary, the combined DIs of the CoDI-DM and CoDI-DMC showed different
advantages in SAR change detection with respect to normal and complex underground
structures, respectively. However, compared to the CoDI-LEW, the two combined DIs with
equal weights both resulted in increased false detection with higher means and variances.
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Figure 7. Combined difference images including (a) CoDI-DM and (b) CoDI-DMC at Wangfu Zhuang
Station and (c) CoDI-DM and (d) CoDI-DMC at Fangte Station. Note: the CoDI-DMs combine by the
DVDI and MVDI with equal weights, whereas the CoDI-DMCs combine by the DVDI, MVDI and
CDI with equal weights.

4.3. Comparisons of the Detection Results between the Proposed CoDI-LEW and Other DIs

The detection results generated by the single and combined DIs of Wangfu Zhuang
Station and Fangte Station are shown in Figure 8. For all these subgraphs, the FCM method
was used for cluster analysis, and the changed areas are marked in white. Figure 8f was
visually interpreted based on the Sentinel-2 images during the period of 2019–2020 and
taken as the reference map in this study. Pixel numbers recognized as the changed areas in
these two stations are 1629 and 844, respectively.
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At a first glance of the detected changed areas from the five Dis, as shown in Figure 8a–e,
only those detected from the CoDI-LEWs exhibited relatively consistent spatial distributions
with the reference maps. The detected changed areas from the DVDI, MVDI, CoDI-DM
and CoDI-DMC appear much larger than the reference maps in space. According to the
statistics, the most misjudged pixels occurred in the MVDI. A total of 43,779 pixels around
Wangfu Zhuang Station and 10,235 pixels around Fangte Station were detected as changed
areas, which are much larger areas than the actual changed areas (i.e., 1629 and 844 pixels,
respectively). Fewer pixels were misjudged in the detection results of the DVDI, i.e., nearly
20,177 pixels around Wangfu Zhuang Station and 6521 pixels around Fangte Station were
detected as changed areas. By combining the DVDI and MVDI with equal weights, the
pixel numbers of the changed areas were considerably limited to 37,748 and 8539 around
Wangfu Zhuang Station and Fangte Station, respectively. However, although the CoDI-DM
is superior to the MVDI in suppressing misjudgment of changed areas, the number of
misjudged pixels is still considerable, even exceeding the number of pixels misjudged in
the DVDI. By combing the three single DIs with equal weights, the CoDI-DMC exhibited a
superior ability to distinguish between changed and unchanged areas. For Wangfu Zhuang
Station, 24,102 pixels were detected as changed area, whereas the number of pixels detected
as changed area for Fangte Station was 6108. Compared to the abovementioned DIs, the
CoDI-LEW identified the fewest pixels as changed area, i.e., 2664 pixels around Wangfu
Zhuang Station and 2564 pixels around Fangte Station.
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Figure 8. Changed areas detected from multiple difference images around Wangfu Zhuang Station
(a1–f1) and Fangte Station (a2–f2). Note: (a,b) are detected from single difference images of the DVDI
and MVDI, and (c–e) are detected from combined difference images. The CoDI-DM combines by the
DVDI and MVDI with equal weights, the CoDI-DMC combines the DVDI, MVDI and CDI with equal
weights and the CoDI-LEW combines the DVDI, MVDI and CDI with local energy weights.

Quantitative analysis results are shown in Table 1. The total number of error pixels
of the CoDI-LEW method was 920 and 909 for Wangfu Zhuang Station Fangte Station,
respectively, representing the fewest errors of the five methods, considerably reducing the
false-alarm rate and missed detection rate of the detection results. The PCC of the detection
results of the DVDI were as high as 91.3% and 88.31% because the difference operation
can be subtracted pixel by pixel, and the detailed information of the weak change region
was retained. However, the total number of errors detected by DVDI, MVDI, CoDI-DM
and CoDI-DMC was higher than that of CoDI-LEW. Moreover, the PCC and K of the first
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four DIs were lower than those of the LEW method. Combination of the CDI effectively
reduced the FP and OE reduced. Furthermore, the PCC and K were improved to 99.11%,
0.6274 and 98.17%, 0.5297, respectively. Accuracy analysis showed that the LEW approach
not only suppressed the influence of noise on the detection results to a considerable extent
but also had better detection accuracy than other methods. Moreover, the addition of phase
information made the detection results more accurate.

