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Abstract: Carbon dioxide (CO2) is one of the main greenhouse gases leading to global warming, and
the ocean is the largest carbon reservoir on the earth that plays an important role in regulating CO2

concentration on a global scale. The column-averaged dry-air mole fraction of atmospheric CO2

(XCO2) is a key parameter in describing ocean carbon content. In this paper, the Data Interpolation
Empirical Orthogonal Function (DINEOF) and the Bayesian Maximum Entropy (BME) methods are
combined to interpolate XCO2 data of Orbiting Carbon Observatory 2 (OCO-2) and Orbiting Carbon
Observatory 3 (OCO-3) from January to December 2020 occurring within the geographical range
of 15–45◦N and 120–150◦E. At the first stage of our proposed analysis, spatiotemporal information
was used by the DINEOF method to perform XCO2 interpolation that improved data coverage; at
the second stage, the DINEOF-generated interpolation results were regarded as soft data and were
subsequently assimilated using the BME method to obtain improved XCO2 interpolation values.
The performance of the synthetic DINEOF–BME interpolation method was evaluated by means of a
five-fold cross-validation method. The results showed that the Mean Absolute Error (MAE), the Root
Mean Square Error (RMSE), and the Bias of the DINEOF-based OCO-2 and OCO-3 interpolations
were 2.106 ppm, 3.046 ppm, and 1.035 ppm, respectively. On the other hand, the MAE, RMSE, and
Bias of the cross-validation results obtained by the DINEOF–BME were 1.285 ppm, 2.422 ppm, and
−0.085 ppm, respectively, i.e., smaller than the results obtained by DINEOF. In addition, based on the
in situ measured XCO2 data provided by the Total Carbon Column Observing Network (TCCON),
the original OCO-2 and OCO-3 data were combined and compared with the interpolated products of
the synthetic DINEOF–BME framework. The accuracy of the original OCO-2 and OCO-3 products is
lower than the DINEOF–BME-generated XCO2 products in terms of MAE (1.751 ppm vs. 2.616 ppm),
RMSE (2.877 ppm vs. 3.566 ppm) and Bias (1.379 ppm vs 1.622 ppm), the spatiotemporal coverage of
XCO2 product also improved dramatically from 16% to 100%. Lastly, this study demonstrated the
feasibility of the synthetic DINEOF–BME approach for XCO2 interpolation purposes and the ability
of the BME method to be successfully combined with other techniques.

Keywords: carbon dioxide; XCO2; DINEOF; OCO; BME

1. Introduction

Since the industrial revolution, the global temperature has shown an obvious upward
trend worldwide, and, therefore, the global climate has undergone significant changes [1].
In this process, the greenhouse gas emission caused by increased human activities has
become one of the important factors driving global warming [2]. Among them, carbon
dioxide (CO2) is a key greenhouse gas that contributes considerably to global warming.
In order to change such a grim situation, the necessary measures include the reduction
of greenhouse gas emission, the development of low-carbon industries, carbon storage,
and related research activities. The fifth report of the Intergovernmental Panel on Climate
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Change IPCC pointed out that the continuous change in human fossil energy use and land
use pattern led to the rising trend of carbon emissions, so the research on carbon fixation
and storage became crucial [1]. The oceans account for up to 71% of the earth’s surface area
and absorb about 30% of anthropogenic carbon dioxide from the atmosphere every year [3].
As a very important sink of atmospheric carbon dioxide, the ocean is also a very important
carbon reservoir worldwide and plays a role in regulating carbon dioxide concentration
to a large extent. It has been estimated that in addition to 4.0 Pg C/a remaining outside
the atmosphere, the remaining 2.3 Pg C/a is absorbed by the oceans, collectively known
as marine blue carbon [4]. The XCO2 data have an obvious variability across space and
time. Being an important parameter describing ocean carbon content, obtaining XCO2 time
series data is of great significance for related research purposes.

