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Abstract: Estimates of the diffuse attenuation coefficient (Kd) at two different wavelengths and
band-integrated (PAR) were obtained using different published algorithms developed for open ocean
waters spanning in type from explicit-empirical, semi-analytical and implicit-empirical and applied
to data from spectral radiometers on board six different satellites (MODIS-Aqua, MODIS-Terra,
VIIRS–SNPP, VIIRS-JPSS, OLCI-Sentinel 3A and OLCI-Sentinel 3B). The resultant Kds were compared
to those inferred from measurements of radiometry from sensors on board autonomous profiling
floats (BGC-Argo). Advantages of BGC-Argo measurements compared to ship-based ones include:
1. uniform sampling in time throughout the year, 2. large spatial coverage, and 3. lack of shading by
platform. Over 5000 quality-controlled matchups between Kds derived from float and from satellite
sensors were found with values ranging from 0.01 to 0.67 m−1. Our results show that although all
three algorithm types provided similarly ranging values of Kd to those of the floats, for most sensors,
a given algorithm produced statistically different Kd distributions from the two others. Algorithm
results diverged the most for low Kd (clearest waters). Algorithm biases were traced to the limitations
of the datasets the algorithms were developed and trained with, as well as the neglect of sun angle
in some algorithms. This study highlights: 1. the importance of using comprehensive field-based
datasets (such as BGC-Argo) for algorithm development, 2. the limitation of using radiative-transfer
model simulations only for algorithm development, and 3. the potential for improvement if sun
angle is taken into account explicitly to improve empirical Kd algorithms. Recent augmentation of
profiling floats with hyper-spectral radiometers should be encouraged as they will provide additional
constraints to develop algorithms for upcoming missions such as NASA’s PACE and SBG and ESA’s
CHIME, all of which will include a hyper-spectral radiometer.

Keywords: radiometry; diffuse attenuation coefficient; algorithm validation; ocean optics; BGC-Argo

1. Introduction

The spectral diffuse attenuation coefficient of downward irradiance (Kd(λ), see Table 1
for notation) describes how radiation is attenuated near the ocean’s surface and hence is
important in regulating physical and biogeochemical processes in the upper ocean such
as heating, photosynthesis and photo-chemistry. As an apparent optical property (AOP),
Kd(λ) primarily varies with the water’s inherent optical properties (IOPs), such as the
absorption and the volume scattering function coefficients, and is affected, to a much
smaller extent by sun angle, clouds, surface waves and other environmental conditions,
therefore characterizing the optical properties of a water body [1].

Retrieving Kd(λ) from remote sensing provides constraints on the above processes
in assimilative global biogeochemical models. Both NASA and ESA provide the diffuse
attenuation at 490 nm, Kd(490), as a Level-2 product, using empirical algorithms that are
a function of the ratio of blue and green wavelengths of the remotely sensed reflectance
(Rrs) computed for a given sensor. The primary purpose of our study is to perform a
comprehensive evaluation of the Kd(λ) products on a global scale.
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Profiling BGC-Argo floats provide a novel and extensive dataset to assess algorithms’
performance with as they are unbiased temporally (e.g., sample equally in winters and
summers) and span the globe. Additionally, radiometers are mounted in a way such as
not to be shadowed by the floats, unlike the inevitable shading (of, at a minimum, some
skylight) present when radiometers are deployed from research vessels.

In this paper, we expand on the pioneering analysis of [2] who similarly used radiom-
etry data on profiling floats to test Kd(490) and Kd(PAR) algorithms by: 1. including a
significantly larger dataset (40,738 profiles from 225 different floats), 2. comparing in situ
Kds with six different satellite missions, 3. using Level 2 satellite data, 4. evaluating the al-
gorithm for Kd(412), and 5. including a published algorithm based on a neural network [3]
for Kd(λ) as well as an additional empirical algorithm [4] to compute Kd(PAR).

Table 1. Symbols and definitions.

Symbol Definition
APD Absolute Percentage Difference
a(λ) Absorption
bb(λ) Backscattering
Chla Chlorophyll a concentration
Ed(λ) Downwelling irradiance

Ed(λ, 0−) Downwelling irradiance below the surface
Ed(λ)

∗ Simulated downwelling irradiance with spectral response function
ηw Relative contribution of molecular scattering to total scattering

iPAR Instantaneous Downwelling Photosynthetically Available Radiation

Kbio(490) Diffuse attenuation coefficient at 490 nm
due to material co-varying with chlorophyll

KESA
d ESA L2 operational algorithm based on Morel

(K f loat
d ,KRrs

d ) Centroid pair , average of KRrs
d and K f loat

d

K f loat
d (PAR) Ed-retrieved Kd(PAR)

Kd(λ) The layer averaged diffuse attenuation coefficient
The layer averaged diffuse attenuation coefficientKd(λ)zpd from the surface to the penetration depth

KLee
d Lee’s semi-analytical algorithm

KLee05
d (PAR) Lee’s semi-analytical algorithm retrieving PAR

KMorel07
d (PAR) Morel’s empirical algorithm retrieving PAR

KNASA
d NASA L2 operational algorithm based on Austin& Werdell
KNN

d Jamet’s neural network algorithm
KRrs

d (λ) Rrs-retrieved Kd(λ)

KRrs
d (PAR) Rrs-retrieved Kd(PAR)
Kw(490) Diffuse attenuation coefficient at 490 nm of pure water

L∗
w

Simulated water leaving radiance corrected for the spectral
response function

Lw Water leaving radiance
PAR Downwelling Photosynthetically Available Radiation

R(0−) Irradiance reflectance below the surface
Rrs Remote Sensing Reflectance
RT

rs Satellite Remote sensing reflectance
σ490,560 Water leaving reflectance ratio of 490/560

θ Sun zenith angle over the surface of the ocean
χN ,ηN ,αN Constants for computation of Kd(PAR)Lee05

zpd Penetration depth

2. Materials and Methods
2.1. Bio-Argo Data

A portion of the fleet of BGC-Argo floats were equipped with a multispectral down-
welling irradiance radiometer (OCR-504, Sea-Bird Scientific, Bellevue, WA, USA) that
measures Ed at 3 different channels (380 (or 443), 412, 490 nm [W m−2]) and PAR (the
integrated irradiance from 400 to 700 nm, [µmol quanta m−2 s−1], [5]). Most floats analyzed
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in this study acquired a vertical profile of radiance from 0–250 m and surfaced once a day
around solar noon.

2.1.1. Retrieval of BGC-Argo Data

A large number of Argo float profiles (40,738, Table A1) with downwelling irradiance
(Ed(λ)), or downwelling Photosynthetically Available Radiation (PAR), were retrieved in
April 2022 from the Argo Global Assembly Center (GDACs) of Ifremer, where profiles are
available ≈ 24 h after acquisition (ftp://ftp.ifremer.fr/ifremer/argo/etc/argo-synthetic-
profile, accessed on 3 April 2022).

2.1.2. Processing of BGC-Argo Data

After retrieval, all profiles were quality controlled (QC) following [6]. This QC removes
a constant dark signal along the Ed(λ) or PAR by identifying the depth below which all
subsequent measurements were normally distributed. The mean Ed(λ) measured at that
depth is then considered the dark value and subsequently removed from all Ed(λ) values of
a given profile. These dark values are on the order of 0.001% of surface values, and thus this
procedure has a negligible effect on results here. Profiles where the polynomial fit had an
R2 > 0.995 were kept. The mean of the residuals from the fit was computed for each profile
that was kept, and data points with departures from the fit > 2 × σ (standard deviation)
from the mean of the residuals were identified as the product of clouds/spikes and removed
from the profile, per the procedure described in [2,6]. A second order polynomial was
then performed, and profiles with an R2 > 0.998 passed. Within each profile that passed
this second QC step, data points with a residual > σ (one standard deviation) from the
mean of the residuals were deemed affected by waves focusing and smaller clouds (not
identified by the first polynomial fitting) and were removed. Only profiles flagged as “1”,
i.e., considered as good and not requiring any further modification were used in this study.
A total of 29,004 profiles of Ed and/or PAR (with data for at least one channel) passed this
quality control (QC) (Tables 2 and A1, Figure 1).

Table 2. Number of BGC-Argo float profiles passing the QC tests for each wavelength.

