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Abstract: The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) carries the Advanced Topographic
Laser Altimeter System (ATLAS), enabling global canopy height measurements from forest canopy
height models (CHMs). Topographic slope is a crucial factor affecting the accuracy of canopy height
estimates from ICESat—2 CHMs, but it has not been sufficiently studied. This paper aims to eliminate
the influence of slope on canopy height estimates from ICESat-2 data and establishes a method for
correcting forest canopy heights based on high spatial resolution digital orthophoto maps (DOM).
The cross-track photons are corrected horizontally to eliminate the estimation error. Multi-resolution
segmentation is used to segment tree crowns in the DOM, and the distance and relative position
between the top of canopy (TOC) photons and the center point of the crown are calculated. TOC
photon correction rules are established for different terrains, and the vertical error of the TOC photons
is corrected. The results indicate that the vertical error increases exponentially with the slope. The
cross-track photon correction and the TOC photon correction method eliminate the effect of slope on
canopy height estimates. The cross-track photon correction method reduces the mean absolute error
(MAE) and root mean square error (RMSE) of the canopy height estimates by 35.71% and 35.98%,
respectively. The TOC photon correction approach further reduces the MAE and RMSE by 23% and
19.23%, respectively. The proposed method has significantly higher accuracy for forest canopy height
estimation using ICESat-2 data than the traditional method.

Keywords: ICESat-2/ATLAS; canopy height model; slope; multi-resolution segmentation; correction

1. Introduction

Vegetation canopy height is a critical input parameter for vegetation biomass modeling,
which is crucial for tracking the spatial and temporal dynamics of forest ecosystems [1-3]
and providing information on how the carbon cycle and terrestrial ecosystems affect the
future climate [4-6]. Airborne laser scanning (ALS) is a relatively mature method widely used
in modern forest monitoring and has replaced fieldwork in many cases [7-9]. Although a
growing number of countries are acquiring ALS data, collecting these data over large areas is
extremely expensive. Current opportunities for obtaining large-scale LIDAR data are provided
by the Global Ecosystem Dynamics Investigation (GEDI) project and the Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) [10-12].

The Advanced Topographic Laser Altimeter System (ATLAS) onboard ICESat-2 is
a single-photon sensitive LIDAR system capable of detecting individual photons from
reflected pulses [13-15]. ICESat-2 has 4 levels of 22 products, ATLO0~ATL21. ATLO03
and ATLOS are digital elevation model (DTM) and digital surface model (DSM) products.
ATLO03 is the global geolocated photon data, and ATL08 is the land and vegetation height
data. The latter is a collection of ground and canopy elevations obtained by filtering the

Remote Sens. 2022, 14, 4453. https:/ /doi.org/10.3390 /1514184453

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14184453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7608-0797
https://orcid.org/0000-0001-7788-7015
https://doi.org/10.3390/rs14184453
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184453?type=check_update&version=1

Remote Sens. 2022, 14, 4453

2 of 25

ATLO3 point cloud with the differential, regressive, and Gaussian adaptive nearest neighbor
algorithm. Inversion is performed using a surface finding algorithm, which identifies the
ground elevation and relative canopy height every 100 m along the track [6,16]. ICESat—2
spaceborne LiDAR is based on state-of-the-art technology, but its accuracy for forest height
measurements remains to be verified [17,18].

Unlike airborne LiDAR systems, spaceborne LiDAR systems such as ICESat-2 have
the advantage of large-area coverage. However, the fundamental question is whether
they can replace airborne LiDAR for forest height measurements to reduce costs. Gwenzi
et al. [19] used Multiple Altimeter Beam Experimental Lidar (MABEL) data and simulated
ATLAS data for canopy height estimation in savanna ecosystems. It was concluded that
the number of signal photons in the ATLAS data was significantly lower than that of
the airborne experimental data (MABEL), resulting in lower accuracy of canopy height
estimation. Popescu et al. [20] used the MABEL data and obtained average RMSE values
of 2.70 m and 3.59 m for nighttime and daytime canopy height estimations, respectively.
Narine et al. [21] used simulated ICESat-2 photon-counting LiDAR data to analyze the
relationship between photon-counting vegetation products and canopy cover obtained in
noiseless scenes, daytime scenes, and nighttime scenes. Several inversion studies using
simulated ICESat-2 data showed a correlation between forest structure parameters in
the MABEL inversion and those in the airborne point cloud data inversion. However,
there are still significant differences in the noise distribution, operating environment, and
surface vegetation height estimates between the MABEL and ICESat-2 photon cloud data.
Malambo [6], Neuenschwander [22], and Liu [23] evaluated the agreement between canopy
height estimates obtained from the ATL08 product of ICESat-2 and airborne LiDAR data in
the United States and Finland. Their results indicated high accuracy of ATLO8 in areas with
moderate vegetation cover. In forest-covered areas, an ICESat-2 spot returned only a few
signal photons, whose vertical positions were uncertain in the canopy [24,25]. Since the top
of canopy (TOC) photons are not necessarily located at the top of the canopy, forest canopy
height estimates obtained from ATLAS data are often lower than the true height [22]. A
comparison of airborne LiDAR data and ICESat-2 data showed that photon-counting
LiDAR could reflect the vertical structure of the forest.

Most studies on canopy height estimates based on ICESat-2 data have first used a
point cloud filtering algorithm [26-28]. Subsequently, canopy height extraction is achieved
by subtracting the terrain surface elevation from the top photon elevation of the canopy [29].
Few scholars have considered the influence of terrain on canopy height extraction. It has
been reported that the error in canopy height estimates obtained from ICESat-2 increases
with the increasing slope [17,30]. The extraction of canopy heights from ATLO08 is influenced
by complex surface factors such as the topographic slope [23]. Extracting terrain and canopy
heights from ATLO0S is particularly challenging on steep slopes (>30°) [6]. Most studies
did not consider slope a critical parameter for canopy height extraction from ICESat-2
data. Various factors contribute to errors in LIDAR-based canopy height estimations, such
as topography, forest type, forest structure, and point cloud filtering algorithms, and the
terrain plays a key role [31,32]. These studies have shown that terrain relief can increase or
decrease the distance between the highest point of the canopy and the lowest point of the
ground, resulting in errors. Hence, it is necessary to incorporate single-photon detection to
correct the heights of the TOC photons.

ICESat-2 data are increasingly used by the scientific community, but few studies
have validated its canopy height estimates. Spaceborne LiDAR differs from airborne and
ground-based LiDAR in that its sensors are a long distance from the ground, and the photon
positions are susceptible to distortions due to terrain, especially in mountainous areas with
large terrain relief. A study on canopy height detection using ICESat-2 data reported that
slope was the most influential factor affecting the accuracy of canopy height estimation [33].
Wang et al. [34] and Zhang et al. [35] proposed a vegetation-based semi-analytic echo
model to reduce canopy height estimation errors. Wang et al. [25] analyzed the effects of the
foliage area, density, and canopy shape on ICESat-2 canopy height estimations. However,
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the authors did not report the source of the slope error and whether it could be eliminated.
Determining the errors in forest height estimates due to slope in complex topographic areas
has become a critical issue for using ICESat-2 data for large-scale biomass estimation. A
methodology to attenuate the influence of surface terrain on canopy height estimates is
urgently needed.