At present, carbon satellites are employed to monitor the XCO2 on Earth, such as
the Orbiting Carbon Observatory 2(OCO-2) and Orbiting Carbon Observatory 3(OCO-3)
satellites in the United States [5,6], the GOSAT satellite in Japan [7], and the SCIAMACHY
and CarbonSat satellites in Europe [8,9]. China also launched its own carbon satellite
TanSat at the end of 2016 [10]. Given that the clouds, water vapor, atmospheric aerosol,
and other factors will influence the coverage and quality of remote sensing data, it is of
great importance to consider using statistical methods to improve the integrity of remote
XCO2 data in the space and time domains with high resolution and accuracy. At present,
relevant studies have used the spatiotemporal Kriging method to interpolate XCO2 data
and attempted to achieve better interpolation results by modifying the spatiotemporal
variogram model [11,12]. In this study, the Data Interpolating Empirical Orthogonal
Functions (DINEOF) [13,14] and the Bayesian Maximum Entropy method (BME) [15,16]
will be integrated to map XCO2 in the composite space–time domain.

The BME method is considered the most advanced spatiotemporal geostatistics
method with strong theoretical support. The strong inclusivity aspect of BME can ef-
fectively integrate different kinds of uncertain data sources in spatiotemporal interpolation,
as well as core knowledge bases and auxiliary information (such as physical laws, empirical
models, and expert experience) to improve the accuracy of the interpolation process [15,16].
In the past, the BME method has been widely used in many scientific and engineering fields
such as earth and atmospheric sciences, environmental engineering, ecological research,
and geography studies; and, in recent years, the BME approach has been increasingly used
in ocean studies, too [17]. For example, BME has been combined with physical oceanogra-
phy formulae to quantitatively assess the severity of marine pollution [18]. Furthermore,
BME was used to improve the modeling estimation accuracy of chl-a (chlorophyll a) inver-
sion in a complex water body [19]. XCO2 data comes from carbon satellites in orbit, and
XCO2 data obtained from the sea surface will show obvious distribution characteristics, but
the overall spatiotemporal coverage is low. Hence, if only the BME method is used in this
case, the influence of the spatiotemporal distance factor on data will be greatly enhanced.
Some studies have used a new covariance model to describe the spatiotemporal correlation
characteristics and then used it with the BME method to carry out the correlation study
of sea surface salinity (SSS) [20]. In this study, instead, data will be processed using the
DINEOF method before implementing the standard BME method. The DINEOF analysis is
based on empirical orthogonal functions; it does not need any prior information and can
completely carry out data interpolation and spatiotemporal modal decomposition based
on the data itself [21,22]. The DINEOF method can be used for preprocessing, and the
spatiotemporal structure information of the spatiotemporal random field can be retained,
which can be then effectively combined with the BME method to improve the overall
prediction accuracy.

In view of the above considerations, the proposed approach is described as follows.
Section 2 next introduces the data sources and scope of the research. Section 3 describes the
data handling process, including data preprocessing and the main DINEOF process com-
bined with BME spatiotemporal interpolation. Section 4 presents the XCO2 interpolation
results, together with a systematic analysis of the synthetic DINEOF–BME interpolation
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framework, including aspects of the space–time modal, cross-validation, and data com-
parison. Section 5 discusses the methodological framework and XCO2 products. Lastly,
Section 6 is a summary of the proposed study approach.

2. Data Sources and Research Scope
2.1. Data Sources

The data sources for this study include the following. The Orbiting Carbon Observa-
tory 2 (OCO-2_L2_Lite) is the second dedicated carbon satellite in the world, following
Japan’s GOSAT, successfully launched by NASA in July 2014 [23]. OCO-2 is a polar-orbiting
satellite that monitors carbon sources and sinks near the surface. Its XCO2 product has a
high spatial resolution, but since it is affected by clouds, aerosols, and other factors, it is dif-
ficult to cover the global scope. NASA’s Orbiting Carbon Observatory 3 (OCO-3_L2_Lite)
was launched in April 2019 and became fully operational on 6 August 2019 [24]. The
orbit of OCO-3 allows it to observe the earth in all regions of latitude less than 52◦ and
also provides high-precision XCO2 data [25]. Moreover, XCO2 measurements provided
by the Total Carbon Column Observing Network (TCCON) were used as a comparative
dataset [26,27].

2.2. Research Scope

In this study, the period from January 2020 to December 2020 was selected as the
time range of interest, and the ocean region of 15–45◦N and 120–150◦E was selected as the
corresponding space range. The XCO2 products of OCO-2 and OCO-3 are daily data, and
daily data coverage and data accuracy are limited. As will be described in the next section,
average daily data are processed to obtain monthly-averaged XCO2 data from January
to December 2020. Figure 1 below shows the ground track images of OCO-2 and OCO-3
satellites in the study area.

