The Comparison of Electron Density between CSES In Situ and Ground-Based Observations in China
Abstract
:1. Introduction
2. Data
3. Comparison with ISR Data
4. Comparing with Ionosonde Data
4.1. Time Series Analysis
4.2. Latitudinal Analysis
5. Discussion
6. Conclusions
- The pattern of the CSES Ne is consistent with that of the ISR Ne at the satellite orbit. The two datasets can be linearly fitted, seemly according to the magnitude, and the correlation coefficient is above 0.88. However, more data are needed to more deeply understand the relationship between the two sets of data.
- The trend of the CSES Ne is mostly similar to the ionosonde observations no matter whether the data are continuous in time or in a certain month; some correlation coefficients between the two datasets exceeded 0.7. On the China mainland, the correlation coefficient is higher around the peak of EIA compared to other locations.
- The value of the CSES Ne is low at 80–95% in the daytime, corresponding to the ISR and ionosonde observations in China.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Zhou, B.; Cheng, B.; Gou, X.; Li, L.; Zhang, Y.; Wang, J.; Magnes, W.; Lammegger, R.; Pollinger, A.; Ellmeier, M.; et al. First in-orbit results of the vector magnetic field measurement of the High Precision Magnetometer onboard the China Seismo-Electromagnetic Satellite. Earth Planets Space 2019, 71, 119. [Google Scholar] [CrossRef]
- Diego, P.; Huang, J.; Piersanti, M.; Badoni, D.; Zeren, Z.; Yan, R.; Rebustini, G.; Ammendola, R.; Candidi, M.; Guan, Y.-B.; et al. The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation. Instruments 2020, 5, 1. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, C.; Shen, X.; Zhima, Z. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation. J. Geophys. Res. Space Phys. 2019, 124, 4697–4709. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Yang, D.; Liu, D. Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites. Adv. Space Res. 2019, 64, 982–994. [Google Scholar] [CrossRef]
- Yan, R.; Zhima, Z.; Xiong, C.; Shen, X.; Huang, J.; Guan, Y.; Zhu, X.; Liu, C. Comparison of Electron Density and Temperature From the CSES Satellite With Other Space-Borne and Ground-Based Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Liu, J.; Guan, Y.; Zhang, X.; Shen, X. The data comparison of electron density between CSES and DEMETER satellite, Swarm constellation and IRI model. Earth Space Sci. 2021, 8, e2020EA001475. [Google Scholar] [CrossRef]
- Picozza, P.; Battiston, R.; Ambrosi, G.; Bartocci, S.; Basara, L.; Burger, W.J.; Campana, D.; Carfora, L.; Casolino, M.; Castellini, G.; et al. Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board the CSES. Astrophys. J. Suppl. Ser. 2019, 243, 16. [Google Scholar] [CrossRef]
- Ambrosi, G.; Bartocci, S.; Basara, L.; Battiston, R.; Burger, W.J.; Campana, D.; Caprai, M.; Carfora, L.; Castellini, G.; Cipollone, P.; et al. The electronics of the High-Energy Particle Detector on board the CSES-01 satellite. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1013, 165639. [Google Scholar] [CrossRef]
- Wang, X.; Yang, D.; Zhou, Z.; Cheng, W.; Xu, S.; Guo, F. Validation of CSES RO measurements using ionosonde and ISR observations. Adv. Space Res. 2020, 66, 2275–2288. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and Validation of Swarm Plasma Densities and Electron Temperatures Using Ground-Based Radars and Satellite Radio Occultation Measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Coster, A.; Qian, L.; Liu, J.; Solomon, S.C.; Eastes, R.W.; Daniell, R.E.; McClintock, W.E. Comparison of GOLD Nighttime Measurements With Total Electron Content: Preliminary Results. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027767. [Google Scholar] [CrossRef]