The objective of this study is to propose a physical geometric correction model based
on high spatial resolution digital orthophoto map (DOM) data to correct canopy height
estimates and improve the accuracy of ICESat-2 canopy parameter extraction in complex
terrain. We focus on the following aspects: (1) we establish an ICESat-2 canopy height
correction method that eliminates the effect of slope to enable ICESat-2 canopy height
inversion. (2) We investigate the accuracy of ATL03 and ATLO8 canopy data in subtropical
regions and the effect of different window sizes and percentages of canopy height parame-
ters on forest canopy height estimation. (3) The effects of the photon offset distance, canopy
relief rate, and canopy density on the inversion accuracy of the canopy height estimates
derived from the point cloud are analyzed. The results of this study provide new methods
and ideas for ICESat-2 canopy data extraction in complex terrain.

2. Materials and Methods
2.1. Study Area

The study area is a forested region in Nanning City, Guangxi Zhuang Autonomous
Region, China (22.57°N~23.00°N, 108.23°E~108.24°E (cf. Figure 1). Nanning City has a
subtropical monsoon climate, with an annual average temperature of about 21.6 °C and
average annual precipitation of 1241~1753 mm [36]. The study area is hilly land with an
elevation range of 120~360 m (World Geodetic System 1984, WGS84) and a slope range
of 0°~51°, with slope greater than 15° accounting for 64.46% of the study area. The study
area has coniferous, broadleaf, and mixed coniferous forests. The forest cover exceeds 92%,
and the canopy height has a range of 0.1~24.6 m. The average tree density is 1300 trees per
hectare, the average stand basal area is 11.30 m2/hm?, and the average stand volume is
147.47 m®.
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Figure 1. Location of study area: (a) location of the forest farm site in China; (b) a subset of the
footprint of the ICESat-2 data with 5.2 km (where 5.2 km is the distance of that along-track).

2.2. Research Data
2.2.1. ICESat-2 Data

ICESat-2 has an average orbital altitude of 496 km (46 km) and covers an area ranging
from 88°N to 88°S [30,37,38]. The footprint of ATLAS has a diameter of about 14 m
and a footprint spacing of 0.7 m along the track [39]. ATLAS uses three pairs of beams,
each pair consisting of a laser beam with intensity-to-weak beam energy ratio of 4:1 [12]
(cf. Figure 2). During the light pulse emission, the photon triggers a timer as it passes
through the beam splitter and when it returns and passes through the filter. The time-
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stamped data of the returning photons are transmitted to the ground via the electronics
and communication system on ICESat-2. The W(GS84 ellipsoidal heights of the surface are
determined by calculating the position of the spacecraft and the distance traveled by the
photon (https:/ /icesat--2.gsfc.nasa.gov/space-lasers, accessed on 20 October 2021). This
study only analyzed the canopy height of strong nighttime beams. The track ID numbers
are ATL03_20191003151649_01030501_003_01_gt3r and ATL08_2019100 3151649_01030501
_003_01_gt3r, and the data were obtained on 3 October 2019 from https://search.earthdata.
nasa.gov (accessed on 5 March 2021).
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Figure 2. ICESat-2/ATLAS data acquisition mode: (a) laser beam distribution (https://icesat--2
.gsfc.nasa.gov/science/specs, accessed on 20 October 2021); and (b) schematic diagram of sampling
spacing interval.

2.2.2. ALOS PALSAR DEM Data

The Advanced Land Observing Satellite (ALOS) has a Phased Array type L-band
Synthetic Aperture Radar (PALSAR) capable of almost all-weather observations [40]. The
ALOS PALSAR DEM has a pixel size of 12.5 m [41]. The file (AP\U 16054\U FBS\U
F0440\U RT1) was downloaded from https:/ /asf.alaska.edu (accessed on 20 March 2021)
and contained data obtained in October 2018. Due to the relatively high pixel resolution
and accuracy of ALOS PALSAR DEM data, it is used as the reference elevation data.

2.2.3. CAF-LiCHy LiDAR Data

A LiDAR sensor with a small spot size is preferable for evaluating the spatial structure
of forests [42—44]. The Institute of Resource Information at the Chinese Academy of Forestry
has developed an integrated remote sensing observation platform called CAF-LiCHy (Chinese
Academy of Forestry, LIDAR, CCD, Hyperspectral). The system consists of a full-waveform
airborne lidar (Riegl LMS-Q680i) system, an airborne push-broom hyperspectral scanner (AISA
Eagle II), and a high-resolution charge-coupled device (CCD) camera (DigiCAM-H60) [1545].
The CAF-LiCHy is similar to the LiDAR Hyperspectral Thermal (G-LiHT) system of the
National Aeronautics and Space Administration (NASA) Goddard Space Flight Center. The
CHM extracted from the CAF-LiCHy LiDAR data was used to verify the accuracy of the
canopy height model (CHM) obtained from the ATLAS data. The spatial resolution and vertical
accuracy of the CAF-LiCHy data are 1.0 m and 0.15 m, respectively (cf. Table 1). We obtained
data in April 2018 in the WGS—84 coordinate system.

Table 1. The parameters of the sensors of the CAF-LiCHy system [45].

LiDAR: Riegl LMS-Q680i

Wavelength 1550 nm Laser beam divergence 0.5 mrad
Laser pulse length 3ns Cross-track FOV +30°
Maximum laser pulse repetition rate 400 khz Waveform sampling interval 1ns
Vertical resolution 0.15m Point density @1000 m altitude 3.6 pts/m?
CCD: DigiCAM-60
Frame size 8956 x 6708 Pixel size 6 pm
Imaging sensor size 40.30 mm x 53.78 mm Focal length 50 mm

FOV 56.2° Spatial resolution 02m
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CAF-LiCHy DOM
data and Google
Earth image data

2.2.4. Ancillary Image Data

Ancillary image data included DOM data from the CAF-LiCHy system and high-
resolution satellite image data from Google Earth. The DOM data were acquired by the
CCD digital camera (DigiCAM-H60), which has a focal length of 50 mm. The images have
60 million pixels and 0.2 m spatial resolution [45]. The data were obtained in April 2018.
Table 1 list the sensors’ parameters. The satellite image data from Google Earth were L19
level (spatial resolution of approx. 0.3 m) and were acquired in March 2018 and accessed on
7 August 2022. The image data had a GeoTIFF file format and were in the WGS-84 vertical
coordinate system.