Wavelengths (λ) N (Kd(λ))
380 nm 22,167
412 nm 19,813
490 nm 14,876

PAR 12,552
Total unique float profiles 29,004

2.1.3. Computation of the Diffuse Attenuation Coefficients

The surface layer averaged diffuse attenuation coefficient Kd(λ) and Kd(PAR), from
right below the surface (0−) to a depth z are defined as:

Kd(λ)z =
1
z
× ln

(
Ed(0−)
Ed(z)

)
(1)

Kd(PAR)z =
1
z
× ln

(
iPAR(0−)
iPAR(z)

)
(2)

with iPAR the instantaneous Photosynthetically Available Radiation (Table 1) measured
by BGC-Argo floats. In many studies, Kd(λ) is defined as the layer averaged Kd(λ) from
surface to the penetration depth (zpd, Table 1); zpd is the depth above which 90% of the
irradiance originates [7] and is the depth where downwelling irradiance reaches 1/e of
the surface’s value (Ed(λ, zpd) = Ed(λ, 0−) × e−1) [7]. The zpd is spectrally dependant
and must therefore be computed for each wavelength. Pressure was converted to depth
using the MATLAB function pts2z.m from USCD’s Matlab Oceanography toolbox, which
computes pressure from depth, temperature and salinity. To derive Kd(λ)zpd from Ed(λ), a

ftp://ftp.ifremer.fr/ifremer/argo/etc/argo-synthetic-profile
ftp://ftp.ifremer.fr/ifremer/argo/etc/argo-synthetic-profile
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non-linear, least-squares exponential fit to measure Ed(λ) was computed adapting a Matlab
function from our lab (http://misclab.umeoce.maine.edu/software.php, last accessed on
21 July 2022). This method (hereon lsq-method) assumes that Kd(λ)z is constant from 0
to zpd. To test the robustness of this method retrieval of Kd(λ), two other methods were
also evaluated. Since BGC-Argo floats do not acquire radiometry at z = 0, Ed(λ, 0−) was
computed for each profile at each available wavelength by either extrapolating to the
surface using a second degree polynomial fit of ln(Ed(λ)z) as a function of z in the upper
10 m of the water column (polynomial method) or by extrapolating a linear regression of
ln(Ed(λ, z)) following [2] (linear method). Inputting zpd(λ) in Equation (1) results in the
following expression of Kd(λ)zpd :

Kd(λ)zpd =
1

zpd
. (3)

Those three methods were applied only if there were more than 5 data points in the
upper 10 m of the water column, in order to get a robust extrapolation [2] and to make sure
that the least square fit is not driven by outliers.

After comparing the results of Kd(λ)zpd retrieval by the three different methods
(Figure A3), and assessing that there was no major difference/bias associated with
one given method in Kd(λ)zpd retrieval, we decided to use the lsq-method that did not
involve extrapolating to the surface. Profiles that resulted in Kd(λ)zpd < Kd(λ) of pure
water (Kw(490) = 0.016 m−1, [8]) were removed as they were deemed outliers (160 profiles
out of the 29,004 retrieved profiles passing QC (Table 2)).

Figure 1. Histogram of the frequency distribution of K f loat
d (λ) values for the BGC-argo floats. The

vertical axis represents the probability of the occurrence of K f loat
d (λ) within a specific value bin

relative to the total number of profiles (N) for each specific wavelength and database. For 412 nm
and 490 nm, the relative frequency of Kd(λ) was added for the Case 1 waters ( Rrs(490)

Rrs(555) > 0.85) present
in the NOMAD, COASTLOOC and the IOCCG (simulated) datasets.

http://misclab.umeoce.maine.edu/software.php
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From here on, Kd(λ)zpd derived from float’s Ed(λ) profiles using the lsq-method will be

referred to as K f loat
d (λ). The iPAR(0−) was calculated following [2] by regressing a second

degree polynomial of ln(iPAR(z)) with depth (z) in the upper 10 m and extrapolating to
the surface. Kd(PAR) was then calculated over the zpd of PAR:

Kd(PAR) f loat
zpd =

1
zpd(PAR)

× ln

(
iPAR(0−)
iPAR(zpd)

)
. (4)

We recognize that even in a layer where IOPs are constant, Kd(PAR) varies significantly
with depth, much more so than Kd(λ) [9].

In total, Kd(λ) and/or Kd(PAR) were computed for 25,090 profiles out of the 29,004
passing the QC (Table 2). Specifics on how many profiles were filtered at each QC step
can be found in the Appendix A (Table A1). Kd(380) was computed from Ed(380) data
acquired from BGC-Argo floats, but no sensor had compatible Rrs(λ) wavelengths, so its
retrieval from Ocean Color Satellite is not evaluated in this study.

2.2. Additional Data

In situ databases used to calibrate and validate empirical algorithms of Kd were also
used to compare to the extent of the float’s coverage and values, as well as to assess the
correct implementation of published algorithms.

The NOMAD (NASA bio-Optical Marine Algorithm Data set (https://seabass.gsfc.
nasa.gov/wiki/NOMAD, last accessed on 14 February 2022) is the in situ bio-optical
dataset used in the development of the operational Kd(490)Rrs algorithm of NASA and
consists of approximately 3400 stations with water-leaving radiances, surface irradiance,
Ed measurements and the associated auxiliary metadata, all collected before 2002 [10]. In
this study, only the stations that had both Ed(λ) and Rrs(λ) were used, resulting in nearly
1000 Kd(490) data points all located in the North Atlantic (Figure 2).

The COASTLOOC dataset consists of 338 stations from the 6 COASTLOOC cam-
paigns which took place in European waters (Adriatic Sea, Baltic Sea, English Channel,
Mediterranean Sea and North Sea) and the Atlantic coast in 1997 and 1998, at which were
measured several IOPs over a large variety of waters, including Kd(λ) values and irradi-
ance reflectance below the surface R(0−) at several wavelengths over a large variety of
water types.

A synthetic dataset, from here on called the IOCCG dataset, was developed by a
committee of the International Ocean Color Coordinating Group (IOCCG). This dataset
contains both IOPs and AOPs (derived from IOPs using the Hydrolight radiative transfer
code) and covering a wide range of variability encountered in natural waters with the aim
of validating and evaluating algorithms’ retrieval of IOPs from Rrs [11]. 1000 different Rrs
spectra (and associated Kd(λ)) were retrieved with a solar zenith angle of either 30◦ or
60◦ from https://ioccg.org/what-we-do/ioccg-publications/ioccg-reports/synthesized-
dataset-from-ioccg-report-5/, last accessed on 18 February 2022.

2.3. Regional Analysis

The global open-ocean biomes in which each float was localized were identified. These
biomes represent regions of similar biogeochemical characteristics based mainly on Mixed
Layer Depth (MLD), Chlorophyll a (Chl a), Sea Surface Temperature (SST) and ice coverage
over 1998–2010 [12]. Out of the 17 biomes characterized in [12], float profiles were present in
11 biomes at all of the measured wavelengths. The Mediterranean Sea was not represented
in the original publication and was therefore added. Biome 18 (‘W MED’) corresponds to
the Western Mediterranean and biome 19 (‘E MED’) to the Eastern Mediterranean + the
Black Sea region, with the division between the two basins being the Sicily Strait (Figure 2).
Since floats were not homogeneously distributed spatially, an analysis within biomes in
addition to the global analysis allowed us to determine whether biases associated with
specific algorithms were local or global in nature. Float profiles that were not in any biomes

https://seabass.gsfc.nasa.gov/wiki/NOMAD
https://seabass.gsfc.nasa.gov/wiki/NOMAD
https://ioccg.org/what-we-do/ioccg-publications/ioccg-reports/synthesized-dataset-from-ioccg-report-5/
https://ioccg.org/what-we-do/ioccg-publications/ioccg-reports/synthesized-dataset-from-ioccg-report-5/
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(N = 297) were taken into account in the global analysis but excluded from the regional
analysis. The profiles not located in any biome were in regions that did not fit in the
abovementioned criteria for any biome, usually because of land influence or being part of a
marginal sea (e.g., the Red Sea, the Caribbean Sea, the Gulf of Mexico) [12].

Figure 2. Map of Bio-Argo float observations and in situ observations used for algorithm development
colored by matchups with individual satellite sensors or dataset. Background represents oceanic
biomes 1–17 of [12]. Insert represent the Mediterranean Sea and the two biomes we added. The
names associated with each biome number and color are listed in Table A2.

2.4. Satellite Data Products

Level 2 Remote Sensing Reflectance (Rrs, sr−1) and Kd(490) products were retrieved
from three sensors onboard six satellites: MODIS (MODerate resolution Imaging Spec-
troradiometer, pixel size = 1 × 1 km2) onboard the Aqua and Terra satellites, VIIRS (Vis-
ible Infrared Imaging Radiometer Suite, pixel = 750 × 750 m2) onboard Suomi-NPP and
JPSS and OLCI (Ocean and Land Color Instrument, pixel = 300 × 300 m2) on board
Sentinel-3A and Sentinel-3B. Scenes were downloaded using the getOC utility (https:
//github.com/OceanOptics/getOC, accessed on 16 March 2021). Using this utility, we
acquired all the satellite images that for any given day coincided with the location of a
BGC-Argo Float profile within a radius of less than 1 nautical mile.

To matchup satellite and float data, we used published criteria [13,14] to assess the
suitability of the satellite data. The satellite image must have been taken within 3 h from
float surfacing (floats acquire measurements on their upward profile) and the solar zenith
at the time of the satellite overpass must be less than 75◦. A pixel box around the float
location of 25 km2 is then selected (5 × 5 for MODIS, 7 × 7 for VIIRS, 15 × 15 for OLCI) in
which half of the pixel must be unflagged. The quality flags selected are the standard Level
2 Ocean color for MODIS and VIIRS (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/,
accessed on 18 May 2021) and the recommended Level 2 flags from the EUMETSAT
product for OLCI (https://www-cdn.eumetsat.int/files/2020-04/pdf_s3_pn_olci_l2m_001.
pdf, accessed on 11 November 2021). Additionally, the coefficient of variation for the Rrs
bands between 412 nm and 555 nm and for the aerosol optical thickness (aot) at 865 nm for
the selected pixels must be inferior to 15%. In total, we found 1802 matchups for MODIS-
Terra, 2144 matchups for MODIS-Aqua, 3290 matchups for VIIRS- SNPP, 2445 matchups
for VIIRS-JPSS, 651 matchups for OLCI on Sentinel 3A and 382 on Sentinel 3B.

https://github.com/OceanOptics/getOC
https://github.com/OceanOptics/getOC
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
https://www-cdn.eumetsat.int/files/2020-04/pdf_s3_pn_olci_l2m_001.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_s3_pn_olci_l2m_001.pdf
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When a BGC-Argo Float profile matched-up with several different images from the
same satellite, only the matchup with the image that was taken closest in time to the float
surfacing was retained to minimize the matchups bias of location. Since some of the Kd
algorithms were developed specifically for optically clear water (Case 1), only the Rrs
spectra that emulated Case 1 waters were used forward. Case 1 waters were defined as
waters where Rrs(490)

Rrs(555) > 0.85 [15].