- Harding, B.J.; Chau, J.L.; He, M.; Englert, C.R.; Harlander, J.M.; Marr, K.D.; Makela, J.J.; Clahsen, M.; Li, G.; Ratnam, M.V.; et al. Validation of ICON-MIGHTI thermospheric wind observations: 2. Green-line comparisons to specular meteor radars. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028947. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Zakharenkova, I.; Braun, J.J.; Cherniak, I.; Hunt, D.; Schreiner, W.S.; Straus, P.R.; Valant-Weiss, B.L.; Vanhove, T.; Weiss, J.; et al. Processing and Validation of FORMOSAT-7/COSMIC-2 GPS Total Electron Content Observations. Radio Sci. 2021, 56, e2021RS007267. [Google Scholar] [CrossRef]
- Catapano, F.; Buchert, S.; Qamili, E.; Nilsson, T.; Bouffard, J.; Siemes, C.; Coco, I.; D’Amicis, R.; Tøffner-Clausen, L.; Trenchi, L.; et al. Swarm Langmuir Probes’ data quality and future improvements. Geosci. Instrum. Methods Data Syst. 2021. In discussions. [Google Scholar]
- Singh, A.K.; Maltseva, O.; Panda, S.K. Comparison between Swarm measured and IRI-2016, IRI-Plas 2017 modeled electron density over low and mid latitude region. Acta Astronaut. 2021, 189, 476–482. [Google Scholar] [CrossRef]
- Shen, X.H.; Zong, Q.G.; Zhang, X.M. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- Guan, Y.-B.; Wang, S.-J.; Liu, C.; Feng, Y.-B. The design of the Langmuir probe onboard a seismo-electromagnetic satellite. In International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications; SPIE: Bellingham, WA, USA, 2011; pp. 631–639. [Google Scholar]
- Yan, R.; Guan, Y.; Shen, X.; Huang, J.; Zhang, X.; Liu, C.; Liu, D. The Langmuir Probe Onboard CSES: Data inversion analysis method and first results. Earth Planet. Phys. 2018, 2, 479–488. [Google Scholar] [CrossRef]
- Liu, C.; Guan, Y.; Zheng, X.; Zhang, A.; Piero, D.; Sun, Y. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2018, 62, 829–838. [Google Scholar] [CrossRef]
- Mcnamara, L.F.; Cooke, D.L.; Valladares, C.E.; Reinisch, B.W. Comparison of CHAMP and Digisonde plasma frequencies at Jicamarca, Peru. Radio Sci. 2007, 42, RS2005. [Google Scholar] [CrossRef]
- Hu, L.; Ning, B.; Liu, L.; Zhao, B.; Li, G.; Wu, B.; Huang, Z.; Hao, X.; Chang, S.; Wu, Z. Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China. Ann. Geophys. 2014, 32, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Yu, L.; Dai, L.; Xu, Z.; Wu, J. The preliminary measurement and analysis of the power profiles by the Qujing incoherent scatter radar. Chin. J. Geophys. 2014, 57, 3564–3569, (In Chinese with English abstract). [Google Scholar]
- Liu, J.; Jiang, C.; Deng, C.; Yang, G.; Zhang, X.; Lou, W.; Yang, C. Vertical ionosonde net and its data application in southwestern China. Acta Seismol. Sin. 2016, 38, 399–407, (In Chinese with English abstract). [Google Scholar]
- Xu, T.; Wu, J.; Zhao, Z.; Liu, Y.; He, S.; Li, J.; Wu, Z.; Hu, Y. Monitoring ionospheric variations before earthquakes using the vertical and oblique sounding network over China. Nat. Hazards Earth Syst. Sci. 2011, 11, 1083–1089. [Google Scholar] [CrossRef]
- Bhonsle, R.V.; da Rosa, A.V.; Garriott, O.K. Meas- urements of the total electron content and equivalent slab thickness of the mid-latitude ionospher. Radio Sci. 1965, 69D, 929. [Google Scholar]
- McNamara, L.F.; Smith, D.H. Total electron content of the ionosphere at 30°S, 1967-1974. J. Atmos. Terr. Phys. 1982, 44, 227. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Yue, X.; Zhao, B.; Ning, B.; Zhang, M.L. The dependence of plasma density in the topside ionosphere on the solar activity level. Ann. Geophys. 2007, 25, 1337–1343. [Google Scholar] [CrossRef]
- Balan, N.; Rao, P.B. Latitudinal variations of nighttime enhancements in total electron content. J. Geophys. Res. 1987, 92, 3436–3440. [Google Scholar] [CrossRef]
- Robert, S.; Andrew, N. Ionospheres: Physics, Plasma Physics, and Chemistry; Cambridge University: New York, NY, USA, 2009. [Google Scholar]
- Rishbeth, H.; Garriott, O.K. Introduction to Ionospheric Physics; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Lei, J.; Liu, L.; Wan, W.; Zhang, S.-R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill. Radio Sci. 2005, 40, RS2008. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Zhang, M.-L.; Ning, B.; Zhang, S.-R.; Holt, J.M. Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment. Ann. Geophys. 2007, 25, 2019–2027. [Google Scholar] [CrossRef]