2.3. Methodologies

The estimation of canopy height parameters requires explicit TOC and ground photon
signals. In this study, the ICESat-2 data processing included cross-track photon correc-
tion, photon denoising, photon classification, TOC photon correction, canopy parameter
extraction, and accuracy evaluation. The canopy heights obtained from the ATLO08 data
(CHM aT108), ATLO3 original data (CHM ATr03 initia1), ATLO3 data after cross-track photon
correction (CHM c1pc), ATLO3 data after cross-track photon correction and Google Image
data after canopy height correction (CHM ccr-1), and ATLO03 data after cross-track photon
correction and airborne image canopy height correction (CHM ¢cr-2) were compared with
the CHM 1 s extracted from the CAF-LiCHy LiDAR Data. Figure 3 depicts the flowchart of
the inversion of different CHMs.
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Figure 3. Methodology flowchart.
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2.3.1. Cross-Track Photon Correction

A 6.5 m cross-track horizontal offset of the photons is allowed [40,46], and the dis-
tance of the photon’s cross-track on flat land or on low slopes does not affect the ground
elevation and canopy height estimation. However, on large slopes and complex terrain,
disregarding the cross-track offset of the photons might cause errors in the DTM and DSM
(cf. Figure 4a). Figure 4d shows an irregular distribution of photons on each side of the
track, indicating that the cross-track offsets are not the same. Therefore, before the photon
data were transformed into a photon point cloud, photon correction was performed using
the cross-track photon correction method proposed by Li et al. [47]. First, we obtained
the mapping points of the cross-track photons (Equation (1)). The reference elevations
of the original photon (P) and the mapping point (P’) of ATL03 were extracted from the
ALOS PALSAR DEM (a cubic interpolation method was used to interpolate the DEM to
1.0 m spatial resolution) as the reference elevations zy and z; of the original photon and
the mapping point, respectively. Photons with a cross-track distance >0.50 m or <—0.50 m
were corrected to the reference ground track (cf. Figure 4c), and the corrected photon
elevation was obtained from Equation (2).

) = (G))

Ec=E; — (20 — z1)

)

()

where x, yo are the original latitude and longitude of the ATL03 photon, respectively;
x1, y1 are the latitude and longitude of the mapping point, respectively; zy, z; are the
original elevations of the photon and mapping point, respectively, Ec is the elevation of the
mapping point, and E; is the original elevation of the ATLO3 photon.
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Figure 4. Schematic of the photon position before and after correction: (a) schematic of the cross-track
photon error [47]; (b) schematic of correcting the cross-track photon error [47]; (c,d) positions of
the initial photons; (e) photons after correction of (d,f) cross-track correction results for the ALOS
PALSAR DEM.
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2.3.2. Noise Photon Removal

The photon’s geographic location was converted to the along-track distance (ATD)
before noise removal. The data were first coarsely denoised to narrow down the range of
possible signal photons. The photon cloud data were divided into different along-track
photon cloud data using a window size of 20 m in the ATD. Histograms of the elevation
statistics were calculated, and the histogram peak positions were obtained for each window.
They were used as the center position of the signal photons, and an elevation threshold was
set near the center position to establish a buffer of photon signals (Equations (3) and (4)).
Subsequently, we removed the noise photons outside the buffer.

minr = hy, — 30 3)

maxr = h, + 30 4)

where minr is the minimum elevation, maxr is the maximum elevation, h, is the elevation
at the histogram peak position, and ¢ is the standard deviation of the photon elevation
within each window.

The improved Ordering Points to Identify the Clustering Structure (OPTICS) algorithm
proposed by Zhu et al. [17] was used for fine denoising. The improved OPTICS algorithm
consists of three steps. First, an elliptical search region was established. Second, the core
distance and reachable distance of each photon were calculated based on the neighborhood
radius and neighborhood minimum number of points. Third, the photons were sorted
according to the reachable distance from smallest to largest, and the optimal reachable
distance threshold of each window was determined using the maximum inter-class variance
algorithm. Photons larger than the threshold were regarded as noise points, and the others
were regarded as signal points. Figure 5a shows the ATL03 cross-track correction data and
the result after noise removal.

2.3.3. Photon Classification

Following photon noise removal, the data contained few ground photons and numer-
ous TOC photons, making it difficult to distinguish them and accurately depict the terrain
and canopy [48]. An overlapping moving window was created to identify the ground and
canopy photons.

We provide a brief summary of the methods used to classify ground photons. They
include overlapping moving windows, the percentile method, and the slope filtering
method. First, a window was created. A correlation exists between the extraction error and
the extraction window size and step size [40,41,49]. Preliminary investigations indicated
that the moving window width to detect ground photons should be 20 m, and the moving
step length should be 10 m to enable the precise extraction of the photons of interest. Second,
an elevation percentile range was selected to extract potential ground photons within the
window range. Since the ATLO03 data in this region had a low photon density, photons
in the elevation percentile range of [0.00, 0.15] were chosen to ensure that a sufficient
number of photons were available for terrain height estimation. However, near-ground
noise photons and near-ground vegetation photons remained in the photon point cloud
after denoising, and the photons in the window elevation percentile range of [0.00, 0.15]
were not necessarily all ground photons. Ground photons have a continuous distribution,
whereas near-ground noise photons and near-ground vegetation photons lack continuity
compared with the elevation values of neighboring points. These photons are prone to
sudden elevation changes (sudden increase or decrease) because the data have not been
smoothed. The slope filtering method (SFMB) proposed by Li et al. [47] was used to
minimize the effect of near-ground photon noise on ground photon extraction and extract
possible ground photons obtained in the previous step. The SFMB method consists of
two steps.
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Figure 5. Photon denoising and classification results: (a) result of photon denoising; (b) result of
ground photon extraction and ground surface fitting; (c) photon extraction and surface fitting of
vegetation canopy; (d) DTM and DSM generated by cubic spline interpolation.
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The slope of the possible ground photons was calculated, and the maximum slope in
the reference elevation data ALOS PALSAR DEM was used as the threshold value. Photons
larger than the threshold value were marked as noise photons. The maximum value of the
slope change in the reference elevation data was used as the threshold value, and photons
smaller than the threshold value were marked as ground photons. Figure 5b depicts the
results (red dots).

The correct extraction of TOC photons may be hampered by photon noise in the
photon cloud remaining after denoising [50]. We used the TOC classification method
proposed by Popescu et al. [20] to determine the TOC photons. The width of the moving
window and the movement steps were the same as for the ground photon classification.
The TOC noise photons were those in the given elevation percentile range [0.99, 1] for
each moving window. After removing the photons in this percentile range, the elevation
percentile was recalculated, and the photon cloud corresponding to the photon elevation
percentile range of [0.96, 0.99] was extracted and used as TOC photons. The canopy photon
results are shown as green dots in Figure 5c.

2.3.4. TOC Photon Correction
Effect of Slope

The canopy height photon point cloud contains information on the height difference
between the DSM and DTM on the same coordinate plane. Although a photon-counting
LIDAR system has the advantages of providing high frequency and high-resolution data,
the TOC photons are not necessarily located at the top of the canopy, resulting in errors in
the canopy height estimation. The difference between the elevation at the TOC and that on
the ground should be the canopy height of trees. However, this height difference differs
from the real canopy height on slopes (such as on hills, valleys, steep slopes, or degraded
places) [51].

When the difference between canopy photon data and DTM was used to compute canopy
height, Figure 6 illustrates the impact of the surface slope on canopy height based on the
difference between the canopy height of the photon data and the DTM. The LiDAR variable
RH100 is defined as the distance between the apex of the canopy and the ground point. On
flat land, RH100 is approximately the vegetation canopy height (cf. Figure 6a). When a tree
is located on a slope, the photons hit the same position in the canopy, and the difference
between the canopy photons and the DTM is k,". This parameter has been used as the
canopy height in most studies on canopy height inversion based on ICESat-2 data. However,
the actual canopy height is the difference between the height of the TOC photons and the
height at the point where the tree roots enter the ground, i.e., /1, in Figure 6b. The difference
(or error) between h, and h,’ is caused by the slope and is defined by Equation (5). The
position of the photon relative to the trunk center point affects how the slope error is corrected.
Figure 6b,c show this difference at different slope heights. The height discrepancy between
causes errors in estimating the canopy height and is largely terrain-induced. Therefore, the
effect of topography must be eliminated to extract the canopy height accurately.

