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Abstract: Hyperspectral unmixing (HSU) is a crucial method to determine the fractional abundance
of the material (endmembers) in each pixel. Most spectral unmixing methods are affected by low
signal-to-noise ratios because of noisy pixels and bands simultaneously, requiring robust HSU
techniques that exploit both 3D (spectral–spatial dimension) and 2D (spatial dimension) domains. In
this paper, we present a new method for robust supervised HSU based on a deep hybrid (3D and 2D)
convolutional autoencoder (DHCAE) network. Most HSU methods adopt the 2D model for simplicity,
whereas the performance of HSU depends on spectral and spatial information. The DHCAE network
exploits spectral and spatial information of the remote sensing images for abundance map estimation.
In addition, DHCAE uses dropout to regularize the network for smooth learning and to avoid
overfitting. Quantitative and qualitative results confirm that our proposed DHCAE network achieved
better hyperspectral unmixing performance on synthetic and three real hyperspectral images, i.e.,
Jasper Ridge, urban and Washington DC Mall datasets.

Keywords: hyperspectral unmixing (HSU); hybrid 3D; 2D-convolutional autoencoder (AE) network;
supervised; spectral–spatial; remote sensing; abundances

1. Introduction

Hyperspectral image (HSI) analysis is an essential and critical technology in the field of
aerial and satellite-based images (remote sensing). Hyperspectral data has been successfully
applied in various fields, such as classification [1–5], environmental monitoring [6,7], and
object recognition [8–10]. Because of the limited spatial resolution of HSI, many pixels are
typically mixed by way of a number of materials, which degrade the overall performance
of hyperspectral data processing [11,12]. Therefore, hyperspectral unmixing (HSU) has
become an important technique to handle the mixed pixels issue. HSU aims to decompose
the measured pixel spectra from remote sensing data into a set of pure spectral signatures,
referred to as endmembers and their fractional abundances. At each pixel, the endmembers
are normally assumed to signify the pure materials, and the abundances show the ratio of
every endmember. HSU applications are in various fields, such as agriculture, geology [13],
and environmental biology studies [14]. The issue of mixed pixels can be addressed via
three distinct deep learning approaches, such as supervised, unsupervised and semi super-
vised. In this work, the supervised approach can be considered to estimate the abundance
map as the endmembers are supposed to be known. They can be extracted from endmem-
ber extraction algorithms, such as pixel purity index (PPI) [15], N-FINDER [16], vertex
component analysis (VCA) [17] and minimum volume simplex analysis (MVSA) [18]. In
the unsupervised approach, different HSU methods have been proposed [19–24] to estimate
both endmembers and their fractional abundances simultaneously. Semi supervised ap-
proaches consider that each mixed pixel in the observed image is represented as a mixture
of more than one spectral signature known in a huge spectral library [25].

There exist two kinds of HSU models: the linear spectral mixing model (LSMM)
and the nonlinear spectral mixing model (NLSMM) [26]. LSMM holds when the incident
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light interacts with just one material [27], and the pixels are linearly expressed by the
combination of endmembers. NLSMM holds when the light interacts with more than one
material in the scene. The LSMM is broadly used in several applications due to its efficiency
and simplicity [28]. Several methods, such as the sparse regression-based method [29],
nonnegative matrix factorization (NMF) [30], and the geometrical-based method [31], have
been used to solve linear spectral mixing problems. These linear spectral unmixing methods
derive endmembers and their abundance from the hyperspectral image.