Quality Control of the Satellite Derived Rrs Spectra

A further quality assurance step was conducted on the Rrs spectra of the matchups
following [16]. Each Rrs spectrum was evaluated based on the harmonic mean across a
range of previously identified wavelengths, effectively resulting in one “summary color”.
When compared to the range of the spectra’s averages observed in global optically deep
waters, spectra with a harmonic mean outside the expected range can be identified and
removed. We removed all spectra that had an a score whose absolute value was larger than
0.2 [16]. Less than 3.2% of matchup spectra were removed during this quality control step
(Table A1).

2.5. Kd Algorithms Tested
2.5.1. Explicit Empirical Algorithms

The algorithms tested include NASA’s Kd(λ) operational product (based on the al-
gorithm of Austin and Petzold [17]) and available as a L2 product for the MODIS and
VIIRS sensors https://oceancolor.gsfc.nasa.gov/atbd/kd_490/, accessed on 18 February
2022. It is an empirical relationship derived from in situ measurements of Kd(490) based
on the NOMAD dataset using blue-to-green band ratios of Rrs. In situ radiometer data
were processed similarly to the float profiles (e.g., for NOMAD). NASA products for each
satellite are based on derived empirical relationships between log-transformed Kd(490)
and the log-transformed Rrs band-ratio (Equations (5) and (6), [4,8,10]). This algorithm was
developed solely for Kd(490) and will be referred to at as KNASA

d .

log10(Kbio(490)) = a0 + Σ4
i=1 Ai

(
log10

(
Rrs(λblue)

Rrs(λgreen)

))i
(5)

KNASA
d = Kbio(490) + Kw(490), (6)

where Kw(490) = 0.0166 m−1 denotes Kd(490) due to seawater only (pure water). The OLCI
product also utilizes a similar empirical algorithm to compute Kd(490) [4] based on the
blue-to-green ratio of normalized water leaving reflectance (σ490,560), and the coefficients Ai
tuned to OLCI. The Ai coefficients were also derived using the NOMAD dataset, where mea-
sured Rrs data were input into the algorithm, and the retrieved Kd(490)Rrs was compared to
the measured Kd(490) from the database. The coefficients that resulted in the best fit were
identified and kept. This OLCI product (https://sentinel.esa.int/documents/247904/0
/OLCI_L2_ATBD_Ocean_Colour_Products_Case-1_Waters.pdf/4e1c1cd4-697e-4491-b574
-777a791b5141, accessed on 20 May 2021) is referred to as KESA

d :

Kd(490)ESA = Kw(490) + 10Σ4
i=0 Ai(log10(σ

i
490,560)) (7)

2.5.2. Lee’s Semi-Analytical Algorithm

The second type of algorithm evaluated is the semi-analytical algorithm described
in [18]. This algorithm relies on the assumption that the variability of the diffuse attenuation
coefficient comes from the variability in the IOPs and the solar zenith angle (θ) and is
derived from radiative-transfer computations using the Hydrolight model. The absorption
a(λ) and backscattering coefficients bb(λ) at any measured wavelength were retrieved
from Rrs(λ) using the Quasi-analytical algorithm (QAA) version 6 (https://www.ioccg.
org/groups/Software_OCA/QAA_v6_2014209.pdf, accessed on 17 November 2021), [19])

https://oceancolor.gsfc.nasa.gov/atbd/kd_490/
https://sentinel.esa.int/documents/247904/0/OLCI_L2_ATBD_Ocean_Colour_Products_Case-1_Waters.pdf/4e1c1cd4-697e-4491-b574-777a791b5141
https://sentinel.esa.int/documents/247904/0/OLCI_L2_ATBD_Ocean_Colour_Products_Case-1_Waters.pdf/4e1c1cd4-697e-4491-b574-777a791b5141
https://sentinel.esa.int/documents/247904/0/OLCI_L2_ATBD_Ocean_Colour_Products_Case-1_Waters.pdf/4e1c1cd4-697e-4491-b574-777a791b5141
https://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf
https://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf
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and are used as inputs to compute Kd(λ) using the following equation, revised in 2013 [20].
This algorithm will be referred to as KLee05

d :

KLee05
d (λ) = (1 + 0.005θ)× a(λ) + 4.259 × (1 − 0.265ηw(λ))× (1 − 0.52 × e−10.8a(λ))× bb(λ), (8)

with ηw(λ) = bbw(λ)
bb(λ)

the relative contribution of molecular scattering to the total back-
scattering coefficient. Model parameters were derived from Hydrolight simulations. Before
inverting with QAA for IOPs, the effects of Raman scattering had to be accounted for, as the
bias caused by Raman scattering on Rrs can be as high as 20% at visible wavelengths [21].
Satellite Rrs data were corrected for Raman scattering following [20].

2.5.3. Jamet’s Neural Network Algorithm

The third type of algorithm evaluated is empirically derived using a neural network
with Rrs(λ) as an input parameter. This 2-layer algorithm was originally designed with
the visible bands of the SeaWiFs sensor [3]; however, a newer version, used here, was
developed for MODIS and OLCI [22]. It is denoted as KNN

d . This new version distinguishes
between Case 1 and Case 2 water using the ratio of Rrs(490)/Rrs(555) [15]. Only the Case
1 version is analyzed here. No version has been published for the VIIRS sensor; thus
this algorithm was not used with VIIRS data in this study. The algorithm was trained on
the IOCCG, NOMAD and BOUM datasets, and its performance was validated using the
COASTLOOC dataset [3].

2.6. PAR Algorithms

Two published algorithms to estimate Kd(PAR) from remote sensing data were evalu-
ated here. The first, denoted as “Morel07”, is based on an empirical relationship between
Kd(490) and Kd(PAR) that takes into account variation of the sun zenith angle (angle
between the sun and the horizon) and was derived from an in situ dataset (the LOV dataset,
containing hyperspectral diffuse attenuation coefficient and irradiance reflectance derived
from planar irradiance measurements [4]). The following equation was derived for a layer
of depth z = zpd and with KLee

d (490) used for the Kd(490) value as per [23]:

KMorel07
d (PAR) = 0.0864 + 0.884 × KLee

d (490)− 0.00137
KLee

d (490)
(9)

The second algorithm (denoted as “Lee05”) is a semi-analytical algorithm based on
the retrieval of IOPs using QAA [19] (as above). The layer average KLee05

d (PAR, z) can be
retrieved between the surface and any depth (z) but here is computed for the 0 − zpd layer:

KLee05
d (PAR) = K1 +

K2√
1 + zpd

(10)

K1 and K2 are computed using a(490), bb(490) and θ as inputs, and the constants χ0−2,
ζ0−2 and α0−2 were obtained based on Hydrolight simulations [24]:

K1 =
[
χ0 + χ1 × a(490)0.5 + χ2 × bb(490)

]
(1 + α0 × sin(θ)) (11)

K2 = [ζ0 + ζ1 × a(490) + ζ2 × bb(490)](α1 + α2 × cos(θ)). (12)

2.7. Statistical Performance Metrics

The following statistical metrics were used to evaluate the performance of each of the
studied algorithms. These specific metrics are widely used to validate KRrs

d performance
across the literature (e.g., [3,14,18,25]).
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1. Absolute Percentage Difference (APD) of the log-transformed KRrs
d and K f loat

d [18].

The APD gives an equal weight to over and under estimations of K f loat
d while covering a

range of value larger than one order of magnitude.

APD = 100 × exp

(
mean

∣∣∣∣∣ln KRrs
d

K f loat
d

∣∣∣∣∣
)
− 1. (13)

2. Root Mean Squared Difference (RMSD) is calculated as follows with N the total
number of matchups:

RMSD =

√
ΣN

i=1(K
f loat
d − KRrs

d )2

N
. (14)

3. The bias is defined as the median of the ratio of float and remote observations:

Bias = median

(
K f loat

d

KRrs
d

)
. (15)

4. The r is Pearson’s correlation coefficient.
Several regressions methods were tested, with limited difference in both the slope and

the correlation coefficient (r). Because there are uncertainties in the retrieval of both K f loat
d

and KRrs
d , a type-2 least-squares fit regression was applied by computing the geometric

mean of the type-1 regression of K f loat
d vs. KRrs

d and the type-1 regression of KRrs
d vs. K f loat

d ,

effectively resulting in a slope that passes by the centroid
(

K f loat
d , KRrs

d

)
.

The significance of the differences between the distributions of different KRrs
d (ei-

ther between sensors or algorithms) was evaluated using a two-sample non-parametric
Kolmogorov–Smirnov (K-S) test, with a chosen statistically significant level of 5%.