The distance between the photon location and the trunk center point (Dy), the relative
position, and the slope affect the terrain-induced canopy height error. Table 2 lists the
maximum errors for different slopes and different D;. The vertical displacement caused by
the slope increases exponentially with the slope of the terrain. The terrain has a significant
impact on canopy height measurements that cannot be ignored in extremely steep terrain.
The distance between the TOC photon location and the center point of the crown cannot be
directly obtained from probability sampling of ATLAS photons [24,52,53]. Therefore, we
utilize crown segmentation to quantify the effect of the distance between the TOC photon
location and the center point of the crown on canopy height extraction.

W =h+ Dy x tan(p) 5)
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where I/ is the tree height obtained by inversion, & id actual tree height, D is the horizontal
distance between the TOC photon location and the center point of the crown, and p is
the slope.

H
(a)
Photon position Dyand D,;” Distance from photon to trunk ha", hy", h.", hy” 1CESat-2 measuring tree height
H Actual tree height )4 Angle of the slope gradient hg hy, e, hy Actual height of ICESat-2 measurement
Figure 6. Effect of slope on canopy height estimates at different slope locations: (a) canopy height
retrieved on flat land; (b) canopy height retrieved on a uphill slope; and (c) canopy height retrieved
on a downhill slope.
Table 2. Maximum error of canopy for different slopes.
Slope
Offset Distance/(m)
5° 10° 15° 20° 25° 30° 35° 40° 45° 50°

1 0.09 0.18 0.27 0.36 0.47 0.58 0.70 0.84 1.00 1.19

2 0.17 0.35 0.54 0.73 0.93 1.15 1.40 1.68 2.00 2.38

3 0.26 0.53 0.80 1.09 1.40 1.73 2.10 2.52 3.00 3.58

Crown Segmentation

Multi-resolution segmentation (MS) is commonly used for segmenting ultra-high
resolution images [54-56]. We used eCognition software (Definens Developer 8.7) for
crown segmentation of the DOM with a resolution of 0.2 m and Google Earth images with a
resolution of 0.3 m. A 9 x 9 median filter was applied to the DOM prior to segmentation to
prevent over-segmentation [51]. The scale, shape ratio, and compactness ratio are required
input parameters for MS in eCognition. The scale parameter affects the average size of the
segmented objects, the shape ratio controls the homogeneity, and the compactness ratio
influences the object’s shape. The optimal segmentation parameters for various forest types
were determined after extensive experiments and considering the vegetation structure and
distribution. The 0.2 m resolution image had a scale parameter of 12~16, a shape ratio
of 0.7~0.8, and a compactness ratio of 0.6~0.9. The 0.3 m resolution image had a scale
parameter range of 10~12, a shape ratio range of 0.4~0.5, and a compactness ratio range
of 0.6~0.7. The To assure quality, the final segmentation results were visually personally
examined for an appropriate segmentation performance. The segmentation results are
shown in Figure 7.
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0 2.585 10 Meters

(a) —— Crown contour Track

Figure 7. Example of segmentation results of the (a) CAF-LiCHy DOM data and (b) Google Earth image.

The geometric moment of the images was calculated to derive a binary map and
obtain the center of mass position of the segmented object (Equation (6)), which was used
as the crown center [57]. We vectorized the final segmentation results to obtain the tree
crown delineations.

Co | TM N, o)
o0 DS i 2N (i)

_Cy _ ST oM )
YT Co T I Y, 2V G))

S

X =

)

(6)

where ¢N(x, y) is the pixel value of the binary image, Cj¢ is the cumulative sum of the
product of the x-coordinate value of the tree canopy profile and the gray value of the image
element, Co; is the cumulative sum of the product of the y-coordinate value of the tree
canopy profile and the gray value of the image element, and Cyy is the cumulative sum of
the gray values of the canopy profile image elements.

TOC Photon Correction

The slope and slope direction parameters were calculated from the DTM derived from
the ICESat-2 data. The relative positions of the TOC photons and crown center points were
obtained after segmenting the high spatial resolution DOM. We used the slope, D, the
orientation parameter, and the canopy correction rule (CCR) to eliminate the canopy height
errors caused by the slope (cf. Equation (7)). If the TOC photon and the crown center point
were located on the ATD, the relative distance could be calculated directly. Otherwise, the
crown center point was projected onto the ATD, and the relative distance was calculated.
The TOC photon locations whose D; were greater than 0.5 m were corrected. The values
were not corrected when the TOC photons were located between adjacent canopies (cf.
Figure 8). The highest local canopy point was obtained by Equation (7) and represented
the corrected canopy height. Due to the different crown segmentation results for the 0.2 m
and 0.3 m spatial resolution images, the locations of the crown centroids were different,
resulting in differences in D; and S. The correction results obtained from the 0.3 m spatial
resolution image were called CCR-1, and those based on the 0.2 m spatial resolution image
were called CCR-2.

haricem = Hroc — S-Dgtanp ()

where h 471 ccpm is the canopy height after correction, Hroc is the TOC photon height, D,
is the distance between the TOC photon and the center point of the crown, p is the slope,
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and S is the orientation parameter. When the crown center point was located on the south
slope, the TOC photon was located south relative to the crown center at S = 1. The TOC
photon was located north relative to the crown center at S = —1. When the crown center
point was located on the north slope, the TOC photon was located south relative to the
crown center at S = —1, and the TOC photon was located north relative to the crown center
at S =1. When D; < 0.5 m or the TOC photon was not located on the tree crown, S = 0. The
calculations were performed in ArcGIS 10.7 and Python 3.8.

i~ i
DdSO.:!m

(c) (d) (e)
Track ® Center point of tree crown
Y Photon . Vertical projection point of

crown center point on the track

Figure 8. Schematic diagram of TOC photon correction rules: (a) the crown centroid and TOC photon
are located in the same vertical direction and D,; > 0.5 m; the TOC photon is corrected; (b) the crown
centroid and TOC photon are located in the same vertical direction, D; < 0.5 m, and no correction
is applied to the TOC photon; (c) the crown centroid and TOC photon are not in the same vertical
direction, and the crown centroid is projected vertically to the orbit where the TOC photon is located.
The TOC photon is corrected when the projection point to the TOC photon D; > 0.5 m; (d) the crown
centroid projection point to the TOC photon D; < 0.5 m. The TOC photon is not corrected; (e) the
TOC photons are not corrected when they are located between adjacent canopies.

2.3.5. Extraction of Canopy Parameters

The DSM and DTM were obtained by applying a third spline interpolation to the
ground photons and TOC photons (cf. Figure 5d). The DTM and DSM were subtracted
to obtain the CHM. The CHM was divided into 10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 70 m,
80 m, 90 m, and 100 m segments in the along-track direction, and the effect of the segment
size on the accuracy was compared. We calculated the relative height index for the different
segments (RH70, RH75, RH80, RH85, RH90, RH95, RH98, RH100). In addition, we used
the canopy relief ratio (CRR) [58,59] to analyze the canopy height differences within a
10 m segment:

HC; = chnopy — Hterrain 8

DH = sort(HC) )
RH; = DH(i) j = 70, 75, 80, 85, 90, 95, 100 ;i = j-0.01-n (10)
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CRR = hmeun - hmin (11)
hmax - hmin
where HC; is the height of each vegetation point relative to the ground, Hamopy is the
canopy elevation, Hiepp,iy, is the ground elevation, DH is the dataset obtained by sorting the
height of all vegetation points relative to the ground in ascending order, i is the number of
vegetation points in the DH data (1, 2, ... , n), j is the percent. lyean, Ny, and hyuay are the
mean, minimum, and maximum canopy heights, respectively. CRR ranges from 0 to 1.