Over the last few decades, several supervised approaches to the linear spectral mixing
problem have been proposed. One of the well-known supervised spectral mixing problems
based on the fully constrained least square (FCLS) method was adopted to solve the mixing
problem, it minimizes the error between the true spectrum and the linearly mixed spec-
trum, subject to the physical constraints that the abundances should be positive and sum to
one. A similar method, mixture tuned matched filtering (MTMF) [32], has been adopted
to extract abundance. Another recent unmixing algorithm, such as sparse unmixing by
variable splitting and augmented Lagrangian (SUnSAL) [33], and its constrained alterna-
tive (CSUnSAL) have also been proposed to solve the optimization problem by taking
advantage of the alternating direction method of multipliers (ADMM) [34]. Both SUnSAL
and CSUnSAL apply an `1 regularization term on the fractional abundances. SUnSAL
uses an `2 regularization term as the fidelity term while CSUnSAL assumes a constraint to
enforce the data fidelity. SUnSAL was improved in [35] by the use of spatial information via
total variation (TV) regularization on the abundances (SUnSAL-TV). However, this could
result in issues with over smoothness and blurred abundance maps. Thus, collaborative
sparse unmixing [29] applies `2,1 regularization terms to promote the sparsity of abundance
maps. The spectral variability can be represented using a perturbed linear mixing model
(PLMM) [36] and extended linear mixing model (ELMM) [37] to estimate abundances.
In [38], a new augmented linear mixing model (ALMM) was presented. First, the letter
introduces the spectral variability dictionary and then explores data-driven dictionary
learning to extract abundances in a second step.

In the past few decades, deep learning approaches have been employed in computer
vision, object detection [39], and pattern recognition. These approaches automatically
extract rich contents from the remote sensing input data and have been used within
hyperspectral image classification. A literature review has shown that very few deep
learning methods have been applied to hyperspectral unmixing, as they have for things
such as image classification. In this work, we intend to fill in this gap by creating a new
connection between the deep supervised learning approach and robust supervised HSU to
overcome the issue of a mixed pixels.

Various deep learning approaches have been employed in hyperspectral unmixing
with the success of artificial neural networks. Recent neural network methods used for
the HSU problem are [40–47]. In [48], 1D and 3D methods utilizing a scattering transform
framework (STF) were presented to extract features from HSIs, and then used k-nearest
neighbor (k-NN) to extract abundance. More recently, autoencoder as a deep learning
model based on the neural network has been used to address HSU problems. Autoen-
coder has gained tremendous popularity in the hyperspectral community. Two specific
instances of autoencoder, de-noising and nonnegative sparse autoencoder (NNSAE), were
utilized to address the HSU problem by simultaneously estimating endmembers and their
fractional abundances from HSI [49,50]. Another unmixing method [51] has been em-
ployed to solve the HSU problem using a variational autoencoder and stacked NNSAE.
In [52], a concatenated marginalized de-noising model and NNSAE were used to solve
hyperspectral unmixing in noisy environments. In [53], the authors proposed a stacked
NNSAE to minimize the impact of low signal-to-noise ratio. In addition, several other au-
toencoders, such as [54], have been developed to improve spectral unmixing performance
using multitask-based learning and convolutional neural network (CNN) [55]. Another
two-stream network [56], consisting of an endmember extraction and an unmixing network
called a weakly supervised method, has been proposed for the spectral unmixing problem.
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Recent research has made clear that using 2D-CNN or 3D-CNN exclusively has
drawbacks, such as wasting band-related information or requiring the use of extremely
complex techniques. Furthermore, they inhibit the deep learning techniques from obtaining
exceptional accuracy. Their main justification is that HSI produces spectral-dimensional
volumetric data. The spectral interpretations cannot be used to create useful maps with
distinguishing features using the 2D-CNN approach alone. A deep 3D-CNN approach is
also computationally expensive. When employed alone, it performs badly for materials of
related features across many spectral bands. The approaches also require extra processing
time to examine and comprehend the spectral–spatial data cubes. Additionally, the presence
of various types of noise, i.e., noisy pixels and channels in the remote sensing data, badly
degrades the overall performance of spectral unmixing. As the literature suggests, few
of the existing unmixing methods have been proposed to achieve robustness in spectral
dimension [57,58]. For these thoughts, we are motivated to propose a supervised robust
HSU method that considers both noisy pixels and channels to enhance the robustness of
spectral and spatial dimensions.

We propose a novel supervised end-to-end deep hybrid convolutional autoencoder
(DHCAE) network for robust HSU in this paper. The proposed method can utilize spectral
and spatial information to achieve abundances given the endmembers in the HSI. The main
research contributions of our proposed approach are highlighted as threefold:

1. According to the best of the authors’ knowledge, this is the first time that a robust
HSU model using a deep hybrid convolutional autoencoder has been proposed to
build an end-to-end framework. This framework can learn discriminative features
from HSI to produce better unmixing performance.