To test that we implemented the algorithms correctly (and that our method of com-
puting Kd with in situ data were consistent), we evaluated them with the datasets used
by the authors (Figure A1), and the results retrieved were in accordance with the original
publications [3,18].

3. Results
3.1. Kd(λ): Global Scale Match-Ups

Kd(490)Rrs retrieved from each of the algorithms generally followed the 1:1 line
(Figure 3). The operational products (Kd(490)NASA for MODIS and VIIRS, Kd(490)ESA

for OLCI) had the best statistical results for the VIIRS and OLCI sensors, with the lowest
Bias, APD and RMSE for each sensor (Table 3), and Kd(490)Lee05 had the best results for the
MODIS sensors. Kd(490)NASA also retrieved the slope closest to one for all four sensors.
Kd(490)Lee05 systematically overestimated Kd(490) at low Kd values (<0.025 m−1) and had a few
outliers for the MODIS sensors (not plotted on Figure 3 but used in statistics) that impacted
its r-score. Kd(490)NN had a slope furthest from one for the MODIS sensors and also showed a
systematic overestimation at very low values (Kd(λ) < 0.025). The slopes were below one for
all the sensors with a significant non-zero intercept. The Kd(490)Rrs/Kd(490)float ratio (Figure
3b) for low Kd values is larger for Kd values with a small zenith angle ≈10◦), but for a given Kd
value, a higher solar zenith angle resulted in a larger Kd(490)Rrs/Kd(490)float ratio.

The Kd(412)float range of values is 0.0126–0.7 m−1 (Figures 1 and 4). The operational
products are not computed at 412 nm and we therefore only compare Kd

Lee05 and Kd(490)NN

to Kd(490)float. Kd(412)NN performed significantly worse than Kd(412)Lee05 for the MODIS-
Aqua, MODIS-Terra, and OLCI-S3B sensors, with a lower r-score and a higher bias, APD,
and RMSD for all sensors (Table 4). For OLCI-S3A, Kd(412)NN performed better. The
slopes are closer to one for each of the sensors than at λ = 490 nm while still showing
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a systematic overestimation for small Kd(412) < 0.026 values (Figure 3b), along with a
significant non-zero intercept.

Both Kd(412)Lee05 and Kd(412)NN had a lower APD at 412 nm than at 490 nm for all
three sensors; however, Kd(412)NN exhibited a larger RMSD. The slope is closer to one (all
are >0.91). The ratio Kd

Rrs/Kd
float was closer to one at 412 nm than 490 nm (Figure 4).

(a)

(b)

Figure 3. Comparison of satellite-derived and float-derived Kd(490) for the MODIS-Aqua, MODIS-
Terra, VIIRS-JPSS, VIIRS-SNPP, OLCI-S3A and OLCI-S3B sensors: (a) KRrs

d (490) computed us-

ing the 3 different algorithms compared to K f loat
d (490); the black dashed line is the 1:1 line;

(b) KRrs
d (490)/K f loat

d (490) for each of the 3 evaluated algorithms (color coded) for all sensors; the solid
black line is a ratio of 1, and the dashed black lines are the 0.75 (Bottom) and 1.25 (Top) ratio. The
vertical dashed blue line indicates the minimum value of Kd(490) present in the NOMAD dataset
(0.026).



Remote Sens. 2022, 14, 4500 11 of 25

Table 3. Comparison of performance statistics at the global scale of the Kd(490 nm) for the MODIS,
VIIRS, and OLCI sensors at the global scale and Kd(490 nm) algorithms. See Methods section for
the definitions of the metrics. All distributions within a given sensor are statistically different. N
represents the number of matchups with data at 490 nm.

Sensor & Algo BIAS APD (%) RMSD (m−1) r Slope Intercept N

MODIS-Terra: Kd
Lee05 1.08 18.62 0.01 0.90 0.78 0.010

MODIS-Terra: Kd
NN 1.31 33.72 0.02 0.87 0.76 0.018 2144

MODIS-Terra: Kd
NASA 1.13 20.37 0.01 0.90 0.84 0.010

MODIS-Aqua: Kd
Lee05 1.11 19.58 0.01 0.89 0.82 0.011

MODIS-Aqua: Kd
NN 1.27 31.19 0.02 0.86 0.79 0.017 1802

MODIS-Aqua: Kd
NASA 1.12 19.67 0.01 0.89 0.89 0.009

VIIRS-SNPP: Kd
Lee05 1.16 22.46 0.02 0.88 0.77 0.013 3290

VIIRS-SNPP: Kd
NASA 1.06 17.36 0.02 0.88 0.78 0.010

VIIRS-SNPP: Kd
Lee05 1.16 22.46 0.02 0.88 0.77 0.013 2445

VIIRS-SNPP: Kd
NASA 1.06 17.36 0.02 0.88 0.78 0.010

OLCI-S3A: Kd
Lee05 1.16 21.46 0.01 0.84 0.79 0.012 651

OLCI-S3A: Kd
NN 1.19 26.62 0.01 0.77 0.91 0.008

OLCI-S3A: Kd
ESA 1.08 17.85 0.01 0.83 0.82 0.008

OLCI-S3B: Kd
Lee05 1.25 27.73 0.01 0.91 0.68 0.018

OLCI-S3B: Kd
NN 1.42 43.24 0.02 0.85 0.84 0.019 382

OLCI-S3B: Kd
ESA 1.18 20.88 0.01 0.92 0.71 0.013

Table 4. Comparison of performance statistics at the global scale of the Kd(412 nm) for the MODIS and
OLCI sensors at the global scale and Kd(412 nm) algorithms. See Methods section for the definitions
of the metrics.

Sensor & Algo BIAS APD (%) RMSD r Slope Intercept N

MODIS-Terra: Kd
Lee05 1.13 11.60 0.06 0.68 0.91 0.010

1633MODIS-Terra: Kd
NN 1.19 19.49 0.03 0.87 1.01 0.018

MODIS-Aqua: Kd
Lee05 1.10 8.91 0.02 0.86 0.88 0.011

1384MODIS-Aqua: Kd
NN 1.15 16.01 0.03 0.88 1.09 0.017

OLCI-S3A: Kd
Lee05 1.19 20.68 0.02 0.93 0.98 0.012

269OLCI-S3A: Kd
NN 1.15 13.67 0.02 0.88 0.92 0.008

OLCI-S3B: Kd
Lee05 1.23 23.23 0.02 0.92 0.85 0.018

326OLCI -S3B: Kd
NN 1.34 35.02 0.02 0.87 1.20 0.019

3.2. Kd(PAR): Global Scales Matchups

The number of matchups between sensors-derived and floats-derived Kd(PAR) was
832 for MODIS-Aqua, 944 for MODIS-Terra, 1402 for VIIRS-SNPP, 613 for VIIRS-JPSS,
155 for OLCI-S3A and 227 for OLCI-S3B (Figure 5) resulting in a total of 4173 matchups
between float and satellite. For all sensors, there was an underestimation for small values:
Kd(PAR)float < 0.038 m−1 for Kd(PAR)Morel and Kd(PAR)float < 0.048 m−1 for Kd(PAR)Lee05

representing 11% and 20% of the full dataset, respectively. For those values, independent
of the sensors, Kd(PAR)float < Kd(PAR)Rrs, with the ratio increasing as Kd(PAR)float decreased
(Figure 5b). The regression slopes are <1 for both algorithms, and there was a significant
intercept for both of them (Table 5).

Kd(PAR)Morel had a lower bias, lower APD, lower RMSD and a higher r than Kd(PAR)Lee05

(Table 5). It also had a slope closer to one. For high values, Kd(PAR)Lee05 > Kd(PAR)Morel, whereas
for low values, Kd(PAR)Morel > Kd(PAR)Lee05 (Figure 5). The biggest discrepancy between the
two algorithms occurs when the Solar zenith angle is low (<20◦), but for a given Kd(PAR)float

value, the higher the solar zenith angle, the bigger the difference.
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(a)

(b)
Figure 4. Comparison of satellite-derived and float-derived Kd(412) for the two MODIS and the two
OLCI sensors: (a) KRrs

d (412) computed using the 2 different algorithms compared to K f loat
d (412); the

black dashed line is the 1:1 line. (b) KRrs
d /K f loat

d for the matchups; the solid black line is a ratio of 1,
and the dashed black lines denote ratios of 0.75 (Bottom) and 1.25 (Top) ratio; the dashed blue line
indicates the minimum value of Kd(411) present in the NOMAD dataset (0.026).

3.3. Variability in Performance between Satellite Sensors

We performed a Kolmogorov–Smirnov (K-S) test to assess whether the distributions
of Kd

Rrs (λ) retrieved by a given sensor using different algorithms were different. The
K-S test indicates whether the Kd values retrieved by different algorithms have a different
distribution within a given confidence interval (here 5%). The distributions of Kd(490)NN

vs. Kd(490)Lee05 retrieved by the OLCI-S3A sensor were not statistically different from each
other (Table 3), whereas, they were different for the other sensors. The distribution of
Kd(490)Lee05 vs. Kd(490)NASA/ESA was statistically different for all sensors as was the case
for the distribution of Kd(490)NN.
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(a)

(b)

Figure 5. Results of the comparison between the satellite-derived Kd(PAR)Rrs and the float-retrieved
Kd(PAR) f loat, for two different PAR algorithms: (a) Kd(PAR)Rrs vs. Kd(PAR) f loat colored by solar
zenith angle with each marker shape indicating a different sensor; the dashed line indicates the
1:1 line; Kd(PAR)Lee05 vs. Kd(PAR) f loat (left), Kd(PAR)Morel vs. Kd(PAR) f loat (center) Kd(PAR)Lee05

vs. Kd(PAR)Morel (right); (b) ratio for each of the two algorithms against Kd(PAR) f loat; the solid line
is a ratio of 1 and the dashed black lines denote ratios of 0.75 and 1.25.