2.3.6. Accuracy Validation

We compared the accuracy of the forest canopy heights (CHMatr.0s, CHMATL03 initial,
CHMcprc CHMccRr-1, and CHMccr-2) extracted from the ICESat-2 photon cloud data
with that obtained from the CAF-LiCHy data. It has been shown that the vegetation height
based on photon data is highly correlated with the 95th percentile height of conventional
airborne LiDAR data [52]. Therefore, the 95th percentile height of the airborne CHM was
used as the validation data to validate the accuracy of the data at the photon level and
segment level. The determination coefficient (R?), bias of mean (Bias), mean absolute error
(MAE), and root mean square error (RMSE) were used to verify the accuracy of the canopy
height obtained from ICESat-2 data.

R?: Determination coefficient

RMSE?2

RP=1-—-—"" 12
Var(hars) (12)
Bias: 1
Bias = — Yoo (hats —hart) (13)
MAE: Mean absolute error
1
MAE = — Y o |(hars —harr)] (14)
MAE’: Normalized mean absolute error
MAE — min(MAE)
MAE = 1
max(MAE) — min(MAE) (15)
RMSE: Root Mean Square Error
1
RMSE = \/n Yoo (hars —harp)? (16)

where h41 5 is the height obtained from the CAF-LiCHy data, hi4ty is the height obtained
by inversion from the ICESat-2 data, and » is the number of total photons. MAE’ is a linear
transformation of the MAE to obtain values in the range of [0, 1].

3. Results
3.1. Canopy Height before and after Correction

Figure 9 shows the canopy heights from ATLOS, initial ATL03, and after cross-track
photon correction and canopy height correction. The canopy height provided by ATLOS8 is
significantly overestimated in this region compared with that extracted from the CAF-LiCHy
LiDAR data. The MAE and RMSE exceed 20 m. Figure 9 and Table 3 show that although
ATL08 provides the canopy height per 100 m segment, there is a substantial difference between
its canopy height and that obtained from the airborne LiDAR, resulting in low accuracy. These
results suggest that ATLO8 may not be suitable for obtaining canopy heights in subtropical
forest areas.
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Figure 9. Comparison of airborne and spaceborne canopy height estimates retrieved by different
methods: (a) is the result of CHM at1.08, CHM aAT1.03 initial, CHMcTpc and CHMccr_p, (b) is the result
of CHMCCR—l ’ CHMCCR72 and CHM ALS-

Table 3. Accuracy of tree height inversion for different methods.

CHMatr0s  CHMATL03 initial CHMctPC CHMCccr-1 CHMccr-2

R? 0.19 0.34 0.47 0.61 0.65
Bias/(m) 2291 1.17 1.39 1.55 -0.75

MAE/(m) 22.96 6.02 3.87 3.26 2.98

RMSE/ (m) 27.68 7.31 4.68 4.08 3.78

The accuracy of CHM 11 03 initial €Xtracted by the conventional method from the ATL03
data is higher than that of CHM Ty g3, but the error is relatively large. After applying the cross-
track photon correction before photon denoising and slope filtering for ground photon selection,
the canopy height R? increased by 38.24%, MAE decreased by 35.71%, and the RMSE decreased
by 35.98%, indicating a significant improvement in accuracy. The accuracy of canopy height
estimation was further improved by applying the slope factor correction method. The MAE of
CHMCccRr-1 decreased by 15.58%, and the RMSE decreased by 12.73%. The MAE of CHMccr-»
decreased by 23%, and the RMSE decreased by 19.23%. CHM¢cr-» showed better results than
CHMcRr-1- The difference between CHMccr_1 and CHMccr_» was due to the different Dy
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extracted from different ancillary images. As shown in Figures 9 and 10 and Table 3, the canopy
height correction further reduced the canopy height error. Compared to the CHM AT 3 initials
the CHMccRr_p improved the R? by 91.18% and reduced the MAE by 50.50% and the RMSE
by 48.29%. The R? of CHMccR_» explained 65% of the variation in canopy height, indicating
a significant improvement over the pre-correction estimates. The results of CHMccgr-1 and
CHMccRr-2 show that the slope-based canopy correction method improves the goodness of fit
and reduces the error.

CHM,  , (m)
CHM,  (m)

0 5 10 15 20 25 0 5 10 15 20 25
CHMATL03 initial (m) CHMCTPC (m)
(a) (b)
] R -
é o) @ v
3 2
z z
S 5 o -
0 o -
o s &
| | 1 T | T \ T T T | l I
0 5 10 15 20 25 30 0 5 10 15 20 25
CHMCCR-] (m) CHMCCR-Z (m)
(©) (d

Figure 10. Scatter plot of tree heights retrieved by different methods and canopy height from
CAF-LiCHy data: (a) uncorrected ICESat-2 tree height; (b) cross-track photon corrected tree height,
(c,d) tree height after cross-track photon correction and TOC photon correction. The difference is
that the D value in (c) is derived from the 0.3 m image, and the D, value in (d) is obtained from the
0.2 m image.

3.2. Accuracy of Canopy Height Estimation for Different Segment Sizes and Relative Heights

This section describes the results of a sensitivity analysis of the forest canopy height
parameters for different segment sizes and different percentile heights. Table 4 lists the
canopy height accuracies before and after applying the proposed canopy height correction
model for different segment sizes. The canopy height error decreases with an increase in
the segment size, reaching the highest R? and the lowest MAE and RMSE for the 100 m
segment. The larger the segment distance, the better the performance of the canopy height
correction model is. As the segment size increases, the R? of CHM ATy 03 initial inCreases from
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0.35 t0 0.41, the MAE decreases from 5.94 m to 4.76 m, and the RMSE decreases from 7.17 m
to 5.79 m. The R? of CHMctpc increases from 0.58 to 0.68, the MAE decreases from 3.29 m
to 2.63 m, and the RMSE decreases from 4.03 m to 3.18 m. The R? of CHMccRr_» increases
from 0.66 to 0.74, the MAE decreases from 2.78 m to 2.10 m, and the RMSE decreases
from 3.53 m to 2.72 m. The sensitivity analysis of the forest parameters shows that the
MAE and RMSE of CHMATL03 initial Show a rapid decrease with an increase in the segment
size until 60 m, followed by a small decrease. The MAE and RMSE of CHMctpc show a
rapidly decreasing trend before the 50 m segment and a small decrease afterward. The
MAE and RMSE of CHMccRr-» show a rapidly decreasing trend before the 40 m segment
and a small decrease afterward. The proposed cross-track photon correction and canopy
height correction method improve the accuracy of canopy height estimation in a small area.
In addition, CHMATL03 initial, CHMcTpc, and CHMccr-, provide better performances than
CHMTL08 for the 100 m segment size.