2. We used 3D and 2D layer information in the proposed approach, utilizing spectral–
spatial information to improve the hyperspectral unmixing performance.

3. The proposed method performance is evaluated on one synthetic and three real
datasets. The results confirm that the DHCAE approach outperforms existing methods.

The remainder of this article is organized as follows. The proposed DHCAE network is
described in Section 2. The results on the experiments conducted on synthetic and three real
world remote sensing datasets are illustrated in Section 3. Section 4 offers the discussion;
and finally, Section 5 concludes this article.

2. Methodology
2.1. Notation and Problem Formulation

The unmixing model for the proposed network follows the LSMM, and notations are as
follows. Let X = [x1, . . . , xN] ∈ RL × N is the observed HSIs with L bands, the letter N = w
× h denotes the total number of pixels, M = [m1, . . . , mP] ∈ RL × P denotes the endmember
matrix with P pure spectra in each column and A = [a1, . . . , aN] ∈ RP × N represents the
abundance matrix. Finally, let N ∈ RL × N be the residual matrix (e.g., additive noise and
other errors). The spectrum of LSMM can be expressed as

xi =
P

∑
j=1

ai,jmj + ni = Mai + ni (1)

The Equation (1) can be considered as the complete observed image as expressed below:

X = MA + N (2)

The physical constraints enforced on the abundances are the abundance non-negativity
constraint (ANC), i.e., ai,j ≥ 0 while ∑P

j=1 ai,j = 1 is the abundance sum-to-one constraint
(ASC). In this work, given the HSIs (X) and endmembers matrix (M), abundances matrix
(A) is the solution target. It should be noted that the pure spectra are manually chosen
from the original hyperspectral image by visual judgement and by looking at the spectral
signature to overcome the spectral variability.
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Due to the powerful learning capabilities, an autoencoder is constructed for the
unmixing problem, as shown in Figure 1. An autoencoder generally aims to learn the
low-dimensional representation of input data, which comprises two parts.
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(1) Encoder: The encoder part encodes the input data, X ∈ RL×N into a hidden represen-
tation, A ∈ RP × N (i.e., abundance) is denoted by

A = f (X) = σe(WeX) (3)

where σe denotes component-wise activation function of the encoder part, such as rec-
tified linear unit (ReLU) or Softmax and We represents the weights of the encoder part.

(2) Decoder: The decoder part reconstructs the input data, X̂ ∈ RL×N from the hidden
representation, A ∈ RP×N (i.e., abundance) can be expressed as

X̂ = g(A) = σd(Wd A) (4)

where Wd denotes weights of the decoder part, and X̂ represents the reconstructed
input data. The autoencoder network is trained using backpropagation to minimize
the loss function, L(X, g ( f (X))).

2.2. Proposed DHCAE Network

This section presents the DHCAE network that exploits spectral–spatial information
in a remote sensing hyperspectral data cube X, implementing 3D and 2D CNN models
to achieve better unmixing performance. At this point, the observed HSIs data cube is
denoted by X ∈ RH×W×L where H and W correspond to the height and width of the
observed image, respectively, and L represents the number of channels (spectral bands)
around each pixel to extract its corresponding abundance vector. Therefore, first, we divide
the HSIs data cube into small patches, p ∈ RS×S×L where L indicates the spectral bands
and (S × S) represents spatial window size. Thus, each 3D patch is fed into the encoder
part of the DHCAE network to extract spectral–spatial information through 3D and 2D
convolutional operators, and its abundance map (latent space) is obtained. The decoder
part then takes the latent space as input to recreate the original input with the LSMM in
Equation (1). Thus, we set the weights of the decoder part equal to the endmember matrix
in the DHCAE network with no trainable parameters.