Table 5. Summary statistics for all satellite sensors at the global scale for both PAR algorithms. See
Methods section for definitions of statistical metrics.

MODIS-Terra MODIS-Aqua VIIRS-SNPP VIIRS-JPSS OLCI-S3A OLCI-S3B

Lee05 Morel07 Lee05 Morel07 Lee05 Morel07 Lee05 Morel07 Lee05 Morel07 Lee05 Morel07

Bias 1.24 1.20 1.28 1.23 1.28 1.26 1.28 1.24 1.21 1.17 1.25 1.28
ADP 23.88 21.05 28.72 26.34 30.89 29.81 28.74 28.07 20.77 15.97 33.73 33.31

RMSD 0.027 0.032 0.031 0.035 0.031 0.037 0.029 0.035 0.028 0.034 0.026 0.028
r 0.87 0.75 0.86 0.76 0.86 0.75 0.88 0.77 0.81 0.65 0.92 0.85

Slope 0.83 0.61 0.90 0.68 0.82 0.57 0.77 0.53 0.85 0.53 0.94 0.69
Intercept 0.029 0.044 0.028 0.044 0.035 0.053 0.036 0.053 0.024 0.045 0.025 0.042
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The difference in the distribution of KRrs
d (λ) values across the six different sensors for

a given algorithm was also assessed by Kolmogorov–Smirnov test. A difference between
sensors would mean that there are either differences in the specifications of each sensor
across different satellites or that there are different distributions of floats-satellite matchups
(potentially due to the timing of the overpass of the sensor or to the different launch dates
between satellites, resulting in datasets covering varying time periods).

For all three algorithms tested, the only ones that had a similar distribution were for
the Kd(490)NASA/ESA algorithm of the VIIRS-SNPP/OLCI-S3B sensor pair, the Kd(490)Lee05

algorithm between the OLCI-S3B/VIIRS-SNPP and for the OLCI-S3B/VIIRS-JPSS pairs.
All other sensor pairs had statistically different distributions.

3.4. Regional Analysis

Matchups between floats and sensors were not distributed homogeneously throughout
the biomes (Figure 2, Table A2). Biomes 18 (Western Mediterranean) and 19 (Eastern
Mediterranean) had the most matchups (representing 33% and 28% of the overall matchups,
respectively). The next biome with the highest proportion of floats-sensors matchups was
biome 13 (South Atlantic Subtropical Permanently Stratified, Table A2) with 8%. Between
the different sensors, a two-sample Kolmogorov–Smirnov showed a different distribution
of the matchups amongst all the biomes between OLCI-S3A and all the other sensors except
for OLCI-S3B, as well as a different distribution between OLCI-S3B and all the other sensors,
except for OLCI-S3A, at the 5% significance level. All other sensor pairs did not show a
significant difference in distribution between biomes.

A statistical analysis was performed when removing the influence of the Mediter-
ranean Sea (biomes 18 and 19) to assess the impact of not including the Mediterranean data
on global statistics (Table A5); this analysis did not result in a significant improvement of
algorithm performance.

No obvious biome-based bias in algorithm performance was observed (Table 6), with
biome 9 having the lowest bias and RMSD across all three algorithms but having slopes
significantly different from one. Similarly, biome 18 had slopes close to one for Kd(490)Lee05

and Kd(490)NN but lower r than other biomes, such as biome 19. Note that some biomes
(e.g., 6, 8, 10, 12, and 14) had a low number of matchups and limited dynamic range,
resulting in (non-significant) negative slopes and r.

Table 6. Summary statistics at λ = 490 nm for each of the biomes defined in Table A2, with all sensors
grouped together. The NASA empirical algorithm (see Methods section) was applied for the MODIS
and the VIIRS sensors, whereas the ESA empirical algorithm was applied on the OLCI sensors. As
they are both empirical algorithms, they were grouped together for the overall statistical analysis. In
parentheses are the numbers of matchups between Kd(490)float and Kd (490)Rrs in each of the biomes
for each algorithm. For the definition of the bias, APD, RMSD and r (Pearson’s correlation coefficient)
see the Methods section.

Biome 4 (N = 113) Biome 6 (N = 35) Biome 7 (N = 239) Biome 8 (N = 76) Biome 9 (N = 435)

Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin

BIAS 1.13 1.25 1.08 1.16 1.35 1.20 1.18 1.31 1.11 0.95 1.04 0.88 0.97 1.01 0.96

ADP 17.57 29.58 13.65 18.38 35.04 21.08 19.92 35.38 14.38 25.38 30.85 25.90 21.03 25.30 20.72

RMSD 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.03 0.03

r 0.55 0.52 0.75 0.54 0.90 0.66 0.90 0.87 0.89 −0.05 −0.32 0.00 0.85 0.77 0.84

Slope 0.51 0.34 0.57 0.41 0.87 0.43 0.77 0.74 0.86 −0.31 −0.50 −0.18 0.60 0.45 0.57

Intercept 0.02 0.03 0.02 0.03 0.02 0.03 0.01 0.02 0.01 0.09 0.11 0.08 0.03 0.05 0.03
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Table 6. Cont.

Biome 10 (N = 6) Biome 11 (N = 225) Biome 12 (N = 21) Biome 13 (N = 308) Biome 14 (N = 10)

Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin

BIAS 1.14 1.31 1.11 1.13 1.27 1.03 1.07 1.12 1.05 1.17 1.42 1.07 1.06 1.25 0.99

ADP 22.21 43.08 15.02 19.21 32.40 14.55 15.77 17.32 11.97 19.35 40.94 13.39 7.71 23.60 11.31

RMSD 0.02 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01

r 0.61 −0.65 0.82 0.53 0.50 0.60 0.63 0.59 0.69 0.83 0.70 0.84 0.84 0.12 0.64

Slope 0.43 −0.47 0.65 0.43 0.46 0.49 0.52 0.56 0.62 0.64 0.59 0.70 1.11 0.24 1.29

Intercept 0.04 0.12 0.03 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.00 0.04 −0.01

Biome 15 (N = 246) Biome 16 (N = 184) Biome 18 (N = 1554) Biome 19 (N = 1986)

Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin Lee Jamet Austin

BIAS 1.07 1.17 1.08 1.11 1.28 1.07 1.05 1.17 1.04 1.10 1.27 1.05

ADP 23.50 30.17 22.35 19.52 34.44 17.00 17.59 24.43 16.80 17.58 29.20 15.42

RMSD 0.03 0.03 0.03 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01

r 0.57 0.52 0.57 0.85 0.88 0.85 0.85 0.82 0.85 0.92 0.89 0.90

Slope 0.49 0.49 0.52 0.69 0.87 0.73 0.73 0.73 0.78 0.74 0.80 0.73

Intercept 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01

4. Discussion
4.1. Observed Biases in Kd

All four algorithms had a slope < 1 at λ = 490 (Table 3) because Kd(490)Rrs > Kd(490)float

at small Kd values. This overestimation of Kd(490) effectively leads to an underestimation of
the depth to which light penetrates in the water column, potentially resulting in an under-
estimation of heat transfer to depth and other depth-derived products from Kd(490). On
the other hand, for Kd(490) > 0.1, Kd(490)Rrs < Kd(490)float (Figure 3). This underestimation
of Kd will result in the overestimation of Kd(490)-derived products. The overestimation at
small values is also found at λ = 412, with a systematic overestimation for Kd(412)NN and
Kd(412)Lee05 at values < 0.025 (Figure 4). However, there is no persistent underestimation
for larger Kd(412) values (Table 4).

It is also relevant to note that there is a strong relationship between Kd(490)float and
Rrs-retrieved Chl a (r-score of 0.84 over the full matchup dataset), which is only slightly
lower than the correlation score between the full Kd(490) float and Kd(490)Lee05 (0.89 over the
full dataset) which asks the question about redundancy between the offered Satellite L2
products.

4.2. Limitation of Datasets Used to Train Empirical Algorithm

K f loat
d (490) values in this study ranged within 0.012–0.42 m−1 (Figure 1), spanning

from oligotrophic open ocean waters to near-coastal more eutrophic waters. The lowest
values measured were actually lower than the literature values used for Kd(490) of pure
seawater (0.016, [4]). For Kd(PAR), the lowest values obtained from floats measurements
were not below the values of Kd(PAR) of pure seawater (0.0185) computed with Morel07
(See Methods section).

The low end of Kd(490) values is lower than those included in the databases used to
train empirical algorithms. The range of the NOMAD and the IOCCG synthetic Kd(490)
datasets was [0.026 : 4.26], and its distribution was nearly uniform as opposed to nearly log-
normal as seen with the floats (Figure 1). KNN

d was not trained with values <0.026 m−1 [3]
and therefore does not provide an output below 0.026 m−1 for any of the MODIS satellites
sensors (Figure 3), resulting in an overestimation of the KNN

d in clear oligotrophic waters.
For the OLCI sensors, KNN

d did retrieve values below 0.026 m−1 but nonetheless consistently
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overestimated the small Kd values measured by the floats. Similarly, KLee05
d (490)’s training

datasets had a range spanning [0.04 : 4] m−1 [18], consistent with the biggest difference
between KLee05

d and K f loat
d occurring at low values (Figure 3b).