Figure 1. The Trajectories of OCO-2 (red) and OCO-3 (blue) Satellites during September.

3. Data Processing and the Synthetic DINEOF–BME Interpolation Approach
3.1. Data Preprocessing

The OCO-2 and OCO-3 data need to be briefly processed before the interpolation
method is used. The preprocessing procedure can be roughly divided into three steps:
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(a) Outlier analysis: analyze the overall situation of XCO2.
(b) Simple fusion: the daily XCO2 data of OCO-2 and OCO-3 were directly and simply

fused. First, the resolution of the two data was processed as a 0.1 latitude and
longitude by averaging the data points in the same grid. Due to the great difference
in the orbits of the two satellites, the data of the two satellites were rarely duplicated.

(c) Monthly average processing: The time resolution of XCO2 data fused by OCO-2 and
OCO-3 is daily, but the time range of this study is long. Therefore, the time resolution
is adjusted to monthly, and the XCO2 data within the same grid point are averaged
every month.

3.2. The DINEOF Method

DINEOF is an analysis method based on empirical orthogonal function analysis (EOF)
for missing data interpolation and spatiotemporal modal extraction [21].

In the DINEOF method, X is assumed to be the original data matrix, where the
dimension of Xmn is m × n (m > n), where m is the dimension of data Xmn in space, and n
is the dimension of data Xmn in time. In this study, m refers to 90,000 spatial points in the
study area (30◦×30◦), and n refers to 12-time instants (with unit month) units of the study.
In the matrix Xmn, each column represents all spatial points at the same time instant, and
there are 90,000 spatial points corresponding to that time in each individual column, so the
matrix Xmn in this study has a total of 12 columns and 90,000 rows.

Xmn =


x11 x12
x21 x22

. . . x1n

. . . x2n
...

...
xm1 xm1

. . .
...

. . . xmn

 (1)

The space–time variable field Xmn is decomposed into two parts: time function Zmn
and space function Vmm

Xmn = VmmZmn (2)

The space function and the time function are respectively composed of m orthogonal
space typical fields and corresponding time coefficients; that is, the decomposition of the
time function and the decomposition of the space function must meet certain conditions:

vT
i vj =

{
0, i 6= j
1, i 6= j

zT
i zj =

{
0, i 6= j
λj, i 6= j

zT
i zj =

{
0, i 6= j
λj, i 6= j

i, j = 1, 2 . . . m (3)

After this premise is satisfied, the typical field in space point j can be expressed as:

vj =
(
v1j, v2j . . . vmj

)T (4)

The time coefficient of space point i and time point t can be expressed as

zit = ∑m
p=1 vipxpt (5)

The space field at the space point k can be expressed as:

xk = v1z1k + v2z2k . . . vmzmk (6)
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Let, A = XXT Then, according to the properties of space typical fields and correspond-
ing time coefficients:

A = VΛVT (7)

The column vector of V is the feature vector of A, and the Λ is the eigenvalue matrix
of A. Based on the decomposition principle of the EOF method mentioned above, the EOF
calculation process of actual data can be summarized as the following six steps:

1. Determine the morphology of spatiotemporal variable field Xmn;
2. Find the covariance matrix of Xmn: A = XXT;
3. Calculate the eigenvalues and eigenvectors of matrix A;
4. The eigenvalues are arranged in ascending order to obtain the eigenvalue matrix, and

the eigenvector matrix is changed accordingly;
5. Calculate time function;
6. Select the first N effective space typical fields and combine them with the correspond-

ing time coefficients for modal calculation and output.

The EOF data reconstruction mentioned above is for complete data. However, a part of
the actual data is missing to the extent that some additional processing must be performed
on the missing dataset. Since EOF decomposition of large data volume is not affected by
local minority changes, it can be used to obtain reconstructed values of missing regions
through iterative EOF. Let matrix I include the set of not observed data points; when (i, j)
∈ I it means that the data at the space point i and time point j are missing. Then, EOF
decomposition is performed for the spatiotemporal variable field Xmn (refer to the EOF
calculation steps above). The first N spatial typical fields are selected to reconstruct the
whole space–time variable field

Xmn = VmNZNn (8)

Then the unknown point Xij is updated immediately

xij = vi1z1j + vi2z2j . . . viN ZNj (9)

In this study, the DINEOF method is mainly used for the reconstruction of the missing
data based on EOF for XCO2 data with large-scale missing data. The reconstructed data
will be assimilated as soft data by the BME method, which is discussed in Section 3.3
below. In order to ensure the accuracy of the DINEOF results obtained within the time
range considered in this study (January 2020 to December 2020), the DINEOF process was
extended by one month before and after the time range. Data from December 2019 and
January 2021 was also used in the DINEOF interpolation process. Finally, the DINEOF
data results and the spatiotemporal modal images were obtained (see Section 4.2.1 for
detailed analysis).