In a 2D convolutional autoencoder, the input patches are convolved with a 2D kernel
that computes the sum of the dot product between the input patch and kernel. The kernel is
striding over the input patch to cover the whole spatial dimension. In the 2D convolutional
layer, the value at position (x, y) of the jth feature map in the ith layer is formulated as

vx,y
i,j = ReLU

(
∑
m

Hk−1

∑
h=0

Wk−1

∑
w=0

whw
ijmv(x+h)(y+w)

(i−1)m

)
+ bi,j (5)

where ReLU(.) is the activation function, m indexes over the set of feature maps of the
(i−1)th layer, Wk and Hk are the width and height of the 2D kernel, respectively. whw

ijm is the
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weight parameter at position (h, w) connected to the mth feature map, bi,j is the bias term.
The 3D convolutional operation of the convolutional layer can be formulated as

vx,y,z
i,j = ReLU

(
∑
m

Hk−1

∑
h=0

Wk−1

∑
w=0

Dk−1

∑
d=0

whwd
ijm v(x+h)(y+w)(z+w)

(i−1)m

)
+ bi,j (6)

where Dk is the depth of the 3D convolution kernel along the spectral dimension. vx,y,z
ij is

the weight at position (x, y, and z) of the kernel connected to the mth feature map, and other
parameters are the same as in Equation (5).

The 2D convolutional kernel cover only spatial dimension. On the other side, the
3D convolutional kernel can concurrently extract spectral and spatial features from HSI,
but it consumes computation time. Therefore, to take advantage of both the 2D and 3D
convolutional autoencoder, we proposed a DHCAE network for robust hyperspectral
unmixing.

Figure 2 shows the proposed DHCAE network for robust hyperspectral unmixing. It
is composed of three 3D convolutions (C1, C2, C3), two 2D convolutions (C4, C5) and two
fully connected (F6, F7) layers regarding the encoder part and only one fully connected
layer (O8) in the decoder part. Using ReLU and Softmax activation functions, the output of
the F7 layer imposes ANC and ASC on the abundance map, respectively.
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In the DHCAE framework, the dimensions of the 3D convolution kernels are as follows:
3D_C1 = 8 × 3 × 3 × 9 × 1 (i.e., K1

1 = K1
2 = 3, and K1

3 = 9), 3D_C2 = 16 × 3 × 3 × 7 × 1 (i.e.,
K2

1 = K2
2 = 3, and K2

3 = 7) and 3D_C3 = 32 × 3 × 3 × 5 × 1 (i.e., K3
1 = K3

2 = 3, and K3
3 = 5).

Whereas dimensions of the 2D convolution kernels are 2D_C4 = 64 × 3 × 3 × 5760 (i.e.,
K4

1 = K4
2 = 3) and 2D_C5 = 128 × 3 × 3 × 128 (i.e., K5

1 = K5
2 = 3). Where 64 is the number

of kernels, 3 × 3 means the spatial dimension of 2D kernels, and 5760 is the number of
the input feature map. Three 3D convolution layers are deployed to preserve the spectral
information in the HSIs input data to increase the number of spectral–spatial feature maps.
Before the flatten layer, two 2D convolution layers are applied to ensure the model can
discriminate the spatial information within different spectral bands without any loss. A
detailed summary of the proposed DHCAE network can be found in Table 1.
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Table 1. Detailed summary of the proposed DHCAE network.

Layers Output Shape Activation # Parameters

Input_1 (Input Layer) (15, 15, 198, 1) - 0
3D_C1 (Conv3D) (13, 13, 190, 8) ReLU 656
3D_C2 (Conv3D) (11, 11, 184, 16) ReLU 8080
3D_C3 (Conv3D) (9, 9, 180, 32) ReLU 23,072

Reshape_1 (Reshape) (9, 9, 5760) - 0
2D_C4 (Conv2D) (7, 7, 64) ReLU 3,317,824
2D_C5 (Conv2D) (5, 5, 128) ReLU 73,856
flatten_1 (Flatten) (3200) - 0