We found the slopes of the regression between algorithm and float to typically be
significantly less than one. If the regression intercept is forced to zero, the slope of Kd(490)Rrs

vs. Kd(490)float is closer to one, regardless of algorithm or sensors (Table A3). It ranges from
[1.03−1.17] for Kd(490)Lee05, [1.15−1.30] for Kd(490)NN, and [0.98−1.14] for Kd(490)NASA/ESA.
It is apparent that the small values that are not sufficiently represented in the original range
drive the slope offset we found.

Overall, for Kd(490)Lee05, 74% of the values were within ±25% of Kd(PAR)float, 49%
for Kd(490)NN, and 80% for Kd(490)NASA/ESA (Figure 3b). Therefore, the performances of
the algorithms were significantly lower than on the original datasets they were based on,
indicating that they could be improved. At 412 nm, 64% of Kd(412)Lee05 were within ±25%
of Kd(412)float versus 65% for Kd(412)NN.

From the discussion above, it follows that an important source of bias in empirical
algorithms originates from the limitations of the range of the datasets they were tuned
with. It has long been known that the operational algorithms (KAustin

d and KMorel
d ) were

designed for and are only applicable to Case-1 waters, with Kd > 0.25 resulting in poor Kd
retrieval [3,26]. This study shows that within Case-1 water, with either semi-analytical or
empirical algorithms there is still significant bias that could be corrected.

Similarly, Kd(PAR)Morel and Kd(PAR)Lee05 were designed using available in situ databases
(NOMAD, among others mentioned above) or the IOCCG dataset, resulting in similar bi-
ases to those observed for Kd(412) and Kd(490). Clear-water biases are more important than
for Kd(λ): 53% of Kd(PAR)Lee05 values were within ±25% of Kd(PAR)float and 20% of were
consistently overestimated (Kd(PAR)float < 0.048). Some 53% of the Kd(PAR)Morel were within
±25% of Kd(PAR)float, and 11% were systematically overestimated (Kd(PAR)float < 0.039).
Note that the overestimation of Kd(PAR) was first pointed out by the authors of [2].

This overestimation of Kd(PAR) for the very oligotrophic waters is different from
previous findings [23] which expected the presence of a DCM (Deep Chlorophyll Maximum)
below the zpd to cause an underestimation of Kd(PAR)Rrs , as it would not be taken into
account by the satellite-based algorithms.

4.3. Influence of the Solar Zenith Angle

As an AOP, Kd(λ) will vary with solar zenith angle, with instantaneous values of
Kd(490) within a single day ranging from 25% to 250% of the mean diurnal averaged
Kd(490) [27] (over the daytime). Arguments based on radiative transfer theory suggest that
a higher zenith angle (sun closer to the horizon) will result in an increased path length for
photons, effectively increasing Kd(λ) for the same IOPs.

The solar zenith angle for satellite algorithm was limited to 75◦ in our methodology
following published criteria [10]. The ±3 h window criterion between the solar zenith when
the float surfaced and the one of the sensor overpass meant that the solar zenith angle for
the float profile varied from 0.53–84.7◦. As found in a previous study [14], the difference in
solar zenith angle (of up to 40◦ in our dataset) between the float surfacing and the satellite
overpass did not correlate with the difference KRrs

d –K f loat
d (Figure A2), suggesting that the

matchup quality was not affected by the difference in time and/or change in solar zenith
angle between the satellite overpass and the float surfacing.

The solar zenith angle at the time of satellite overpass does appear to have an impact
on the magnitude of the residuals when coupled with the amplitude of Kd(490). The
variability in the residuals of Kd(490)Rrs –Kd(490) f loat increases as the solar zenith angle
increases for all three studied algorithms (Figure 3), but not relative to the value of Kd(PAR).
Thus, the bigger the solar zenith angle, the bigger the potential for an error in Kd(490)Rrs ,
especially for large values of Kd(490) f loat (Figure A2). However, the mean relative residual
of the retrieval of Kd(PAR) or Kd(λ) is closer to 0 for larger zenith angle and further from 0
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from zenith angle ranging from 0–10◦ (Figure 6), likely due to the small number of data
points in the original datasets with small solar angle.

(a)

(b)

(c)

Figure 6. Boxplot of the relative residuals between satellite-derived and float-derived Kd(λ) and its
dependence on the solar zenith angle for: (a) 490 nm; (b) 412 nm; and (c) PAR. Color denotes the
algorithm used. Datapoints for 412 nm with residuals value higher than 0.8 were considered to be
outliers and were not plotted here for clarity.



Remote Sens. 2022, 14, 4500 18 of 25

We thus conclude that including the value of solar zenith angle in empirical algorithms
is likely to improve them. However, the effect is likely to change spectrally [28], as the
change in the mean cosine of the light near the surface depends on, besides the sun angle,
competition between scattering (which tends to diffuse light) and absorption which tends
to collimate light vertically and thus on the single scattering albedo which is smaller in red
compared to blue wavelengths.

5. Conclusions

In this study, we examined published algorithms for the diffuse attenuation coefficient
derived from remotely sensed ocean color using a novel dataset comprised of irradiance
profiles measured with sensors on profiling floats. We found significant bias in these
algorithms, particularly at low values of Kd, which we attribute to the limitations of
previous datasets used in the design of the algorithms.

We recommend that a revision of these algorithms be implemented to remove bias,
and that empirical algorithms that do not take into account the solar zenith angle at the time
of satellite pass do so as their performance is likely to improve. Finally, we recommend,
given the hyperspectral nature of the upcoming PACE, SBG and CHIME missions, that
hyperspectral radiometers be deployed on floats (e.g., [29]) as this will increase the potential
for algorithm validation.
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Appendix A. Floats Quality Control and Distribution

A total of 40,738 raw Argo floats profiles containing radiometric measurements were
downloaded on the 18th of March 2022. Out of those, 29,004 passed the QC of [6] (71.2%). A
minimum of five measurements in the upper 10 m are required to extrapolate to Ed(λ, 0−)
or iPAR(0−) [2]. A total of 25,090 profiles (86.5% of QC-ed profiles, 61.59% of the original
profiles) were therefore used to compute K f loat

d (λ) at a minimum of one wavelength and/or

K f loat
d (PAR).

https://argo.ucsd.edu
https://www.ocean-ops.org


Remote Sens. 2022, 14, 4500 19 of 25

Table A1. Number of downloaded profiles and images.

BGC-Argo
Profiles downloaded 40,738

QC from Organelli et al. 29,004
5 Ed(λ) values within the upper 10 m 25,090

Satellite
Images downloaded 364,813
Images passing matchups criteria 10,873
Images passing QWIP [16] 10,805

Appendix B. Biomes Separation

Table A2. List of the biomes according to Fay and McKinley, 2014, with the associated number.
Biomes 18 and 19 were added for Mediterranean Sea with the East/West division at the Sicily
Strait. Percentage of all profiles for all of the float-sensors matchups grouped together, regardless
of wavelength. Oceanic coverage proportion is area relative to the area covered by all the biomes
grouped together.

Biome Number Biome Acronym Biome Name Float Proportion (in %) Oceanic Coverage Proportion (in%)
1 ‘NP ICE’ North Pacific Ice 0 1.37

North Pacific Subpolar2 ‘NP SPSS’ Seasonally Stratified 0 3.85

North Pacific Subtropical3 ‘NP STSS’ Seasonally Stratified 0 2.04

North Pacific Subtropical4 ’NP STPS’ Permanently Stratified 1.21 12.29

5 ‘PEQU-W’ West pacific Equatorial 0 3.50
6 ‘PEQU-E’ East Pacific Equatorial 1.36 4.46

South Pacific Subtropical7 ‘SP STPS’ Permanently Stratified 4.65 15.79

8 ’NA ICE’ North Atlantic Ice 2.67 1.64
North Atlantic Subpolar9 ‘NA SPSS’ Seasonally Stratified 6.53 3.01

North Atlantic Subtropical10 ‘NA STSS’ Seasonally Stratified 0.51 1.79

North Atlantic Subtropical11 ‘NA STPS’ Permanently Stratified 4.69 5.23

12 ‘AEQU’ Atlantic Equatorial 0.18 2.22
South Atlantic Subtropical13 ‘SA STPS’ Permanently Stratified 8.88 5.41

Indian Ocean Subtropical14 ‘IND STPS’ Permanently Stratified 0.17 10.76

Southern Ocean Subtropical15 ‘SO STSS’ Seasonally Stratified 4.62 8.89

Southern Ocean Subpolar16 ‘SO SPSS’ Seasonally Stratified 3.49 11.87

17 ‘SO ICE’ Southern Ocean Ice 0.036 5.59
18 ‘W MED’ Western Mediterranean 32.75 0.22
19 ‘E MED’ Eastern Mediterranean 28.25 0.56

Appendix C. COASTLOOC and NOMAD Comparison

To ensure that the algorithms perform the same way they were designed, they were run
on the same datasets for which they were originally designed, i.e., NOMAD and COAST-
LOOC. The NOMAD dataset was accessed from NASA (https://seabass.gsfc.nasa.gov/
wiki/NOMAD, accessed on 14 February 2022), and the COASTLOOC dataset was provided
by Marcel Babin ([30]. R(0−) and was converted to Rrs using Rrs = 0.133 × R(0−) [15].
Wavelengths differing from the MODIS or the Sea-WIFs wavelengths used as inputs in
the NN were interpolated to the input wavelengths using a spline interpolation, and any
Kd(490) < 0.016 (Kd(490) of pure water [8]) were removed.

https://seabass.gsfc.nasa.gov/wiki/NOMAD
https://seabass.gsfc.nasa.gov/wiki/NOMAD
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(a) (b)

(c) (d)

Figure A1. Results retrieved from the COASTLOOC the NOMAD & IOCCG synthetic dataset at
412 nm and 490 nm: (a) scatterplot of estimated versus desired Kd(λ) values for the COASTLOOC
dataset; the dashed line is the 1:1 line; (b) ratio of the estimated versus desired Kd(λ); the horizontal
line is a ratio of 1; (c) scatterplot of estimated versus desired Kd(λ) values; the dashed line is the 1:1
line; (d) ratio of the estimated versus desired Kd(λ); the horizontal line is a ratio of 1.

