Adaptive Support-Driven Sparse Recovery STAP Method with Subspace Penalty
Abstract
:1. Introduction
- We formulate a new optimization problem based on a subspace penalty. This optimization problem considers the connection between SBL and subspace-based algorithms;
- To solve the above optimization problem, we use an alternating minimization algorithm. For each minimization step, a closed-form solution is obtained, which guarantees the convergence of the algorithm;
- The restart strategy is used to adaptively estimate the support set in each iteration, thereby reducing the computational complexity;
- The proposed algorithm (ASDSPL) is compared with other common SR-STAP algorithms in terms of the output signal to interference plus noise ratio (SINR) loss, improvement factor (IF), Capon spectrum, computational complexity and convergence speed using the simulation data.
2. SR-STAP Model and SBL Review
2.1. SR-STAP Model
2.2. SBL Review
3. Proposed Method
3.1. Subspace Penalty
3.2. Adaptive Update Support Set and Calculate
Algorithm 1. Pseudocode for ASDSPL-STAP algorithm. |
Input: training samples , dictionary matrix . |
Initialize: , , , , . |
Step1: Calculate using (49)-(52); Step2: While ; Update using (42); Update using (43); Update using (45); Update support set using (47) and (48); Update dictionary matrix ; If break end end |
Step2: Estimate the CNCM by (46) |
Step3: Calculate the STAP weight by (8); |
Output: . |
4. Computational Complexity Analysis
5. Numerical Simulation
5.1. Performance Analysis in the Ideal Case
5.2. Performance Analysis in the Non-Ideal Case
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ward, J. Space-Time Adaptive Processing for Airborne Radar. In Technical Report, 1015; MIT Lincoln Laboratory: Lexington, MA, USA, 1994. [Google Scholar]
- Brennan, L.E.; Mallett, J.D.; Reed, I.S. Theory of Adaptive Radar. IEEE Trans. Aerosp. Electron. Syst. 1973, 9, 237–251. [Google Scholar] [CrossRef]
- Klemm, R. Adaptive airborne MTI: An auxiliary channel approach. In IEE Proceedings F (Communications, Radar and Signal Processing); IET Digital Library: London, UK, 1987; Volume 134, pp. 269–276. [Google Scholar]
- Dipietro, R.C. Extended factored space-time processing for airborne radar systems. In Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers; IEEE Computer Society: Pacific Grove, CA, USA, 1992; pp. 425–430. [Google Scholar]
- Goldstein, J.S.; Reed, I.S. Reduced-rank adaptive filtering. IEEE Trans. Signal Process. 1997, 45, 492–496. [Google Scholar] [CrossRef]
- Goldstein, J.S.; Reed, I.S. Subspace selection for partially adaptive sensor array processing. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 539–544. [Google Scholar] [CrossRef]
- Goldstein, J.S.; Reed, I.S.; Scharf, L.L. A multistage representation of the wiener filter based on orthogonal projections. IEEE Trans. Inf. Theory 1998, 44, 2943–2959. [Google Scholar] [CrossRef]
- Cristallini, D.; Burger, W. A robust direct data domain approach for STAP. IEEE Trans. Signal Process. 2012, 60, 1283–1294. [Google Scholar] [CrossRef]
- Melvin, W.L.; Showman, G.A. An approach to knowledge-aided covariance estimation. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1021–1042. [Google Scholar] [CrossRef]
- Wicks, M.C.; Rangaswamy, M.; Adve, R.; Hale, T.B. Space–time adaptive processing: A knowledge-based perspective for airborne radar. IEEE Signal Process. Mag. 2006, 23, 51–65. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, X.; Wang, H.Q.; Jiang, W.D. On Clutter Sparsity Analysis in Space-Time Adaptive Processing Airborne Radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.; Wang, X. A novel STAP algorithm using sparse recovery technique. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Sun, K.; Meng, H.; Wang, Y.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 2011, 91, 2222–2236. [Google Scholar] [CrossRef]
- Tropp, J.A. Algorithms for simultaneous sparse approximation, part II: Convex relaxation. Signal Process. 2006, 86, 589–602. [Google Scholar] [CrossRef]
- Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Meng, H.; Wang, X. Jointly sparse recovery of multiple snapshots in STAP. In Proceedings of the 2013 IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; pp. 1–4. [Google Scholar]
- Yang, Z.; Li, X.; Wang, H.; Jiang, W. Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal Process. 2013, 93, 3567–3577. [Google Scholar] [CrossRef]
- Lee, K.; Bresler, Y.; Junge, M. Subspace methods for joint sparse recovery. IEEE Trans. Inf. Theory 2012, 58, 3613–3641. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Duan, K.; Xie, W. Subspace-Augmented Clutter Suppression Technique for STAP Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1–5. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. 2001, 1, 211–244. [Google Scholar]
- Wipf, D.P.; Rao, B.D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process. 2007, 55, 3704–3716. [Google Scholar] [CrossRef]
- Duan, K.Q.; Wang, Z.T.; Xie, W.C.; Chen, H.; Wang, Y.L. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [Google Scholar] [CrossRef]
- Wang, Z.T.; Xie, W.C.; Duan, K.Q.; Wang, Y.L. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar. Signal Process. 2017, 130, 159–168. [Google Scholar] [CrossRef]
- Wipf, D.P.; Rao, B.D.; Nagarajan, S. Latent Variable Bayesian Models for Promoting Sparsity. IEEE Trans. Inf. Theory 2011, 57, 6236–6255. [Google Scholar] [CrossRef]
- Ye, J.C.; Kim, J.M.; Bresler, Y. Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty. IEEE Trans. Signal Process. 2016, 63, 6595–6605. [Google Scholar] [CrossRef]
- Li, J.; Zhou, W.; Cheng, C. Adaptive support driven Bayesian reweighted algorithm for sparse signal recovery. Signal Image Video Process. 2020, 15, 1295–1302. [Google Scholar] [CrossRef]
- Chong, E.K.P.; Zak, S.H. An Introduction to Optimization; Wiley-Intersci.: New York, NY, USA, 1996. [Google Scholar]
- Mohan, K.; Fazel, M. Iterative reweighted least squares for matrix rank minimization. In Proceedings of the 48th IEEE Annual Allerton Conference Communication, Control Computing, Monticello, IL, USA, 29 September–1 October 2010; pp. 653–661. [Google Scholar]
- Fazel, M.; Hindi, H.; Boyd, S.P. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003. [Google Scholar]
- Wu, X.; Zhu, W.P.; Yan, J. A High-Resolution DOA Estimation Method with a Family of Nonconvex Penalties. IEEE Trans. Veh. Technol. 2017, 67, 4925–4938. [Google Scholar] [CrossRef]
- Nie, F.; Huang, H.; Ding, C. Low-rank matrix recovery via efficient schatten p-norm minimization. In Twenty-Sixth AAAI Conference on Artificial Intelligence; AAAI Press: Menlo Park, CA, USA, 2012. [Google Scholar]
- Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L. Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction. IEEE Trans. Image Process. 2016, 25, 4842–4857. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Algorithm | Computational Load for a Single Iteration |
---|---|
M-OMP | |
M-FOCUSS | |
M-IAA | |
M-SBL | |
M-FCSBL | |
ASDSPL |
Symbols | Parameters | Value |
---|---|---|
Wavelength | 0.3 m | |
Element spacing | 0.15 m | |
Platform velocity | 150 m/s | |
height of platform | 9000 m | |
Number of pulses | 8 | |
Number of array elements | 8 | |
PRF | 2000 Hz | |
Sampling frequency | 2.5 MHz | |
Azimuth angle | 90° | |
Clutter to noise ratio | 50 dB |
Algorithm | Running Time |
---|---|
M-OMP | 0.025 s |
M-FOCUSS | 11.294 s |
M-IAA | 4.368 s |
M-SBL | 16.511 s |
M-FCSBL | 4.213 s |
ASDSPL | 0.119 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wang, T.; Cui, W.; Liu, C. Adaptive Support-Driven Sparse Recovery STAP Method with Subspace Penalty. Remote Sens. 2022, 14, 4463. https://doi.org/10.3390/rs14184463
Wang D, Wang T, Cui W, Liu C. Adaptive Support-Driven Sparse Recovery STAP Method with Subspace Penalty. Remote Sensing. 2022; 14(18):4463. https://doi.org/10.3390/rs14184463
Chicago/Turabian StyleWang, Degen, Tong Wang, Weichen Cui, and Cheng Liu. 2022. "Adaptive Support-Driven Sparse Recovery STAP Method with Subspace Penalty" Remote Sensing 14, no. 18: 4463. https://doi.org/10.3390/rs14184463
APA StyleWang, D., Wang, T., Cui, W., & Liu, C. (2022). Adaptive Support-Driven Sparse Recovery STAP Method with Subspace Penalty. Remote Sensing, 14(18), 4463. https://doi.org/10.3390/rs14184463