3.3. The BME Method

The BME method is a modern spatiotemporal geostatistics method that is a consider-
able improvement over the traditional geostatistics methods such as the Kriging method:
for example, while Kriging techniques are limited to pure hard data interpolation, BME
can integrate uncertain data from multiple sources in the spatiotemporal interpolation
process to improve its accuracy; BME can be used in the case of nonlinear interpolation
and non-Gaussian distributions, thus avoid some of the restrictions of the Kriging tech-
niques. Several other advantages of BME have been discussed in detail in the relevant
literature [16,28–32].

The three main stages of the BME method are as follows (Figure 2):

- The prior stage considers the core or general knowledge base G–KB (including spa-
tiotemporal covariance models, physical laws, and scientific theories). The general
knowledge base in this study is the covariance function cX(p, p′) (Equation (10)).
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The Spatiotemporal Random Field (STRF) X(p) is a collection of individual Random
Variables (RV).

cX
(
p, p′

)
= E[X(p)− E(X(p))][X(p′)− E(X(p′))] (10)

- The intermediate stage involves the site-specific knowledge base (S-KB ‘Private data’
in Figure 2) consisting of hard (or accurate) data and soft data (i.e., data with inherent
uncertainty, such as remote sensing data with low precision and information based
on limited experience). In this study, the hard data were monthly average XCO2 data
after the fusion of pretreated OCO-2 and OCO-3, whereas interpolating data processed
by the DINEOF method will be used as soft data after removing the fusion data of
OCO-2 and OCO-3.

- The posterior stage integrates the two main knowledge bases above, G and S, to
obtain the posterior probability density of the XCO2 spatiotemporal distribution or
fG∪S = fK, where K = G∪ S is the total KB expressed as the union of the core G and
the site-specific S bases.

Figure 2. Workflow of the BME analysis.

The above spatiotemporal XCO2 interpolation procedure is quantified in terms of the
solution of the fundamental BME equations, as follows [17,32]:∫

dχ(g− g)eµ·g = 0 (11)

∫
dψ(χ)eµ·g −AfK = 0 (12)

where χ denotes the XCO2 concentrations across space–time, g is a vector of functions
expressing mathematically the available core knowledge base G mentioned earlier; the g
denotes the mean value of g; the function ψ represents the available site-specific knowledge
base S also mentioned earlier; the µ is a vector of coefficients representing the relative
importance of each g-function (µ·g denotes the inner product of the vectors g and µ, which
are both functions of space–time); and A is a normalization parameter. Equations (11)
and (12) can be solved with respect to the XCO2 probability law fK at all mapping points
of interest (i.e., space–time points at which XCO2 interpolations are sought). Software
libraries have been developed dealing with the solution of Equations (11) and (12) in
real-world conditions, including BMElib, QuantumBME, and StarBME [33]. More technical
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details and physical interpretations of the basic BME equations above can be found in the
relevant literature.

3.4. The Synthetic DINEOF–BME Interpolation Approach

In this study, the DINEOF and the BME methods are combined to interpolate the
XCO2 remote sensing data of OCO-2 and OCO-3 satellites. The process can be roughly
divided into four stages: (a) in the data pretreatment stage, the OCO-2 and OCO-3 data
are merged into the OCO XCO2 dataset, the spatial resolution is processed to 0.1 decimal
degree, and the monthly average is carried out; (b) the DINEOF stage, where the method is
used to process the monthly averaged remote sensing data to produce the result data and
spatiotemporal images; (c) the data structuring, where the remote sensing data processed by
monthly average is directly constructed as hard data, while the data processed by DINEOF
method excludes hard data points, and the rest is constructed as soft data; (d) the BME
stage, where the method is used to interpolate the constructed hard data and soft data to
obtain the final XCO2 product. The above process is outlined in Figure 3 below.

Figure 3. Construction Chart of the Study.