F6 (Dense) (128) - 409,728
dropout_1 (Dropout) (128) - 0

F7 (Dense) (P) ReLU + Softmax 516
O8 (Dense) (L) - 792

Total Trainable Parameters: 3,834,524

3. Experiment and Analysis

The proposed DHCAE was implemented in a Keras and Tensorflow framework using
python. The experiments were performed on a HP Notebook—15-da0001tx Intel Core
i7-8550U CPU and a GPU with 4 GB of memory. We demonstrate the unmixing perfor-
mance of the proposed approach on four datasets, one synthetic hyperspectral data and
three real datasets. We compared the proposed approach (DHCAE) with six related un-
mixing methods, namely, FCLS [59], nonnegative matrix factorization quadratic minimum
volume (NMF-QMV) [60], augmented linear mixing model (ALMM) [31], hyperspectral
unmixing using deep image prior (UnDIP) [61], deep hyperspectral unmixing using trans-
former network (DHTN) [62] and deep convolutional autoencoder (DCAE) [63]. In terms
of abundance estimation, DCAE performs well. It is easier to compare their capabilities
in hyperspectral unmixing issues because DCAE and DHCAE networks have similar
structures. For the DCAE network, the encoder part comprises four convolutional layers
and two fully connected layers. The decoder part of the DCAE network is the same as
our approach. For the quantitative assessment of the algorithm, we used three criteria,
such as abundance overall root mean square error (aRMSE), reconstruction overall root
mean square error (rRMSE), and average spectral angle mapper (aSAM). When the ref-
erence of the abundance maps (Ag =

[
ag

1 , . . . , ag
N

]
∈ RP×N) is given, then aRMSE can be

used to measure the estimated abundance maps (Ae =
[
ae

1, . . . , ae
N
]
∈ RP×N). Without the

groundtruth of abundance maps, the other two metrics are used to measures the reconstruc-
tion error between the original HSIs (Xo =

[
xo

1, . . . , xo
N
]
∈ RL×N) and its reconstruction

(Xr =
[
xr

1, . . . , xr
N
]
∈ RL×N). These are defined as follows:

aRMSE =
1
N ∑N

i=1

√
1
P ∑P

j=1

(
ag

i,j − ae
i,j

)2
(7)

rRMSE =
1
N ∑N

i=1

√
1
L ∑L

l=1

(
xo

i,j − xr
i,j

)2
(8)

aSAM =
1
N ∑N

i=1 arccos

(
xrT

i xo
i

‖xr
i ‖‖xo

i ‖

)
(9)

3.1. Experiments on Synthetic Dataset

The synthetic data were generated using five spectral endmember references randomly
chosen from the United States Geological Survey (USGS) digital spectral library [64].
Figure 3 shows that the five endmember references have 480 spectral bands. The size
of the abundance map is 64 × 64 pixels with a maximum abundance purity of 0.8. We
followed the procedures in [65,66].
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The extracted abundance map of different materials in the synthetic dataset is shown
in Figure 4. The first column is the true abundance map of distinct spectral signatures, and
the rest of the columns are the extracted abundance maps by various unmixing methods,
respectively. DHTN and DCAE achieve desirable abundance maps; however, the outcomes
are still unsatisfactory. In comparison with the previous state-of-the-art approaches, our
proposed approach extracts abundance maps that are typically similar to the real abundance
maps. All the extracted abundances of the five spectral signatures are satisfied and stable.
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To quantitatively validate the robustness of our proposed approach in the simulated
experiments. We compared the performance of various unmixing algorithms on synthetic
data with three distinct types of noise. These three types of noises are as follows: just band
noise added, only pixel noise added, and both band noise and pixel noise added.

For the added band noise, to each band was added Gaussian noises with four various
levels of SNR, i.e., 05, 15, 25 and 35 dB, to test the performance of the proposed approach
under different levels of noise. Figure 5 shows the score of aSAM and aRMSE for all the
methods in the various noise levels. It can be seen that our proposed approach has good
robustness against band noise of various SNRs than other unmixing methods.
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For the added pixel noise, we also added Gaussian noises to each pixel on the synthetic
image with different SNR values from 05 to 35 dB. Figure 6 shows the aSAM and aRMSE
values for all the methods in various noise levels. The figure shows that our proposed
approach performs well and is more robust against pixel noise.
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To investigate the robustness of the proposed approach we also performed experiments
where we simultaneously added pixel noise and band noise. Each pixel and band were
added with Gaussian noise with different SNR levels of 05, 15, 25, and 35 dB, to the synthetic
data set. As illustrated in Figure 7, our proposed approach is more robust to noise with
different pixel noise and band noise levels. The performance of the other competitors
reduces when the number of noisy pixels and bands increases, which means that the