Table 1. The accuracy of change detection based on different methods in Fangte and Wangfu
Zhuang Stations.

DI

FP (Pixels) OE (Pixels) PCC (%) K

Wangfu
ZHUANG Fangte Wangfu

Zhuang Fangte Wangfu
Zhuang Fangte Wangfu

Zhuang Fangte

DVDI 13,053 5725 13,311 5760 91.30 88.31 0.1729 0.1808
MVDI 40,902 9548 41,067 9471 73.81 80.71 0.0548 0.1140

CoDI-DM 33,937 7745 34,109 7799 78.19 84.33 0.0689 0.1424
CoDI-DMC 27,962 6915 31,300 6258 80.23 85.97 0.0723 0.1569
CoDI-LEW 250 595 920 909 99.11 98.17 0.6274 0.5297

4.4. Comparisons of the Detection Results between the FCM and Other Existing Methods

In addition to the qualitative and quantitative estimation of the proposed CoDI-LEW,
in this study, we also explored the availability of the FCM method by comparison with two
classic threshold methods. Figure 9 shows the detected areas of the CoDI-LEW using the
Otsu method and the global threshold iteration method according to [60,61]. According
to the Otsu threshold method, 55,880 and 15,587 pixels were recognized as changed areas
around Wangfu Zhuang Station and Fangte Station, respectively. The FP, OE, PCC and K
reached 97.12%, 54,293; 66.08%, 0.0369; 95.22%, 14,941; and 69.98%, 0.0604, respectively. In
comparison, the numbers of pixels in the detected areas around Wangfu Zhuang Station
and Fangte Station using the global threshold iteration method were 15,944 and 8572,
respectively, which are much lower than those detected by the Otsu method, in addition to
lower FP, OE, PCC and K values of 91.01%, 14707; 90.81%, 0.1473; 92.03%, 8050; and 83.82%,
0.1178, respectively. However, the accuracy was still considerably lower than that of the
FCM method, indicating that the proposed FCM method is superior to the classic threshold
methods in suppressing noise in SAR images.
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4.5. The Applicability of the Proposed SAR Detection Method

In order to investigate the applicability of the proposed SAR detection method, we
applied it to a wider coverage area along Line R1. A buffer of two kilometers centered
on Line R1, far beyond Wangfu Zhuang Station and Fangte Station, was selected to exe-
cute CoDI-LEW generation and surface change detection (Figure 10). Results show that
the number of pixels detected as changed area was 6388, with a changed area covering
approximately 2.5 km2. In general, from 2019 to 2020, the surface changes around Line
R1 were mainly concentrated in around the northern stations, e.g., Fangte Station, West
Jinan Station, Dayang Zhuang Station and Wangfu Zhuang Station. The southwest and
central stations of Line R1 show a relatively small changed area, which may be related to
the topography of the study area. The terrain in the southwest fluctuates considerably,
whereas the urban area is mainly concentrated in the north. We selected seven typical
regions and intercepted Sentinel-2 images of corresponding time phases. Figure 10 shows
that that the detected changed areas are spatially consistent with actual surface changes,
although the types of surface changes differ in these changed areas. For example, Zone
A corresponds to a change from bare land to artificial water, and the detection result ade-
quately represented the shape of the changed area. Zones B, D, E, F and G correspond to
the construction of new residential buildings. Zone C corresponds to a change from bare
land to artificial buildings and playgrounds. In total, the surface change around Line R1
was mainly manifested as transformation of bare land into artificial buildings. In particular,
the detection results in Zones E, F and G imply that the surface changes in small regions
can be successfully delineated using the proposed SAR detection method. Therefore, we
suggest that the proposed SAR detection method can efficiently monitor surface changes
with diverse underground structure.
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5. Discussion

The detection of surface change along urban rail transit plays an important role in
monitoring environmental dynamics, recognizing land use change and assessing disasters.
The aim of the present study was to detect surface changes around Wangfu Zhuang Station
and Fangte Station one year after the operation of Jinan Rail Transit Line R1. SAR images
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from Sentinel-1A operated under the Copernicus program were selected as the experimental
data. We proposed a novel SAR detection method to delineate the changed areas around
Wangfu Zhuang Station and Fangte Station along Line R1.