3.5. Validation and Comparison

In order to assess the accuracy of the synthetic DINEOF–BME method as well as
the accuracy of the XCO2 interpolation results, this study implemented spatiotemporal
image analysis and cross-validation analysis to verify the performance of the synthetic
method, using TCCON as a comparison dataset. By calculating the mean deviation and
root mean square error of TCCON XCO2 data with OCO-2 and OCO-3 satellite XCO2 data
and using the synthetic DINEOF–BME interpolation framework, the product performance
was analyzed.

EOF analyzes the data structure features in the matrix and extracts the feature quantity
of the main data. It is also known as space–time modal decomposition in geostatistics
and is a key data analysis element of the DINEOF method [33]. In this study, the tem-
poral and spatial modes of OCO-2 and OCO-3 satellite XCO2 data were extracted for
cartographic analysis.



Remote Sens. 2022, 14, 4422 8 of 17

The k-fold cross validation technique [34] was used to verify the interpolation accuracy
of the BME method itself. In this study, taking the data volume and processing efficiency
into consideration, the k value was set to five, and the time resolution was the month. In
other words, in the hard data of 12 months from January to December 2020, the data of each
month were randomly divided into five groups. In the cross-validation process, four of
these groups were used as hard data for BME modeling purposes, and the other group was
used for validation purposes. After all, five groups of data were validated, and the mean
value of the five validation results was taken as the cross-validation result of that month.

4. Results
4.1. XCO2 Data Interpolation Results

Figure 4 shows the interpolation results of OCO-2 and OCO-3 XCO2 from January
to December 2020 using the synthetic DINEOF–BME approach. In general, the overall
quality of the products is high, and the product coverage rate reaches 100%. In addition,
the product has high spatial resolution and perfect image detail. Figure 3 shows the
distribution of XCO2 at the sea surface in that month and its change over time. According
to the results of the twelve months shown in this figure, in the case of low air temperature
from January to April and from October to December, the XCO2 is higher at the land edge
and lower at the ocean. In the longitude direction, the higher the longitude, the lower
the value, and in the zonal direction, the higher the latitude, the higher the value. The
opposite is true for warmer temperatures from May to October. Thus, it can be seen that the
XCO2 distribution exhibits obvious seasonal changes. During colder seasons, the regional
XCO2 concentration decreases linearly with the distance between the region and the land.
Conversely, in warmer seasons, the regional XCO2 concentration increases linearly with to
the distance between the region and the land.

Figure 4. Monthly Interpolation Results of XCO2 from January to December 2020(The orange line
graph at the bottom of the picture represents the longitudinal integration of XCO2/ppm, and the
blue line graph at the right represents the latitudinal Integration of XCO2/ppm).

4.2. Comparison and Validation Analysis
4.2.1. Spatiotemporal Model Analysis

The value of the EOF modal parameter represents its variance contribution rate, where
the line chart of the time series represents the change of the whole study area over time,
and the spatial modal chart represents the region that conforms to the change in the time
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series. If the spatial modal coefficient is positive, it means that the change of time series in
this space conforms to the corresponding time mode. On the contrary, if the spatial modal
coefficient is negative, it means that the time series change of this space is opposite to the
corresponding time mode.

When using the three modes, DINEOF synthesized the XCO2 signal was the best, and
the variance contribution rate reached 88.58%. The three patterns are shown in Figure 5,
along with the corresponding variance contribution rates. The first temporal mode ac-
counted for about 82.63% of the total variability and was an obvious seasonal signal, with a
high value in summer and a low value in winter. The spatial distribution of the first EOF
is generally positive in coastal areas and negative in offshore areas. In the coastal region,
XCO2 is higher in summer and lower in winter, which is the same as the time series rule.
In the far sea region, XCO2 is lower in summer and higher in winter, which is opposite to
the time series rule. Preliminary analysis and previous studies show that human activity
is the main reason for this phenomenon. That is, the more intense the human activity, the
higher the XCO2 content in this area. Spatially, the findings of this study are consistent
with these assessments.

Figure 5. Three kinds of variance contribution rate of EOF Modes of time (left) and space (right)
(The line chart on the left represents the time series corresponding to the study area, and the color
chart on the right represents the spatial modes corresponding to the study area).