Remote Sens. 2022, 14, 4433 9 of 20

other competitors are easily corrupted by noisy pixels and noisy bands compared with the
proposed approach.
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3.2. Experiments on Jasper Ridge Dataset

The first real HSIs scene used in our experiments was the Jasper Ridge dataset captured
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), as shown in Figure 8a.
The image of size 100 × 100 pixels was measured in 224 spectral bands covering the
wavelength range from 0.38 to 2.5 µm. Tree, Water, Dirt, and Road are the four main
endmembers observed in this dataset. In all 224 bands, there exist some noisy bands (2–4,
220–224) and blank bands (1, 108–112, 154–166). Figure 8b–e shows the noisy bands seri-
ously corrupted by noise. The presence of noisy bands in the HSIs reduces the performance
of the HSU methods. Therefore, to test the robustness of our proposed approach, we
conducted experiments on data without noisy bands (i.e., bands = 198) and with noisy
bands (i.e., bands = 224).
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3.2.1. Results without Noisy Bands

Table 2 lists the quantitative results for the Jasper Ridge dataset without noisy bands,
where the proposed DHCAE network achieves the best performance compared with other
competitors. The proposed method obtains the rRMSE value of 0.0068 and aSAM value
of 0.0314. On this dataset, the second-best result was obtained by DCAE. Figure 9 shows
the extracted abundances for different materials. The extracted abundances, excluding
our proposed approach, are shown in Figure 9. The DCAE method also achieved accurate
abundance estimation for all endmembers.
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Table 2. Quantitative performance on the Jasper Ridge dataset without noisy bands by various
approaches. The best result is shown in bold.

Algorithm FCLS ALMM NMF-QMV UnDIP DHTN DCAE DHCAE

rRMSE 0.0216 0.0515 0.0157 0.0136 0.0143 0.0124 0.0068
aSAM 0.0816 0.3378 0.0623 0.0497 0.0514 0.0508 0.0314
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3.2.2. Results with Noisy Bands

We also tested the unmixing performance of our proposed approach on the Jasper
Ridge dataset with noisy bands containing 224 bands. Table 3 represents the rRMSE and
aSAM values of various unmixing approaches. The results show that the rRMSE and aSAM
value achieved by the DHCAE network is better than other unmixing methods. Figure 10
illustrates the qualitative results of extracted abundances for different spectral signatures.
According to the qualitative results, our proposed approach achieves an abundance map
with good robustness to noise compared with other unmixing approaches.

Table 3. Quantitative performance on the Jasper Ridge dataset with noisy bands by various ap-
proaches. The best result is shown in bold.

Algorithm FCLS ALMM NMF-QMV UnDIP DHTN DCAE DHCAE

rRMSE 0.0752 0.0945 0.0663 0.0523 0.0529 0.0496 0.0415
aSAM 0.2267 0.5116 0.1528 0.1102 0.1127 0.1083 0.0706
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3.3. Experiments on Urban Dataset

The second real dataset was collected by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor in October 1995. Figure 11a shows the observed image of
307 × 307 pixels. Four kinds of different materials are included in the scene: asphalt, grass,
trees and roofs. The original dataset has 210 spectral bands ranging from 400 to 2500 nm.
Some noisy bands exist in this dataset (1–4, 76, 87, 101–111, 136–153, and 198–210) due
to the atmospheric effects and water absorption. Figure 11b–e shows some noisy bands
of this dataset. It can be seen that bands (138, 149, 207, and 209) are corrupted by noise.
The existence of noisy bands degrades the performance of spectral unmixing methods,
but the noisy bands may also contain important information. Therefore, we performed
experiments on both data with removed noise band (i.e., bands = 162) and containing noise
band (i.e., bands = 210) to demonstrate the robustness of our approach.
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3.3.1. Results with Removing Noisy Bands

Table 4 presents the quantitative comparison of rRMSE and aSAM results based on
the urban datasets. According to Table 4, the proposed DHCAE network provides superior
unmixing results to the other competitors. The value of rRMSE and aSAM in the proposed
method are 0.0115 and 0.0331 respectively, DCAE can achieve the second-best results on this
dataset. Figure 12 depicts the extracted abundances for different materials (endmembers)
in the urban dataset. It can be observed that our proposed approach extracts abundance
maps that are more separable and closer to the ground truth abundance maps than those
provided by the state-of-the-art competitors.