Table A3. Summary statistics for the retrieval of Kd(490) and Kd(412) from Jamet’s neural network
algorithm using NOMAD & IOCCG initial dataset and the validation dataset of COASTLOOC. Root
Mean Square Difference (RMSD) is the square root of the mean square error between the retrieved Kd
and the measured/simulated Kd; r is Pearson’s correlation coefficient.

COASTLOOC NOMAD IOCCG

490 412 490 412 490 412
Slope 1.10 1.43 0.68 0.82 1.00 1.02
Intercept 0.060 −0.132 0.103 0.095 −0.002 −0.019
r 0.92 0.92 0.89 0.90 0.99 0.99
RMSD 0.319 0.855 0.373 0.530 0.062 0.206

There were no significant biases at low Kd values visible from Subdataset 2 (Figure A1),
and COASTLOOC did not have enough point at low Kd (< 10−1) to conclude. Generally
speaking, for all datasets the algorithm performed better retrieving Kd(490) than Kd(412)
(Table A3).
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Appendix D. Satellite-Floats Retrieval Slopes Forced to 0

Table A4. Results at 490 nm when the intercept is forced to 0. See Methods section for definitions of
statistical performance metrics.

Sensor & Algorithm BIAS APD RMSD r Slope
MODIS-Terra: KLee05

d 1.19 27.14 0.018 0.87 1.11
MODIS-Terra: KNN

d 1.24 30.76 0.020 0.84 1.16
MODIS-Terra: KNASA/ESA

d 1.08 19.97 0.018 0.86 1.04
MODIS-Aqua: KLee05

d 1.229 29.25 0.026 0.705 1.144
MODIS-Aqua: KNN

d 1.219 29.88 0.021 0.804 1.132
MODIS-Aqua: KNASA/ESA

d 1.081 20.08 0.019 0.830 1.049
VIIRS-SNPP: KLee05

d 1.289 34.65 0.022 0.828 1.190
VIIRS-SNPP: KAustin

d 1.017 19.46 0.021 0.833 0.979
VIIRS-JPSS: KLee05

d 1.272 32.91 0.021 0.836 1.174
VIIRS-JPSS: KNASA/ESA

d 1.007 18.89 0.020 0.840 0.969
OLCI-S3A: KLee05

d 1.280 30.73 0.019 0.708 1.205
OLCI-S3A: KNN

d 1.154 25.91 0.020 0.648 1.073
OLCI-S3A: KNASA/ESA

d 1.050 18.34 0.018 0.715 1.013
OLCI-S3B: KLee05

d 1.384 39.70 0.017 0.895 1.314
OLCI-S3B: KNN

d 1.360 40.97 0.020 0.818 1.304
OLCI-S3A: KNASA/ESA

d 1.116 19.44 0.013 0.905 1.061

Appendix E. Variation in Solar Zenith Angle

Figure A2. Residuals between for the operational algorithm (Kd(490)NASA/ESA) and Kd(490) f loat as
a function of the difference between the solar zenith angle at the time of the sensor overpass (θ(Rrs))
and the solar zenith angle when the BGC-Argo float surfaced (θ( f loat)). Scatter points are colored by
the value of Kd(490)NASA/ESA.
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Table A5. Summary statistics at 490 nm when biomes 18 and 19 are removed from the full dataset—
5425 profiles removed, corresponding to the ones located in the Mediterranean and the Black Sea.

Sensor & Algorithm BIAS APD RMSD r Slope Intercept
MODIS-Terra: KLee05

d 1.21 29.49 0.023 0.85 0.88 0.012
MODIS-Terra: KNN

d 1.27 34.11 0.025 0.82 0.88 0.014
MODIS-Terra: KNASA/ESA

d 1.07 19.83 0.023 0.85 0.91 0.006
MODIS-Aqua: KLee05

d 1.24 32.05 0.038 0.62 0.86 0.016
MODIS-Aqua: KNN

d 1.24 34.04 0.028 0.79 0.75 0.020
MODIS-Aqua: KNASA/ESA

d 1.08 21.98 0.025 0.82 0.89 0.009
VIIRS-SNPP: KLee05

d 1.30 35.65 0.027 0.84 0.84 0.018
VIIRS-SNPP: KNASA/ESA

d 1.02 19.76 0.026 0.85 0.83 0.008
VIIRS-JPS: KLee05

d 1.28 33.79 0.026 0.85 0.92 0.013
VIIRS-JPSS: KNASA/ESA

d 1.01 18.98 0.025 0.86 0.85 0.007
OLCI-S3A: KLee05

d 1.26 28.99 0.021 0.71 0.93 0.009
OLCI-S3A: KNN

d 1.15 25.41 0.022 0.66 0.88 0.007
OLCI-S3A: Kd NASA/ESA 1.02 18.42 0.021 0.71 0.74 0.008
OLCI-S3B: KLee05

d 1.32 34.68 0.016 0.93 0.61 0.022
OLCI-S3B: KNN

d 1.25 32.64 0.018 0.90 0.61 0.020
OLCI-S3B: Kd NASA/ESA 1.08 17.45 0.015 0.93 0.63 0.014

Appendix F. Retrieval Method for Float Kd(λ)

To ensure the accurate retrieval of Kd(λ) from Ed(λ) by BGC-Argo floats, three differ-
ent methods to compute Kd(λ) were tested. The first one uses only the Ed(λ) measurements
between the surface and zpd(lambda) and performs an iterative least square fit on the ex-
ponential value of the Ed(λ) profile. From here on, it is called the “lsq no extrapolation”
method.This method assumes that Kd(λ) is constant within Zpd. The second method is the
one used in [2] and extrapolates the Ed(λ) profile to the surface in order to acquire Ed(0−)
by performing a linear fit (“Linear fit”). This method also assumes that Kd(λ) is constant
within the zpd. Lastly, Ed(λ) was again extrapolated to the surface to acquire Ed(λ, 0−) but
using a second-order polynomial, which implies that there are some variations with depth
of Kd(λ) within zpd.

Figure A3. Test of the three potential methods for Kd(λ) retrieval from Ed(λ) measured by floats at
490 nm, i.e., a linear fit to extrapolate to Ed(0−) (blue), a second degree polynomial to extrapolate to
Ed(0−) (grey) and an iterative least-square fit on existing Ed(490) measurements (yellow).
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Appendix G. Biomes Correlation and Analysis

Table A6. Results for each of the biomes for each sensor. Individual results for each of the satellite sensors within each of the biomes, with the red color indicating
poor performance for a given satellite sensor and the green good statistical performance for a given sensor within a biome. The NASA empirical algorithm (see
Methods section) was applied for the MODIS and the VIIRS sensors, whereas the ESA empirical algorithm was applied to the OLCI sensors. As they are both
empirical algorithm, they were grouped together for the overall statistical analysis.

MODIS-TERRA
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.14 1.27 1.07 1.27 1.26 1.25 1.45 1.50 1.13 0.99 1.13 0.91 1.02 1.00 0.95 1.27 1.31 1.00 1.40 1.49 1.07 1.16 1.15 1.12 1.32 1.35 1.14 1.11 1.12 1.05 1.21 1.25 1.07
ADP 22.15 31.17 15.84 22.61 28.31 30.18 36.78 41.05 18.28 51.63 52.92 45.05 25.64 29.51 24.12 28.41 32.04 19.49 38.76 46.87 15.80 27.76 27.33 22.25 28.97 33.40 18.51 26.61 28.05 21.95 25.18 29.51 18.59

RMSD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.03 0.04 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
r 0.64 0.52 0.73 0.02 0.32 0.26 0.74 0.80 0.85 −0.65 −0.70 −0.70 0.79 0.73 0.78 0.55 0.45 0.47 0.34 0.32 0.30 0.58 0.59 0.59 0.84 0.83 0.84 0.85 0.82 0.85 0.91 0.90 0.90

Slope 0.48 0.49 0.51 1.12 1.05 1.04 0.82 0.78 1.15 −0.55 −0.63 −0.22 0.60 0.49 0.55 0.56 0.47 0.54 0.49 0.48 0.47 0.44 0.41 0.47 1.35 1.14 1.19 0.72 0.72 0.76 0.80 0.83 0.67
Intercept 0.02 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.12 0.13 0.09 0.03 0.04 0.03 0.02 0.02 0.01 0.02 0.02 0.01 0.04 0.04 0.03 −0.01 0.01 0.00 0.02 0.02 0.01 0.01 0.01 0.01