4.2.2. Cross Validation

In this study, the interpolation accuracy of the synthetic DINEOF–BME approach
vs. the DINEOF technique alone was analyzed using a five-fold cross-validation method.
The mean absolute error, mean square error, and root mean square error of 60 groups of
cross-validation data were calculated for a total of 12 months in 2020, and then the mean
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value was processed. The results are shown in Table 1. For the synthetic DINEOF–BME
approach, the MAE is 1.285 ppm, RMSE is 2.422 ppm, Bias is −0.085 ppm, and for the
DINEOF technique, the MAE is 2.106 ppm, RMSE is 3.046 ppm, Bias is 1.035 ppm. It can
be seen that the cross-validation result of the synthetic DINEOF–BME approach is better
than that of using only the DINEOF technique, which implies that the proposed synthetic
approach combining the two methods produces more accurate results.

Table 1. The Result of 5-Fold Cross Validation.

Methodology MAE (ppm) RMSE (ppm) Bias (ppm)

DINEOF–BME 1.285 2.422 −0.085

DINEOF 2.106 3.046 1.035

4.2.3. Comparative Analysis

In this study, TCCON XCO2 measured dataset was used to compare with OCO XCO2
data and DINEOF interpolation XCO2 products with the BME method from MAE and
RMSE. The overall situation is shown in Table 2.

Table 2. Results of the TCCON XCO2 Measured Data Compared with the OCO XCO2 Data and the
Product of XCO2 interpolated by DINEOF Method the Product of XCO2 interpolated by the synthetic
DINEOF–BME Approach.

Site Burgos Saga Tsukuba Rikubetsu Average

OCO Data
MAE (ppm) 2.663 2.468 0.741 4.591 2.616

RMSE (ppm) 3.489 3.043 0.886 6.846 3.566
Bias (ppm) 2.003 1.579 −0.741 3.649 1.622

DINEOF
MAE (ppm) 1.430 1.657 1.041 5.208 2.334

RMSE (ppm) 2.742 3.921 1.216 10.847 4.682
Bias (ppm) −0.581 0.797 0.215 1.500 0.483

DINEOF–BME
MAE (ppm) 1.266 1.87 0.889 2.981 1.751

RMSE (ppm) 2.799 5.155 1.036 2.517 2.877
Bias (ppm) 1.255 1.835 0.889 1.537 1.379

The coverage of the XCO2 products obtained by the synthetic DINEOF–BME interpo-
lation reached the optimal 100% level in the study area, which is 84% higher than the 16%
of OCO data, thus, demonstrating a perfect performance of the synthetic DINEOF–BME
approach in this respect.

The mean MAE of the synthetic DINEOF–BME interpolation products, the DINEOF
products, and the OCO data matched with TCCON data were 1.751 ppm, 2.334 ppm, and
2.616 ppm, respectively. The RMSE values were 2.877 ppm, 4.682 ppm, and 3.566 ppm, and
the Bias values were 1.379 ppm, 0.483 ppm, and 1.622 ppm, respectively.

Figure 6 shows the measured XCO2 data obtained by TCCON at four stations in the
study area and the line chart of comparison with OCO XCO2 data and DINEOF–BME
interpolation XCO2 data. In addition to the above-mentioned average error of DINEOF–
BME, interpolation products are obviously better than OCO data; from the perspective of
time, DINEOF–BME interpolation products are also more consistent with the changing
trend of measured data. Similarly, as shown in Figure 7, the R2 matching values of TCCON
measured XCO2 data, OCO XCO2 data, and DINEOF–BME interpolation XCO2 data are
0.733 and 0.682, respectively, which also proves that DINEOF–BME products have higher
matching degree.
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Figure 6. Line chart of the TCCON XCO2 Measured Data Compared with the OCO XCO2 Data and
the Product of XCO2 interpolated by the synthetic DINEOF–BME Approach (January–December
2020).

Figure 7. Scatter diagram of the TCCON XCO2 Measured Data Compared with the OCO XCO2 Data
and the Product of XCO2 interpolated by the synthetic DINEOF–BME Approach.
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5. Discussion
5.1. Methodology

In this study, a synthetic spatiotemporal interpolation framework with the BME
method as the dominant component and DINEOF as the auxiliary component was con-
structed. The synthesis of these two methods gives full play to their own characteristics,
and it also achieves fruitful cooperation between them.