Table 4. Quantitative performance on the urban dataset without noisy bands by various approaches.
The best result is shown in bold.

Algorithm FCLS ALMM NMF-QMV UnDIP DHTN DCAE DHCAE

rRMSE 0.0528 0.0484 0.0318 0.0286 0.0276 0.0249 0.0115
aSAM 0.1512 0.2602 0.0927 0.0603 0.0627 0.0525 0.0331
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Figure 12. Urban data. Ground truth (GT) map in the first column and extracted abundance maps
with remove noisy bands comparison by different spectral unmixing methods.

3.3.2. Results Containing Noisy Bands

We also investigated the robustness of our proposed approach on the urban dataset
containing noisy bands, i.e., 210. Table 5 lists the rRMSE and aSAM values yielded by our
proposed approach and the other six unmixing methods. As seen in Table 5, the DHCAE
network achieved a better result than other competitors. Figure 13 displays the estimated
abundance map of various unmixing approaches. When comparing Figures 12 and 13, it
can be easily seen that the FCLS and ALMM approaches are still corrupted by noise. We
can also observe that the results achieved by our proposed approach are more robust to
noise than those achieved by other unmixing competitors.
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Table 5. Quantitative performance on the urban dataset containing noisy bands by various ap-
proaches. The best result is shown in bold.

Algorithm FCLS ALMM NMF-QMV UnDIP DHTN DCAE DHCAE

rRMSE 0.1275 0.0987 0.0859 0.0738 0.0723 0.0698 0.0609
aSAM 0.4528 0.3181 0.1624 0.1005 0.997 0.0981 0.0942
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spectral unmixing methods.

3.4. Experiments on Washington DC Dataset

The third set of real hyperspectral data was collected by the HYDICE sensor. The
observed image comprises 1280 × 307 pixels with 210 channels ranging from 0.4 to 2.4 um.
Noise and water vapor channels were removed. We investigated a cropped image of size
319 × 292 pixels with 191 channels. According to [67], six endmembers are included in the
Washington DC Mall scene: Grass, Tree, Roof, Road, Water and Trail. The cropped image
and six endmembers are shown in Figure 14.
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Results on Washington DC Dataset

Table 6 presents the quantitative assessment results for the Washington DC Mall
datasets. According to the results in Table 6, the proposed unmixing method provides the
best results compared with other unmixing methods. The second-best results are achieved
by DHTN and DCAE in term of rRMSE and aSAM. Figure 15 shows the qualitative results of
estimated abundance maps for six different spectral signatures. The results clearly indicate
that the proposed DHCAE network provides a clear and smoother abundance map.

Table 6. Quantitative performance on the Washington DC Mall dataset by various approaches. The
best result is shown in bold.

Algorithm FCLS ALMM NMF-QMV UnDIP DHTN DCAE DHCAE

rRMSE 0.0713 0.0548 0.0523 0.0474 0.0452 0.0426 0.0357
aSAM 0.1773 0.0967 0.0895 0.0832 0.0786 0.0759 0.0623

3.5. Parameters Setting

In this section, we selected a random search approach to find suitable values for
hyperparameters employed in the proposed model. The learning rates were investigated
in the range [0.001, 0.003, 0.004, 0.005]; based on the results, the optimal learning rate is
0.005. Similarly, the Adam optimizer was selected to optimize the model among different
optimizers. Several experiments were conducted to assess the impact of different dropout
values, and the optimal dropout value is 20%. We tried different spatial window sizes
[13 × 13, 15 × 15, 17 × 17, 19 × 19] to learn adequate spatial information, and a spatial
window size of (15 × 15) was selected. The network was trained for 100 epochs and a
minibatch of 100.

The regularization parameters influence the performance of the different unmixing
approaches. We discovered that the following parameter values produced the highest
results: the parameters in ALMM were to be set as α = β = 0.002, γ = η = 0.005 and the
number of basis vectors L = 100. The learning rate was set to 0.001 for the UnDIP; the
number of iterations was 3000. The DCAE was optimized using Adam optimizer with a
learning rate of 0.005. The number of epochs and batch size were set to 100 each.