Table 4. Inversion accuracy of uncorrected and corrected canopy heights for different segment sizes.

Datasets Accuracy Indices

Segment Size/(m)

10 20 30 40 50 60 70 80 90 100

0.35 0.36 0.38 0.39 0.40 0.40 0.40 0.40 0.42 0.41
1.16 1.20 1.19 1.27 1.25 1.17 1.26 1.19 1.19 1.16

CHMaT103 initial MAE/(m) 594 579 561 543 533 513 503 507 488 476
RMSE/ (m) 717 69 670 657 635 608 603 58 58 579

CHMCcrpc

0.58 0.62 0.64 0.64 0.65 0.66 0.67 0.68 0.69 0.68
1.39 1.39 1.39 1.39 1.40 1.39 1.40 1.40 1.40 1.40

MAE/ (m) 3.29 3.10 3.00 291 2.90 2.78 2.75 2.67 2.60 2.63

RMSE/ (m) 4.03 3.79 3.64 3.58 3.50 3.40 3.36 3.26 3.19 3.18

CHMccr-2

0.66 0.69 0.70 0.71 0.72 0.73 0.73 0.73 0.74 0.74
-074 -074 -074 -074 -072 -074 -073 -072 —-072 —-0.72

MAE/(m) 2.78 2.66 2.56 243 243 2.31 231 2.20 2.12 2.10

RMSE/ (m) 3.53 3.33 3.21 3.10 3.03 294 291 2.82 277 272

The percentile canopy height is crucial for describing the vertical structure of forests
and modeling forest biomass. Therefore, an accuracy assessment of the percentile height
was performed. Table 5 shows the sensitivity of eight percentiles of the forest canopy height
at the photon level (RH70, RH75, RH80, RH85, RH90, RH95, RH98, and RH100). The R?
range of CHMaTy g is 0.17~0.19, that of CHMATL (3 initial 1S 0.33~0.36, that of CHMcTpc
is 0.45~0.48, and that of CHMccRr_» is 0.63~0.68. The R? does not change significantly
with an increase in the percentile and is not shown in Table 5. The Bias, MAE, and RMSE
of CHMart1 08 decrease with a decrease in the percentile canopy height. CHM 11 03 initial,
CHMctpc, and CHMccr-2 exhibit a decrease followed by an increase in the Bias, MAE, and
RMSE with the decreasing percentile canopy height. The difference is that CHM ATy 03 initial
reaches the minimum error at RH75, CHMcrpc at RH80, and CHMccgr_p at RH98. The
results show that the canopy—corrected heights of CHM ccr-, have the lowest errors,
indicating that the proposed canopy correction method reduces the error.

Table 5. Percentile canopy heights retrieved by different methods.

Datasets Accuracy Indices RH70 RH75 RHS80 RHS85 RH90 RH95 RH98 RH100

CHMATL08

Bias/(m) 13.10 14.73 16.37 18.00 19.64 21.27 22.26 2291
MAE/(m) 13.60 15.12 16.64 18.19 19.76 21.36 22.31 22.96
RMSE/ (m) 16.90 18.68 20.47 22.26 24.06 25.87 26.95 27.68

CHMATL03 initial

Bias/(m) —2.43 —1.83 —1.23 —0.63 —0.03 0.57 0.93. 1.17
MAE/(m) 4.94 4.92 497 5.10 5.32 5.61 5.81 6.02
RMSE/(m) 6.08 6.07 6.14 6.30 6.53 6.82 7.03 7.31
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Table 5. Cont.
Datasets Accuracy Indices RH70 RH75 RHS80 RHS85 RH90 RH95 RH98 RH100
Bias/ (m) -179  -126  —073  —020 0.33 0.86 1.18 1.39
CHMCcrpce MAE/(m) 3.40 3.31 3.29 3.34 3.46 3.64 3.77 3.87
RMSE/(m) 441 4.25 4.19 421 4.31 4.50 4.64 4.68
Bias/ (m) -375  -325  —275  —225  -175  —-125  —095  —075
CHMCccr-2 MAE/(m) 421 3.83 3.50 322 3.03 2.95 2.95 2.98
RMSE/(m) 5.00 4.63 431 4.06 3.88 3.79 3.77 3.78
3.3. Effect of Slope on Canopy Correction
ICESat-2 was designed to overcome the disadvantages of ICESat-1 regarding the
measurement error on steep slopes. However, the canopy heights estimated by ICESat—2
on different slopes reveal that the error increases with the slope. The Chinese forestry slope
grading standard was used to classify the slope into six classes to quantify the influence
of slope on canopy height estimation. As shown in Table 6, the R? of CHMAT.03 initials
CHMcrpc, and CHMccr-; decreases as the slope increases. The MAE of each slope class
for CHM AT 03 initial 1S stable at 8.41~9.94 m, and the RMSE is stable at 11.50~13.10 m,
showing no changes. The MAE and RMSE of CHMctpc and CHMccRr- increase with the
slope. The MAE of each slope class for CHMcrpc is stable at 2.94~4.24 m, and the RMSE is
stable at 3.67~5.17 m. The MAE of each slope class for CHMccr-; is stable at 2.76~3.48 m,
and the RMSE is stable at 3.37~4.41 m. The MAE and RMSE of CHMccRr-, are on average
0.75 m and 0.84 m lower than that of CHMcrtpc, respectively.
Table 6. The influence of different slopes on the canopy height estimation accuracy.
A Slope Classes
Datasets i I i i v \ VI
(0° < Slope < 5°) (5° < Slope < 15°) (15° < Slope < 25°) (25° < Slope < 35°) (35° < Slope < 45°) (Slope > 45°)
R? 043 0.36 0.28 0.24 0.19 0.15
CHM Bias/(m) 6.98 6.12 6.00 454 4.00 3.09
ATLO3 initial MAE(m) 9.22 8.41 9.28 8.93 9.94 8.67
RMSE(m) 10.39 11.50 12.90 13.10 12.62 11.95
R? 0.67 0.55 0.52 0.50 0.4 039
CHMero Bias/(m) 2.05 1.79 1.84 127 1.06 1.18
CIPC MAE(m) 297 3.53 3.79 3.79 3.97 424
RMSE(m) 3.67 429 456 470 490 5.17
R? 0.81 0.69 0.64 0.64 0.60 055
CHM. Bias/(m) 0.74 —045 —047 —0.79 -0.95 ~1.04
CCR-2 MAE(m) 2.76 2.77 2.82 2.99 3.00 3.48
RMSE(m) 337 343 357 3.76 3.81 441

The errors were lower after the cross-track photon correction and canopy height
correction, indicating that these proposed methods reduced the canopy height errors due
to slope. The effect of the cross-track photon correction was greater than that of the canopy
height correction for reducing the error.