MODIS-AQUA
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.44 1.39 1.21 1.27 1.26 1.25 1.32 1.37 1.00 1.16 1.19 1.07 1.07 1.03 1.00 1.33 1.39 1.00 1.44 1.52 1.08 1.13 1.11 1.02 1.26 1.34 1.13 1.09 1.08 1.00 1.22 1.24 1.03
ADP 40.01 37.00 24.63 22.61 28.31 30.18 38.86 38.41 15.05 34.26 38.25 26.67 25.92 28.71 23.96 35.42 35.33 19.79 34.62 41.40 13.50 31.23 31.09 24.66 33.05 38.08 26.42 27.56 26.79 20.16 27.95 28.51 18.09

RMSD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.03 0.02 0.04 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
r −0.56 −0.46 −0.29 0.02 0.32 0.26 0.92 0.90 0.94 −0.10 −0.15 −0.05 0.75 0.70 0.74 0.64 0.68 0.69 0.84 0.81 0.87 0.51 0.47 0.53 0.80 0.79 0.76 0.81 0.79 0.82 0.87 0.87 0.84

Slope −0.72 −0.75 −0.45 1.12 1.05 1.04 0.89 0.72 1.12 −0.93 −1.00 −0.77 0.56 0.45 0.58 0.68 0.64 0.75 0.77 0.76 0.87 0.47 0.43 0.51 1.14 1.02 1.04 0.84 0.78 0.88 0.85 0.79 0.73
Intercept 0.06 0.06 0.05 0.00 0.01 0.01 0.01 0.02 0.00 0.15 0.16 0.13 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.02 0.00 0.04 0.04 0.03 0.01 0.01 0.00 0.02 0.02 0.01 0.01 0.02 0.01

VIIRS SNPP
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.34 NaN 1.07 1.33 NaN 1.11 1.37 NaN 0.97 1.12 NaN 0.94 1.05 NaN 0.91 1.41 NaN 1.00 1.47 1.01 1.23 NaN 1.03 1.31 NaN 1.02 1.17 NaN 0.95 1.36 NaN 1.03
ADP 36.85 NaN 11.91 38.28 NaN 22.57 45.05 NaN 14.01 30.78 NaN 33.20 28.43 NaN 25.23 41.28 NaN 14.28 42.20 14.48 33.26 NaN 20.21 40.02 NaN 22.51 31.46 NaN 20.01 36.50 NaN 18.68

RMSD 0.01 NaN 0.00 0.01 NaN 0.01 0.01 NaN 0.00 0.03 NaN 0.03 0.04 NaN 0.04 0.01 NaN 0.00 0.01 0.01 0.02 NaN 0.02 0.02 NaN 0.02 0.02 NaN 0.02 0.02 NaN 0.02
r 0.63 NaN 0.73 0.64 NaN 0.49 0.84 NaN 0.86 −0.08 NaN −0.12 0.73 NaN 0.74 0.67 NaN 0.69 0.78 0.80 0.58 NaN 0.59 0.57 NaN 0.53 0.77 NaN 0.77 0.81 NaN 0.80

Slope 0.81 NaN 0.79 0.29 NaN 0.39 0.92 NaN 0.96 −0.48 NaN −0.40 0.61 NaN 0.58 0.68 NaN 0.60 0.87 0.87 0.53 NaN 0.52 0.74 NaN 0.65 0.74 NaN 0.73 0.66 NaN 0.56
Intercept 0.02 NaN 0.01 0.04 NaN 0.03 0.01 NaN 0.00 0.11 NaN 0.09 0.04 NaN 0.03 0.02 NaN 0.01 0.01 0.00 0.04 NaN 0.03 0.02 NaN 0.02 0.02 NaN 0.01 0.02 NaN 0.01

VIIRS JPSS
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.36 NaN 1.06 1.34 NaN 1.12 1.28 NaN 0.94 0.99 NaN 0.85 1.07 NaN 0.90 1.38 NaN 0.98 1.39 NaN 0.96 1.23 NaN 1.02 1.23 NaN 0.94 1.14 NaN 0.93 1.33 NaN 1.02
ADP 32.62 NaN 10.48 36.67 NaN 16.84 38.38 NaN 11.95 22.87 NaN 29.39 26.94 NaN 24.07 40.59 NaN 15.13 39.60 NaN 14.95 33.88 NaN 22.69 36.31 NaN 19.07 30.09 NaN 19.25 34.61 NaN 18.16

RMSD 0.01 NaN 0.00 0.01 NaN 0.01 0.01 NaN 0.00 0.02 NaN 0.03 0.04 NaN 0.04 0.01 NaN 0.01 0.01 NaN 0.01 0.03 NaN 0.03 0.02 NaN 0.01 0.02 NaN 0.02 0.02 NaN 0.02
r 0.53 NaN 0.66 0.59 NaN 0.57 0.83 NaN 0.85 −0.05 NaN −0.07 0.75 NaN 0.76 0.23 NaN 0.23 0.80 NaN 0.83 0.51 NaN 0.52 0.88 NaN 0.84 0.79 NaN 0.78 0.80 NaN 0.80

Slope 0.68 NaN 0.65 0.86 NaN 1.04 0.89 NaN 0.94 −0.56 NaN −0.47 0.67 NaN 0.61 0.57 NaN 0.47 0.76 NaN 0.75 0.47 NaN 0.47 0.98 NaN 0.86 0.77 NaN 0.76 0.67 NaN 0.56
Intercept 0.02 NaN 0.01 0.02 NaN 0.00 0.01 NaN 0.00 0.12 NaN 0.10 0.03 NaN 0.03 0.02 NaN 0.01 0.01 NaN 0.01 0.04 NaN 0.03 0.01 NaN 0.01 0.02 NaN 0.01 0.02 NaN 0.01

OLCI-S3A
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.31 1.17 1.05 1.25 1.22 1.04 1.21 1.07 0.96 0.83 0.78 0.74 1.01 1.00 0.89 1.34 1.15 1.04 1.40 1.26 1.08 1.23 1.24 1.02 1.23 1.24 0.94 1.04 0.92 0.85 1.23 1.05 0.99
ADP 26.90 22.85 17.54 43.62 44.44 25.28 24.28 23.40 17.45 52.60 78.07 74.93 12.40 14.11 15.95 29.48 21.40 14.75 32.93 26.03 12.64 33.88 28.51 22.69 36.31 28.51 19.07 32.75 32.76 20.51 32.88 25.26 17.77

RMSD 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.04 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.03 0.01 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01
r 0.52 0.53 0.56 0.94 0.97 0.96 0.67 0.58 0.64 NAN NaN NaN 0.93 0.90 0.93 0.65 0.61 0.78 0.19 −0.03 0.19 0.51 0.87 0.52 0.88 0.87 0.84 0.85 0.68 0.89 0.65 0.58 0.64

Slope 0.64 0.74 0.57 1.41 2.36 1.41 0.95 0.97 0.81 NAN NaN NaN 1.06 0.92 1.09 1.02 1.08 0.84 1.56 −1.57 0.99 0.47 0.79 0.47 0.98 0.79 0.86 0.62 0.83 0.63 0.71 0.84 0.67
Intercept 0.02 0.01 0.01 0.00 -0.03 −0.01 0.01 0.00 0.00 NAN NaN NaN 0.00 0.01 −0.01 0.01 0.00 0.00 −0.01 0.06 0.00 0.04 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01

OLCI-S3B
Biome 4 Biome 6 Biome 7 Biome 8 Biome 9 Biome 11 Biome 13 Biome 15 Biome 16 Biome 18 Biome 19

Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA Lee NN NASA/ESA
BIAS 1.19 1.24 1.08 1.23 1.22 1.08 1.29 0.48 1.02 1.27 0.49 1.01 1.28 1.15 1.05 1.38 1.36 1.12 1.44 1.28 1.12 1.31 1.35 1.08 1.45 1.34 1.15 0.79 0.79 0.69 1.31 1.41 1.25
ADP 27.14 30.76 19.97 29.13 30.00 20.19 34.71 158.21 19.46 32.89 140.55 18.76 30.73 25.91 18.34 39.70 40.97 19.44 38.86 33.61 17.74 30.59 36.75 14.38 32.17 27.25 14.13 58.61 56.02 71.42 12.90 23.58 11.17

RMSD 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.04 0.04 0.05 0.01 0.02 0.01
r 0.87 0.84 0.86 0.83 0.81 0.83 0.82 0.73 0.82 NaN NaN NaN 0.71 0.65 0.71 0.90 0.82 0.91 0.70 0.46 0.87 1.00 1.00 1.00 0.97 0.97 0.97 0.79 1.00 1.00 0.96 0.81 0.96

Slope 0.79 0.78 0.80 0.83 0.75 0.86 0.79 0.91 0.76 NaN NaN NaN 0.92 0.83 0.72 0.87 0.67 0.63 0.55 0.51 0.52 0.10 1.40 0.00 0.82 1.08 0.79 0.08 0.07 0.07 0.94 0.78 1.01
Intercept 0.01 0.02 0.01 0.02 0.02 0.01 0.02 −0.01 0.01 NaN NaN NaN 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.04 0.00 0.04 0.02 0.01 0.01 0.06 0.06 0.05 0.01 0.03 0.00
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