DINEOF method has been successfully applied to the study of sea surface chlorophyll-
a, sea surface salinity, sea surface temperature, and other ocean data [35,36]. According
to its description in Section 3.2, the DINEOF method systematically decomposed and
reconstructed spatiotemporal data based on the characteristics of the data field. Although
this process would lead to the loss of a large amount of effective data information, whereas
only the spatiotemporal characteristics of data would be retained, it can greatly improve
the interpolation data coverage. As is shown in Figure 8 below, in this study, the DINEOF
method has improved the average XCO2 data coverage rate of OCO-2 and OCO-3 from
16% to 97%, whereas the BME method has further improved the coverage rate to 100%.
The coverage of the DINEOF method does not reach 100% because this method cannot
provide output for the 3% of cases where no data are available at sufficiently close times
and locations for the spatiotemporal interpolation. It is clear that the task of improving
coverage is primarily accomplished by the DINEOF method. In this setting, the DINEOF
interpolation results can be further improved, thanks to the strong theoretical basis and
inclusiveness of the BME method.

Figure 8. Coverage of OCO Data, DINEOF Interpolation Results and DINEOF in combination with
BME interpolation products.

As the most advanced geostatistical spatiotemporal interpolation method currently in
use, the BME method is a nonlinear interpolator, in general, that accounts for non-Gaussian
distributions too. Compared to traditional interpolation methods such as the various
Kriging and inverse weighted distance techniques, BME has a more sound theoretical
support and can optimize the use and retention of various data information sources to
improve interpolation accuracy. As more kinds and types of marine data are gradually
acquired, geostatistical methods are increasingly applied to marine data processing and
scientific research [18,19]. In this study, the BME’s ability to absorb uncertain soft data in
spatiotemporal interpolation plays a key role [37–39]. For example, some other models
(such as sample regression and vector regression) have been used to generate soft data
for BME interpolation purposes [40,41]. In this study, instead, the DINEOF interpolation
results in the form of probability distributions were used as soft data for BME interpolation,
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which effectively allowed the two methods to complement each other in order to obtain
more accurate spatiotemporal interpolation results.

The core advantage of the study framework used in the present study lies in the
powerful generalizability and strong inclusiveness of the BME method, which enable it to
(a) assimilate different types of XCO2 data and (b) be combined with various techniques
(such as DINEOF) to improve spatiotemporal interpolation accuracy. Such a framework
has not been considered in previous studies of XCO2 interpolation studies. Instead, various
types of geostatistical Kriging techniques have been used. For example, the spatial Kriging
technique has been widely used in XCO2 interpolation research (NIES GOSAT PROJECT
2011). There are also related XCO2 interpolation studies involving an improved variogram
modeling in Kriging interpolation [11,12]. Moreover, the fixed-rank Kriging method (FRK)
has been used in XCO2 interpolation [42]. Although these studies can improve the ordinary
Kriging techniques, they still cannot fully utilize the complete information provided by
the XCO2 datasets. Similarly, mainstream Kriging techniques have also been used to
fuse GOSAT and SCIMACHY XCO2 datasets [43]. However, unlike BME, these Kriging
techniques cannot take into account data uncertainties, which need to be processed by
other techniques before interpolation is implemented. In sum, the proposed framework
with BME theory at its core can maximize the assimilated information in the various forms
of uncertain data and systematically integrate other powerful methods as well (such as
DINEOF).

5.2. Product Analysis

Analysis of XCO2 products is mainly concerned with coverage and accuracy.
In terms of coverage, current XCO2 acquisition tools mainly rely on carbon satellites

and measured data. Any kind of measured dataset basically cannot achieve large-scale
coverage. As is shown in Figure 1, the data obtained by carbon satellites currently in orbit
(such as OCO-2, OCO-3, and GOSAT) display obvious bands in global images [44]. Unlike
this kind of data, in the case of, e.g., sea surface temperature (SST) and sea surface salinity
(SSS), their coverage rate in the global ocean is very low, and there is a very large gap. On
the other hand, the XCO2 products obtained in this study have achieved 100% coverage in
the region, with excellent performance.

In terms of accuracy, the matter mainly involves two aspects: the method and the data
itself. The part about the method has been explained in detail in Section 5.1, so we do not
elaborate further here. As regards the data, the spatial resolution of OCO-2 data is about
1.3 km × 2.3 km, and that of OCO-3 data is about 1.6 km×2.2 km, which is better than that
of most carbon satellites [7,24,44–47]. Table 3 shows the spatial resolution comparison of
some carbon satellites. As is well known, the higher the spatial resolution, the finer the
information. The image produced in this study is a fusion of OCO-2 and OCO-3 XCO2
data and is plotted at a spatial resolution of a 0.1 latitude and longitude, yielding very fine
image results. In addition, relevant studies have shown that the XCO2 data accuracy is
related to aerosol or surface reflectance interference [8,48–50]. Therefore, the XCO2 change
is smaller than that of land [50]. Lastly, the stronger the spatiotemporal data correlation is,
the more accurate the BME interpolation results will be.