- Lei, J.; Liu, L.; Wan, W.; Zhang, S.-R.; Van Eyken, A.P. Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001. Adv. Space Res. 2006, 37, 1102–1107. [Google Scholar] [CrossRef]
- Liu, L.; Le, H.; Wan, W.; Sulzer, M.P.; Lei, J.; Zhang, M.-L. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements. J. Geophys. Res. Space Phys. 2007, 112, A06307. [Google Scholar] [CrossRef]
- Bilitza, D. (Ed.) International Reference Ionosphere 1990, NSSDC 90-22; Science Applications Research: Greenbelt, MD, USA, 1990. [Google Scholar]
- Wei, L.; Jiang, C.; Hu, Y.; Aa, E.; Huang, W.; Liu, J.; Yang, G.; Zhao, Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sens. 2021, 13, 1010. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Liu, J.; Yokoyama, T.; Komolmis, T.; Song, H.; Lan, T.; Zhou, C.; Zhang, Y.; Zhao, Z. Ionosonde observations of daytime spread F at low latitudes. J. Geophys. Res. Space Phys. 2016, 121, 12093–12103. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, H.; Yang, G.; Liu, J.; Zhao, Z. A statistical study of the F2 layer stratification at the northern equatorial ionization anomaly. Adv. Space Res. 2019, 63, 3167–3176. [Google Scholar] [CrossRef]
- Lühr, H.; Xiong, C. IRI-2007 model overestimates electron density during the 23/24 solar minimum. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Yue, X.; Schreiner, W.S. Comparison between GPS radio occultation electron densities and in situ satellite observations. Radio Sci. 2015, 50, 518–525. [Google Scholar] [CrossRef]
Station | March | June | September | December |
---|---|---|---|---|
Manzhouli (MZL) | 0.5331 | 0.2192 | 0.1460 | −0.2932 |
Changchun (CC) | 0.2410 | 0.5243 | 0.4167 | −0.0542 |
Urumuchi (UC) | 0.3017 | 0.2121 | −0.0263 | −0.0101 |
Beijing (BJ) | 0.4895 | 0.2193 | 0.5864 | 0.1550 |
Lanzhou (LZ) | 0.4018 | 0.6445 | 0.5585 | 0.4069 |
Xi’an (XA) | 0.3986 | 0.5119 | 0.6665 | 0.0989 |
Lhasa (LS) | 0.4476 | 0.7124 | 0.5153 | 0.6356 |
Chongqing (CQ) | 0.5444 | 0.7533 | 0.5366 | 0.3109 |
Kunming (KM) | 0.3939 | 0.5786 | 0.7311 | 0.3447 |
Haikou (HK) | 0.3552 | 0.5524 | 0.5228 | 0.6494 |
Station | March | June | September | December |
---|---|---|---|---|
Manzhouli (MZL) | −93.51% | −90.35% | −94.48% | −94.22% |
Changchun (CC) | −85.52% | −80.47% | −84.62% | −91.08% |
Urumuchi (UC) | −93.81% | −88.35% | −93.46% | −94.29% |
Beijing (BJ) | −93.13% | −87.11% | −93.50% | −94.10% |
Lanzhou (LZ) | −90.48% | −85.00% | −89.99% | −93.45% |
Xi’an (XA) | −89.72% | −84.45% | −90.10% | −92.86% |
Lhasa (LS) | −87.09% | −82.18% | −86.02% | −91.17% |
Chongqing (CQ) | −85.52% | −80.47% | −84.62% | −91.08% |
Kunming (KM) | −88.72% | −84.31% | −89.52% | −91.91% |
Haikou (HK) | −85.29% | −81.85% | −87.13% | −93.21% |
Station | Raw Data | Running Mean | Geomagnetically Quiet Day |
---|---|---|---|
Leshan | 0.4858 | 0.7557 | 0.5785 |
Tengchong | 0.5973 | 0.7506 | 0.6334 |
Puer | 0.4944 | 0.6425 | 0.5431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, T.; Ding, Z.; Zhang, X. The Comparison of Electron Density between CSES In Situ and Ground-Based Observations in China. Remote Sens. 2022, 14, 4498. https://doi.org/10.3390/rs14184498
Liu J, Xu T, Ding Z, Zhang X. The Comparison of Electron Density between CSES In Situ and Ground-Based Observations in China. Remote Sensing. 2022; 14(18):4498. https://doi.org/10.3390/rs14184498
Chicago/Turabian StyleLiu, Jing, Tong Xu, Zonghua Ding, and Xuemin Zhang. 2022. "The Comparison of Electron Density between CSES In Situ and Ground-Based Observations in China" Remote Sensing 14, no. 18: 4498. https://doi.org/10.3390/rs14184498
APA StyleLiu, J., Xu, T., Ding, Z., & Zhang, X. (2022). The Comparison of Electron Density between CSES In Situ and Ground-Based Observations in China. Remote Sensing, 14(18), 4498. https://doi.org/10.3390/rs14184498