4. Discussion

4.1. Comparison of ICESat-2 Canopy Height Inversion Accuracy

We proposed a canopy height correction method based on the cross-track photon
correction of Li et al. [47] to minimize the error caused by the slope. This correction
method may not be applicable to inclined trees, whose height measurements are more
complicated [60]. Figure 9a shows that the ATLO8 data significantly overestimate the
canopy height in this region, which is consistent with the results of Sun et al. [61] but
different from those of Narine et al. [21] and Duncanson et al. [53], who found that ATL08
data underestimated canopy heights. The likely reason is that ICESat-2 uses the Landsat
Vegetation Continuous Fields (VCF) product [62] to define the forest. If the average VCF
canopy cover per 10 km segment is >5%, the ATL08 algorithm assumes that this segment
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is forested [29]. Because land-use types have changed over the past decade, ATLO8 may
be using an algorithm for non-forested areas, resulting in anomalous height changes. In
addition, due to the properties of the photon-counting LiDAR sensor and the ATL08
algorithm, it is possible that noisy photons were incorrectly identified as canopy or terrain
photons in the 100 m segment size. This error would lead to an incorrect estimation of
canopy height, especially for densely or sparsely vegetated areas [24]. Therefore, using
canopy height data from ATL0S8 is not recommended in subtropical forest areas.

Using the 20 m segment size for photon denoising and photon classification signifi-
cantly improved the canopy height estimates (Figure 9a). Streutker et al. [1] also showed
that a small segment size is preferable for canopy photon selection. However, a smaller
segment size is not necessarily better. A lower density of the photon cloud of the vegetation
signal in small segments may classify the vegetation signal as noise photons. Compared to
CHMcrpc and CHMccRr-3, the canopy height of CHM a1 03 initial Was significantly overes-
timated, probably due to noise near the ground or at the top of the canopy after photon
denoising. This noise was removed by cross-track photon correction and SFMB filtering.
CHMccRr- is based on the cross-track photon correction results and introduces a slope
factor to correct the TOC photons. Compared with CHMctpc, the MAE of CHMccRr-p is
reduced by 0.87 m and the RMSE is reduced by 0.90 m. The average correction value of
TOC photons is 0.66 m. The reduced error of CHMccRr-» is close to the average correction
value of TOC photons. In areas with slope > 15°, TOC photon correction reduces MAE by
0.76~0.97 m and RMSE by 0.76~1.09 m. R? improves by 0.18 after TOC photon correction,
it reflects that the canopy correction method proposed in this paper can reduce the canopy
height estimation error caused by slope. CHMctpc without TOC photon correction had
the lowest error at RH80. CHMccr-, with TOC photon correction had the lowest forest
canopy height MAE and RMSE at RH98. It indicates that the TOC photon correction
method eliminates the error caused by slope and restored the natural morphology of the
forest canopy.

The ATLO8 algorithm is suitable for global data processing, resulting in high errors
in some regions. However, the canopy height estimates were improved after cross-track
photon correction and canopy height correction based on ATL03 data, indicating that
ICESat-2 could perform canopy height inversion in subtropical regions.

4.2. Influencing Factors of ICESat-2 CHM Inversion

This section describes the effects of cross-track photon correction, slope, segment size,
percentile canopy height, Dy, canopy density, canopy relief rate, growth, and harvesting on
canopy height estimation using ICESat-2 data.

The effect of slope on the ICESat-2 canopy height estimation is reflected in two aspects.
First, if the 3D photon data are converted into 2D photon profiles without cross-track
photon correction [47], errors will occur in the DTM and DSM due to the slope influence;
this problem is called the horizontal error. Second, the position of the trunk bottom may
be overestimated or underestimated in the vertical direction (cf. Figure 6), which is called
the vertical error. Li et al. [47] reported that the MAE and RMSE of the height value in the
DTM were reduced after cross-track photon correction by 1.86~2.52 m and 2.12~2.50 m,
respectively. The slope can affect the canopy height estimates obtained from the DTM,
resulting estimates inaccurate. The relative canopy height is the height of the canopy
photons minus the height of the fitted ground. Thus, on high slopes, the errors of the
ground points are transferred to the canopy height estimates. As shown in Table 3, the
MAE and RMSE of the canopy heights after cross-track photon correction were reduced by
2.15 m and 2.63 m, respectively, which is similar to the improvement in the DTM accuracy
by cross-track photon correction. These results show that the cross-track photon correction
method not only effectively improves the ground estimation accuracy but also the canopy
height estimation accuracy. After the TOC photon correction, the MAE was further reduced
by 0.89 m, and the RMSE was further reduced by 0.90 m, suggesting that the horizontal
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error is larger than the vertical error and that accurate terrain estimation is crucial for
deriving canopy heights.

In mountainous regions, terrain undulations cause substantial uncertainty in canopy
height estimation [63]. We quantified the error in the vertical direction caused by the
slope. Figure 11a shows the influence of the slope on the absolute correction value. On
south-facing slopes, the difference was negative when the TOC photons were north of
the canopy centroid and positive when they were south of the canopy centroid. The
opposite is true for north-facing slopes. The difference between the CHMs before and after
correction ranged from —2.55 m to 2.90 m. A tree canopy is typically symmetrical with
the trunk as the axis, and the positive and negative correction values are determined by
the relative positions. Here, the correction values are the absolute values to depict the
effect of slope on canopy correction. As the slope becomes steeper, the absolute correction
value increases. On slopes < 10°, the absolute correction values are less than 0.50 m,
indicating that the canopy height correction method is not required in low-slope areas. As
shown in Table 6, the canopy heights estimated after cross-track photon correction had
relatively high accuracy in flat areas. The absolute correction values are different for the
same slope values due to the difference in D;. Moreover, the fitted curve in Figure 11a
shows that the vertical error increases exponentially with the slope. Therefore, the effect
of the topographic slope must be considered in very steep areas. Future studies should
evaluate the empirical equation of the slope correction method for ICESat-2 canopy height
estimate under different environments.
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Figure 11. Analysis of influencing factors of ICESat-2 canopy height inversion: (a) effect of slope on
the corrected canopy height; (b) effect of Dd on the corrected canopy height; (c) MAE for different
canopy densities; (d) scatterplot of the CRR obtained from CAF-LiCHy and ICESat-2 data.
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It is necessary to meet certain accuracy requirements for smaller segment sizes consid-
ering the future demand for forest parameters. We compared the sensitivity of the forest
parameters for 10 segment sizes (10 m to 100 m) (cf. Table 4). The accuracy increases with
an increase in the segment length, in agreement with the findings of Streutker et al. [1]. It is
expected that the MAE and RMSE will continue to decrease as the segment size increases
but at a slower rate. The R? was 0.64, and the RMSE was 3.64 m for the 30 m segment
size after cross-track photon correction. Our R? and RMSE values were slightly smaller
than those of Zhu et al. (0.70 and 4.31 m, respectively [64]. After the cross-track photon
correction and canopy height correction, the R? was 0.70, and the RMSE was 3.21 m, better
than the results of Zhu et al. [64]. The experimental results show that the combination
of cross-track photon correction and canopy height correction substantially reduces the
canopy height estimation error due to slope for ICESat-2 data.

A comparison of the different percentile canopy heights showed that the corrected
values were more accurate than the uncorrected values, and the MAE and RMSE were
the lowest at RH98. The forest canopy height results without cross-track photon correc-
tion and TOC photon correction were optimal at RH75, consistent with the findings of
Neuenschwander and Pitts [29]. The forest canopy height results with cross-track photon
correction were optimal at RH80. This finding indicates that canopy height correction
can reduce the uncertainty in selecting the optimal percentile canopy height for different
terrain conditions.