3.6. Effects of Spatial Window Size

The effect of spatial window size (S × S) over the unmixing performance of our
proposed approach is shown in Figure 16. It is clear that the best estimation was achieved
with a spatial window size of 15 × 15. Therefore, we set 15 × 15 as the input size for all the
hyperspectral datasets.
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3.7. Comparative Analysis

To validate the effectiveness of the proposed DHCAE method, we compared it to
two existing methods: 3D-CNN and 2D-CNN. Figure 17 depicts the outcomes of the
three methods. According to Figure 17, the proposed DHCAE method achieved the best
performance in terms of rRMSE and aSAM for each hyperspectral dataset. The proposed
method is based on a hierarchical representation of spectral–spatial 3D-CNN followed
by a spatial 2D-CNN that is complimentary to it. When compared to hybrid 3D and 2D
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convolutions, it is clear that 3D or 2D convolutions alone are incapable of representing the
highly discriminative feature.
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3.8. Computational Time

We discussed the computational time of our proposed DHCAE network and compared
it to the computational time of the previous state-of-the-art unmixing approaches. The
average computational times in seconds for all the spectral unmixing approaches on three
datasets are reported in Table 7. Using the advantage of autoencoder for the unmixing
problem consumes computational time. However, the DHCAE network can parallelize on
graphical processing units, undoubtedly leading to less computational time.

Table 7. The average time on three datasets.

Algorithm
Computational Time (in Seconds)

Synthetic Jasper Urban Washington DC

FCLS 905 240 516 401
ALMM 1410 221 1312 768
UnDIP 1386 475 1253 863
DHTN 1347 452 1231 845
DCAE 1330 427 1210 824

DHCAE 1270 312 1037 693

4. Discussion

The proposed DHCAE utilizes 3D-CNN and 2D-CNN, which are regarded as excellent
frameworks for various computer vision tasks, including HSU. However, the proposed
DHCAE differs significantly from existing methods. The DHCAE divides spectral and
spatial features into two successive modules: 3D-CNN and 2D-CNN. The 3D-CNN module
aims to learn robust representations of spectral and spatial features, while the 2D-CNN
module learns spatial features. This sequence enables the extraction of more discriminative
features and reduces the possibility of information loss. The experimental results confirm
that the proposed DHCAE method significantly outperformed the other methods. Its
capability to incorporate the spectral and spatial information globally as seen visually from
the abundance maps of the three real world and one synthetic remote sensing datasets. The
results also show that DHCAE is very robust to noise due to the implicit application of a
regularizer in the network. The worst results were obtained by FCLS and ALMM, which
are also demonstrated to be very sensitive to noise throughout the experiments. The NMF-
QMV unmixing method obtained moderate results and proved more robust to noise. The
other approaches (UnDIP, DHTN, DCAE and DHCAE) achieved similar unmixing results
to the corresponding ground truth abundance maps. The unmixing results from the UnDIP
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and DHTN approaches are better than those from the FCLS, ALMM, and NMF-QMV,
demonstrating that spatial information is more critical for HSU. The DCAE model directly
extracts the spectral–spatial features from the hyperspectral image but still spends much
computational time compared with the DHCAE method. However, in all experiments, the
overall computational complexity of the proposed method is lower than the DCAE method.

5. Conclusions

In this paper, we present an end-to-end DHCAE network for robust supervised hyper-
spectral unmixing. The proposed method combines spectral–spatial and spatial information
in the form of 3D and 2D convolutions, respectively. We analyzed experimental results on
synthetic scene and three real world hyperspectral scenes. We found that our proposed
unmixing method has more robustness against noisy bands and noisy pixels and also ob-
tains accurate abundance map estimation than other unmixing methods. Furthermore, our
proposed unmixing approach is less computationally complex than the 3D-CNN models.
However, in our future research, we would like to optimize the model architecture and
provide a generic spectral–spatial blind remote sensing image unmixing using multi-modal
data (e.g., multispectral data, Lidar). In addition, due to the recent increase in the use of
transformers in computer vision applications, the question of how to covertly include both
the CNN structure and the transformer structure is crucial for future research.
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