The workflow involved the three steps of single DI building, CoDI-LEW generation
and changed area extraction. In the first step, despite the commonly used DVDI and MVDI
referring to the intensity information of SAR images, another single DI named “CDI”
referring to the phase information of SAR images was built. The CDI was generated
using the difference arithmetic between two groups of coherence coefficients, reflecting the
surface change according to analysis of the spatiotemporal baseline and surface moisture
conditions, as elaborated in Section 3.1.1. In the second step, we proposed an LEW method
to combine the three single DIs, i.e., the DVDI, MVDI and CDI. In this study, the basic
purpose of applying the LEW method was to increase the difference between changed
areas and unchanged areas in SAR images, as elaborated in Section 3.1.2. One the one
hand, by executing Formula (4), the difference of pixel values between changed areas and
unchanged areas in the three single DIs was separately enhanced. One the other hand, by
implementing Formulas (5)–(9), the difference in pixel values between changed areas and
unchanged areas in the combined DI was further enhanced. Finally, the CoDI-LEW was
generated according to local energy weights, including both neighborhood information
and intensity-phase information. In the third step, we applied the FCM method to delineate
the changed areas. The purpose of implementing the FCM method was to cluster the
pixels in the CoDI-LEW into the surface changed category and unchanged category, as
elaborated in Section 3.1.3, guaranteeing the difference between these two categories as
much as possible. Based on the three steps, the changed areas were successfully detected
with relatively high accuracy.

The proposed method was assessed with respect to three aspects. First, the detection
results and accuracy (Section 4.3) of the proposed CoDI-LEW were compared with two com-
monly used single Dis, DVDI and MVDI, and two other combined DIs with equal weights,
CoDI-DM and CoDI-DMC. Results show that the changed areas detected from the proposed
CoDI-LEW present the highest consistency with actual changes (Sections 4.1 and 4.2). In
particular, the application of the CDI efficiently suppressed misjudgments of complex
underground structures, e.g., underground cavities. The detection results of the CoDI-LEW
contained the fewest misjudged pixels and the highest percentage correct classification and
Kappa coefficient (Section 4.3). Secondly, the advantage of combing three single DIs using
the LEW method was proven by executing a comparison with two classic threshold meth-
ods. Results show that the LEW method improved the detection accuracy in space relative
to the Otsu or global threshold iteration method (Section 4.4). Thirdly, the applicability of
the proposed SAR detection method was validated by applying it to a 2 km buffer around
Line R1. Further observation of eight regions that underwent different surface changes
during the monitoring phase revealed that the proposed method can help to delineate the
changed areas resulting from diverse kinds of surface changes.

However, the present study is subject to limitations that need to be improved in the
future. (1) The change detection around the subway, especially for the subway reserve,
requires a short period and frequent detection. However, our method depends on the
revisit period of sensors. (2) Given that the VH echo intensity of ground objects is much
lower than that of VV polarization, only VV was used in the present study. Therefore, in
follow-up research, we will continue to analyze differences in ground object coherence
under different polarization conditions. (3) For the clustering method, we used the classical
FCM in the present study. We will consider the optimization of the clustering method in
future work. (4) In addition, whether the proposed method can be combined with other
methods, e.g., deep-feature-based methods, also needs to be explored.

6. Conclusions

In this study, a novel SAR detection method was proposed to delineate the changed
areas around Wangfu Zhuang Station and Fangte Station along Jinan Rail Transit Line R1.
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The workflow comprised three steps: (1) the calculation of the DVDI, MVDI and CDI; (2) the
combination of single DIs with the LEW; and (3) FCM clustering of changed and unchanged
areas. This method made full use of the intensity and phase information of moderate–
high-spatial-resolution SAR images and can be used for time series change detection. The
detailed information of the image was preserved, and the noise was suppressed to the
greatest extent possible, improving the change detection specificity while retaining detailed
information of the changed area. In order to estimate the advantages and applicability of
the proposed method, its detection results were compared with those obtained using other
existing methods. Experimental results showed that the addition of the CDI and application
of the LEW and FCM methods considerable improved the detection accuracy in terms of
both quality and quantity. The proposed method is simple and easy to implement, and it is
effective for the detection of diverse and complex surface changes around linear features.
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