Figure 11b shows the proportions of the intervals for D; = 0.50 m and the maximum,
average, and minimum corrected heights. The TOC photon selection algorithm and the
crown segmentation algorithm affect D;. The highest point or percentile methods are
typically used for TOC photon selection [19,20,26,28,33], and the obtained TOC photon
results are relatively fixed. The canopy segmentation results depend on the tree species,
canopy width, canopy morphology, planting density, solar position, and shading. The
segmentation procedure is dependent on the user-specified parameters (scale, shape ratio,
and compactness ratio). When trees are grouped closely together in dense stands, the ends
of their branches may touch the crowns of nearby trees, resulting in larger crowns [65]. Thus,
the crown centroids may have errors, which are transferred to Dy, leading to uncertainty
in canopy height correction. This problem causes the largest uncertainty in the proposed
canopy correction method. It is expected that crown segmentation algorithms will be
improved using deep learning and other methods, minimizing this problem. Figure 11b
shows that the proportion of D; < 2.0 m accounts for 76.96%, which is attributed to the
canopy width of 4.0~8.0 m in this area. The maximum correction value does not occur in
the interval with the maximum Dj. Equation (7) indicates that the error is caused by the
slope. This result suggests that the effect of slope on canopy height is not negligible, and
the larger the slope, the larger the D is, and the larger the canopy height error is.

Figure 11c shows the normalized MAE of CHMccr-» at different canopy densities.
The dashed line is the boundary line of normalized MAE at different canopy densities.
Zhu et al. [34] also found that forest canopy density substantially affected the inversion of
canopy height from ICESat-2 data. We classified the canopy density into seven classes to
investigate the canopy density effect on the canopy height estimates of ICESat-2 data. The
mean normalized MAE increased with increasing canopy density, in agreement with the
results of Narine [21], Neuenschwander and Magruder [24], and Martin [66]. This study
differs from others in that the MAE was not always high in areas with high canopy density,
but the uncertainty of the normalized MAE rose with the increasing canopy density. The
boundary line shows the maximum error of the seven canopy density classes, indicating an
increasing trend of the normalized MAE. Although there is some uncertainty in this line,
it highlights the differences in the error for each canopy density class, an approach rarely
used in data analysis.

Existing studies on extracting forest vegetation parameters from photon-counting
LiDAR data have mostly focused on canopy height inversion. Canopy height is a crucial
parameter. Our study with ICESat-2 data only considered the canopy segments but not
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the internal canopy characteristics, and a CHM cannot describe the canopy geometry.
Therefore, we used the CRR to analyze the geometric characteristics of the tree crowns to
obtain a macroscopic description of the canopy height characteristics. Because CHMccRr-2
provided better performance than CHMccgr-1, this section compares the CRR of CHMccr-»
and CHMu1s. The CRR of the spaceborne LiDAR data was significantly correlated with
the airborne LiDAR data, with a Pearson correlation coefficient of 0.88 and an R? of 0.77
(cf. Figure 11d). This result shows that the CHM derived from the spaceborne LiDAR data
and the airborne LiDAR data are similar in terms of canopy characteristics. The CRR is not
related to the accuracy of the ICESat-2 inversion of canopy height but indicates that the
ICESat-2 CHM is relatively accurate. The CRR can be used as an index to demonstrate
the accuracy of ICESat-2 data for characterizing the canopy in addition to other accuracy
metrics (MAE, RMSE, etc.).

There was a difference in the acquisition time between the spaceborne LiDAR data and
the airborne LiDAR data. The airborne LiDAR data were collected in April 2018, and the
ICESat-2 data were collected in October 2019; thus, an exact match in time was impossible.
During the one-and-a-half-year period, the trees grew, and their height changed, leading
to errors. In addition, this area is an operational forest, where logging operations occur,
resulting in height estimation errors. Tree planting in non-forested areas can also cause
errors in canopy height estimation. Vegetation planting, growth, and harvesting affect the
accuracy of forest canopy height estimation.

4.3. Future Directions and Implications

Forest height indicators extracted from ICESat-2 data have been used as critical
variables for estimating biomass [21,53,67]. Our results suggest that using ICESat-2 canopy
height indicators is more challenging in stands with complex terrain and high variability in
canopy density. In contrast, cross-track photon correction and canopy height correction can
improve the accuracy of canopy height estimates.

The findings of this study show that ICESat-2 data can be used successfully to assess
the structure and characteristics of forest stands with different canopy heights, enabling
large-scale monitoring and management. The results obtained from the Google Earth
satellite images show the potential of their use for validation in different regions. Martin
et al. [68] detected more than 1.8 billion trees in the Sahara, Sahel, and sub-humid zone of
West Africa using high-resolution satellite images and depth learning algorithms. Although
this method was applied to savanna areas, forest canopy segmentation on a global scale
will become a reality with the development of ultra-high spatial resolution satellites and
single-tree identification algorithms. Canopy correction methods will be further improved.
Any single detection system has some limitations. Thus, combining different ultra-high
spatial resolution satellite images (Worldview-2/3, GeoEye-1, etc.) with ICESat-2 data can
be advantageous. This study demonstrates the capacity to utilize these data for estimat-
ing forest attribute values and provides a thorough review of extracting forest structure
parameters from ICESat-2 data. Nie et al. [69] developed a theoretical model to quantify
the effects of terrain slope, canopy radius, canopy shape, and offset distance to the slope on
canopy height displacement in ellipsoidal canopies. The effect of slope on canopy height
estimation may differ for different types of canopies and terrain. This paper proposes a
theoretical approach to eliminating slope errors. In the future, we can build on this theory
to verify the effect of different canopy shapes on canopy height estimation experimentally.
ICESat-2 will be integrated with other datasets to extract detailed estimates of forest in-
ventory parameters for monitoring purposes on a continuous time scale. This strategy is
applicable due to the growing availability of ICESat-2 data and the improved capabilities
for forest monitoring,.

5. Conclusions

Canopy height inversion from ICESat-2 laser altimetry data is substantially influenced
by slope, canopy density, and signal-to-noise ratio. Studies have shown that slope is the
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most influential factor. Our results indicate that the vertical error increases exponentially
with the increasing slope; thus, the effect of slope on canopy height estimation must be
considered. This study proposed the first ICESat-2 CCR based on high spatial resolution
DOM. The effect of slope on the canopy height estimates obtained from ICESat-2 data
was minimized by the cross-track photon correction method. This method reduced the
MAE by 35.71% and the RMSE by 35.98%. The canopy correction method based on high
spatial resolution DOM based on the cross-track photon correction resulted in a further
23% reduction in the MAE and a 19.23% reduction in the RMSE. The proposed method
significantly improved the accuracy of ICESat-2 forest canopy height estimation compared
with the traditional method. Using uncorrected canopy height data from ATLO0S8 is not
recommended in subtropical forest areas.

This study investigated the sources of slope error and their effect on canopy height
estimation and proposed a slope error correction method. The method is suitable for
spaceborne photon-counting LiDAR systems and improves the accuracy of canopy height
estimation. However, the correction method uses multi-source data, increasing the compu-
tational complexity. Thus, the method is more time-consuming than using ATLO08 data for
large photon point clouds. Since we focused on a theoretical approach to minimize slope
errors, we did not quantify the effect of canopy morphology on canopy height estimation.
Future studies will focus on the validation of our theoretical approach in different regions
and ecosystems to demonstrate the applicability of the methodology.
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