Table 3. The Spatial Resolution Comparison of Some Carbon Satellites.

OCO-2 OCO-3 GOSAT Tansat CarbonSat SCIAMACHY

1.3 km × 2.3 km 1.6 km × 2.2 km 10.5 km × 10.5 km 2 km × 2 km 2 km × 2 km 60 km × 30 km

5.3. Prospects and Expectations

This study explored a synthetic interpolation framework that combined the DINEOF
and BME methods and confirmed the positive effects of this synthesis in the spatiotemporal
interpolation context. The results showed that the interpolation product performs very
well in terms of coverage and accuracy, indicating the power of the synthetic approach. In
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addition, this study addressed the issue of interpolation relying only on spatiotemporal
distance and ignoring spatiotemporal strongly correlated features by noticing that the BME
method provides a solution to this problem by means of its strong scalability and inclu-
siveness features. Using diverse soft data, as well as combining other related techniques
with the BME method, are issues that are worthy of further study. High-quality XCO2
interpolation products of sea surfaces were also obtained in this study. Indeed, it is of
great significance to simultaneously satisfy the high coverage rate and high accuracy of sea
surface XCO2 data.

At present, XCO2 studies are more focused on the land but less on the ocean. However,
XCO2 in the ocean region is closely related to sea-air CO2 flux [51]. XCO2 has a significant
impact on marine climate change, ocean acidification, marine fisheries, and other related
fields [52–54]. High-quality XCO2 data could be potentially applied to the construction
of relevant data and the analysis of related fields, laying a good foundation for future
research. In addition, the BME interpolation of XCO2 products could be of great help in the
acquisition of large-scale XCO2 data by referring to the synthetic approach proposed in this
study and further analyzing the temporal and spatial variation rules (such rules include
the relationship between XCO2 in the ocean region and human activities in coastal areas,
the correlation between XCO2 in the ocean region and seasonal variation, and latitude and
longitude variation), or other relevant analysis and research issues based on XCO2 data.

In addition, considering the computational cost and other issues, this study only
performs interpolation on small spatial and temporal scales. Future work will focus on
improving the efficiency of the software, significantly reducing the computational cost,
and applying the developed method to explore the spatial and temporal distribution and
characteristics of global XCO2.

6. Conclusions

In this paper, the empirical orthogonal function interpolation (DINEOF) method and
the Bayesian Maximum Entropy (BME) methods were combined to interpolate XCO2
data of OCO-2 and OCO-3 from January to December 2020 in the geographical range of
15-45◦N and 120-150◦E. The spatiotemporal modal analysis verified that the OCO-2 and
OCO-3 XCO2 data have obvious spatiotemporal characteristics. The BME interpolation
accuracy was evaluated by using a five-fold cross-validation method. The results showed
that the MAE value is 1.29 ppm, and the RMSE value is 2.42 ppm. In addition, based on
the measured XCO2 data provided by TCCON, OCO-2 and OCO-3 data were compared
with the synthetic DINEOF–BME interpolation products. The results showed that the
interpolation products increased the coverage of OCO-2 and OCO-3 products from 16%
to 100%. As regards matching, the MAE, RMSE, and R2 values of OCO-2 and OCO-3
data and TCCON measured data were found to be equal to 2.616 ppm, 3.566 ppm, and
0.682, respectively. The MAE, RMSE, and R2 values of the interpolated products and
TCCON data were 1.751 ppm, 2.877 ppm, and 0.733, respectively. In addition to the
coverage of DINEOF–BME interpolation products, MAE, RMSE, and R2 performance
parameters are also better than OCO data, indicating that DINEOF–BME interpolation
products have smaller errors and better data stability. In addition, the present work
confirmed the feasibility of combining the DINEOF with the BME methods. Moreover, the
BME inclusiveness was further demonstrated based on its strong theoretical support. By
integrating other kinds of techniques and information sources in the major BME framework,
better interpolation results are anticipated in the future.
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